
Practical 8 Solutions
Jumping Rivers

Question 1 - Advanced Helicopters

If everything has gone well, the prediction we made in practical 1 for
the 14cm blade helicopter should have been a little off. This is because
as the helicopters blade get larger than 12cm, the time they take to
hit the ground starts to slowly decrease. To implement this sort of
behaviour in the model we could try adding an exponented version
of the length variable. A handy way to go from our original single
predictor to one that includes both a linear and a square term is to
use np.hstack() (horizontal stacking of arrays)

import numpy as np
X_train = np.hstack([X_train, X_train*X_train])

a) Fit the model with the new X_train object. What is the equation
for the model you have fitted?

from sklearn import linear_model
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
model.fit(X_train, y_train)
model.intercept_
model.coef_
y = b0 + b1*length + b2*length^2

b) What is the RSS for the new model? How does it compare to the
old model?

fitted = model.predict(X_train)
resid = fitted - y_train
np.square(resid).sum()

c) Overlay the new model line using the fitted values

sns.scatterplot(x = "length", y = "time", data = heli)
sns.lineplot(x = heli["length"], y = fitted)

d) Finally, predict the value of the 14cm blade helicopter using the
new model

model.predict(np.array([14, 14*14], ndmin = 2))

practical 8 solutions 2

Question 2 - fuel economy

We will build a linear regression model for predicting the fuel economy
of a vehicle given some other attributes on that vehicle. The data can
be access from the jrpyanalytics package

import jrpyanalytics

cars = jrpyanalytics.datasets.cars.load_data()

• Begin by creating a scatter plot of fuel economy, (the ‘FE’ variable)
against engine displacement (‘EngDispl’)

import seaborn as sns
import matplotlib.pyplot as plt

plt.figure()
sns.scatterplot(x = 'EngDispl', y ='FE', data = cars)
plt.show()

• What would we expect a model between these two variables to tell
us?

An average descrease in fuel economy for increasing engine size

• Fit a simple linear regression model with fuel economy as the re-
sponse variable and engine displacement as the input. sklearn
expects separate array objects for the predictors and the response
of a model. The following code should get you started with shaping
the inputs and outputs as necessary

X,y = cars.drop('FE',axis=1), cars['FE']

remember to reshape input to a 2d array
x_train = X['EngDispl'].values.reshape(-1,1)
y_train = y

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(x_train,y_train)

• What is the average decrease in fuel economy for each 1 litre in-
crease in displacement according to this model?

model.coef_

array([-4.52092928])

practical 8 solutions 3

• Draw a scatter plot with the fitted model line

plt.figure()
sns.scatterplot(x = 'EngDispl', y ='FE', data = cars)
fitted = model.predict(x_train)
sns.lineplot(x = 'EngDispl', y =fitted, data = cars)
plt.show()

• Create a plot of model fitted values against residuals

import numpy as np
resid = y_train - fitted
resid = (resid - np.mean(resid))/np.std(resid,ddof=1)

fig,ax = plt.subplots(1,1)
ax.scatter(fitted,resid)
ax.set_ylabel('Residuals')
ax.set_xlabel('Fitted Values')
ax.hlines([-2,0,2], xmin = np.min(fitted), xmax = np.max(fitted))
plt.show()

• What does this plot tell us?

residuals show us structure that the model has not accommodated.
there appears to be some trend here, the curved shape indicates that we
potentially require some transformation of variables
a squared term might help
##

• Plot the fitted values against the true observations

fig,ax = plt.subplots(1,1)
ax.scatter(y_train,fitted)
ax.set_ylabel('Fitted Values')
ax.set_xlabel('Observed Values')
ax.plot([15,50],[15,50])
plt.show()

• What does this plot tell us about the predictive performance of the
model across the range of the response?

fig,ax = plt.subplots(1,1)
ax.scatter(x_train,resid)
ax.set_ylabel('Residuals')
ax.set_xlabel('Engine Displacement')
ax.hlines([-2,0,2], xmin = np.min(x_train), xmax = np.max(x_train))
plt.show()

practical 8 solutions 4

We seem to overestimate more often than not in the 25-35 range.
At the upper end we consistently under estimate the true values

• We will refit the model with a square term for the engine dis-
placement variable. We’ve seen a couple of ways of doing this in
the notes. A handy way to go from our original single predictor
to one that includes both a linear and a square term is to use
np.hstack() (horizontal stacking of arrays). Fit the same model
with the new input and look at the scatter plot with model line.

import numpy as np
x_train = np.hstack([x_train,x_train*x_train])

model.fit(x_train,y_train)

plt.figure()
sns.scatterplot(x = 'EngDispl', y ='FE', data = cars)
fitted = model.predict(x_train)
sns.lineplot(x = 'EngDispl', y =fitted, data = cars)
plt.show()

• Now we wish to add the transmission (‘Tranmission’) variable to
our model. This variable is categorical so we will require some
preprocessing prior to fitting the model. The following will create
a column transformer which will standardise the numeric variables
and one hot encode the categorical variable

x_train = np.hstack([
X[['EngDispl']],
X[['EngDispl']]*X[['EngDispl']],
X[['Transmission']]

])
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder

preprocessor = ColumnTransformer([
('num',StandardScaler(), [0,1]),
('cat',OneHotEncoder(), [2])

])

• Create a pipeline that will run the preprocessor and fit a linear
regression model

from sklearn.pipeline import Pipeline

practical 8 solutions 5

model2 = Pipeline([
('prep',preprocessor),
('reg',LinearRegression())

])

model2.fit(x_train,y_train)

• We can assess which model gave us the smallest overall mean
squared error using the mean_squared_error function from the
sklearn.metrics module.

from sklearn.metrics import mean_squared_error

• Which model gave better performance

mean_squared_error(y_train,model2.predict(x_train))

16.71369002147117
##
/home/theo/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py:595: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)

mean_squared_error(y_train,fitted)

The model with engine displacement,
engine displacement squared and transmission inputs

17.933750031324223

