MODEL RAILWAY
~— SIGNALLING

https://www.model-railway-signalling.co.uk/
© DCC Model Railway Signalling. All Rights Reserved.

Signalling Application Quick-start Guide
Version 3 — August 2024

This guide is intended to provide an introduction to the Model Railway Signalling Application and
the art of the possible in terms of the signalling configurations that can be achieved.

If you have a purchased a DCC Signalling System from DCC Model Railway Signalling then the
example layouts used in this guide can be found in the ‘user_guide’ folder. If you are just using the
software, the example layouts can be found in the ‘user_guide’ folder of the GitHub repository

(https://github.com/johnrm174/model-railway-signalling).

Table of Contents

INEEOAUCTION. ...ttt ettt b et s e s a e et e st e bt et esae e besatesut e beesabeeeaseesneesaneenans 2
The iMmpOortance Of TESEATCH........cc.iiiiiiiiieeeeeee ettt a e e sae e s teesbeesssbeeesssaeeesssaaeanns 3
The SchematiC EdItOr.......co.iiiiiieiieieeeee ettt et s e st et e e ssaeeeeaeeeas 4
Drawing your 1ayout SCHEMALIC.......ccccuuiiiiuieiriieieiiecriee ettt s e tee e s e e e sbeeesaeeesabeeessseeesnneneeas 5
Planning your signalling SCHeMIE.............cccevuiiriiiiiiiieeieeteeie ettt re s te et esbeesaae s s anaeeas 6
Adding signals to the 1ayout SCHEMALIC.......c.ceieiuiiieiiieieiieeeieeeeeeee et are e e e e s seaeeeeas 7
Configuring the basiC iNtErlOCKING........c.ceviiiiiiriiiiiieeieeeeeee ettt et e e s sbe e e sabeeeenes 9
Testing the basic INtETIOCKING........cccviiiiiiiieeeeeeeee e sre e s e e e s e eeaes 12
OPperating YOUT LAY OUL.....cccuuttiiriiteeieriteeeeiieeeeeereteeeeesitteeseenreeesesureteeessnseeeesennreneeeeesessesssssssnnnnnnnsnes 14
Adding and configuring track OCCUPANCY.........ccciieiiieiiiirieeiieeeie ettt te e aeesaeeseeesaeessaeesaenns 15
Testing track 0CCUPANCY ChANEES......cueiriiiiiiirieeiierie ettt ettt s sbe e st e e s s tae e e sasaeessasaeees 17
Configuring the GPIO SENSOTS.......cccueeiieeieeiieeieesteeieeseeeteeseeeseesseesseesseessseesssesseesssessseesssessssensees 19
Interlocking wWith TTack SECHIONS.c.cevviiriieriieieeieeteee ettt st be s e s e e e s e 21
ONe ClICK TOULE SETLIMG......vviiiiieeiieeeiieeeiieeecteeeieeesteeesteessateessabeeessbeesseeessseeesssaeesssaeesssaesnsseeessnssnees 23
Saving and 10ading YOUT LaYOUL........cccceeriiiiiiiriiriieieeeete ettt e s te e esaeessaesaeaeessnnaesnns 29
AN aUtOMAtION EXAIMIPIE.....cciiiiiiiieeiieeeiie e et e et e e erte e st eesteeesaaeessbeeessaeesssseesssseesssseessseessssessssaeesanns 30
SHIL L0 AISCOVET......euteeiiteriteiteteet ettt ettt sttt et et et st e sb et esae e be et e s st esseenseenneeenneen 35
Appendix 1 - Using semaphore Signals...........ccccueiriiiiiiiiiiiiieerieecriee et e esteeesreeseeeseveeessaaneeessesnnns 36

Appendix 2 - DCC programming of signals and POINtS..........ccceeveererrernienirnennieneereneesee e eeeeene 37

https://www.model-railway-signalling.co.uk/
https://github.com/johnrm174/model-railway-signalling

Introduction

The application enables users to easily create, configure and control prototypical interlocked
signalling schemes for model railway layouts, without the need for complex layout wiring. All
layout configuration and control is achieved via the application’s graphical user interface, avoiding
the need for specialist computer skills (if you use PC applications, you should be able to use this).

The application has primarily been developed to run on a Raspberry Pi computer, hosting a Pi-
SPROG DCC programmer controller:

* The Raspberry Pi is a low-cost single-board computer which provides a “Windows-like”
user experience (and versions of all the usual applications you would expect, such as web-
browser, email, office-type applications etc).

* The Pi SPROG DCC programmer controller connects directly to the Raspberry and provides
a DCC ‘accessory bus’ output to control the points and signals out on the layout.

The use of a separate ‘accessory bus’ makes the system suitable for use with layouts that use DCC
or analogue for control of trains (when used with DCC layouts, the accessory bus for control of
the signals/points needs to be electrically separated from the main DCC track bus).

Several manufactures now provide DCC signals (e.g. Train-Tech from Gaugemaster) and point
motors (e.g. Cobalt from DCC Concepts), making this method of control ideal for ‘new-build’
layouts. There are also numerous DCC signal/point decoders available for those wishing to upgrade
to DCC control without the expense of wholesale replacement of their existing units.

The application uses the flexibility of the Raspberry Pi General Purpose Input/Output (GPIO)
interface to provide feedback on train location. Simple sensors providing a ‘normally-open’ output
(momentarily closed when triggered) can be connected directly to the appropriate GPIO pins to
generate ‘signal passed’ events as the passing train triggers the sensor (e.g. the slim vertical
magnetic sensors from DCC Concepts). These events can then be configured within the application
to provide a ‘mimic’ diagram of train location and provide a level of signal automation.

Note that other sensor types (providing a switched voltage) should never be connected directly
to the GPIO pins as this could damage the Raspberry-Pi. In these cases, external opto-
isolators should be used - I’ve been using the PC817 2, 4 or 8 channel opto-isolator modules
(available from several Ebay sellers) for my layout. Connection of these is relatively straight
forward, but if you have any doubts then seek expert advice.

For added flexibility, the software enables multiple signalling applications to be networked together,
making it ideal for control of larger layouts (where the layout gets broken down into multiple
signalling areas) or splitting smaller layouts down to individual signal boxes (with simulated block
instruments) for real ‘true to prototype’ operation. Note that in this case only one instance of the
application needs to be running on a Raspberry Pi (the instance providing the interface to the DCC
bus and track sensor inputs from the GPIO pins). As the application has been designed to be
platform independent, other instances can be hosted on Windows or Linux as required.

The importance of research

This is probably the most important (and potentially time consuming) part of the process. If you’re
reading this document and planning to use the application to develop a signalling scheme for your
model railway then I’d recommend building familiarity with British railway signalling practice.
There are lots of great resources out there, but some of the best I’ve come across are:

* https://signalbox.org/ - Comprehensive information on signal types and the ‘Block System’
and a vast library of signal box diagrams for you to draw inspiration.

* https://en.wikipedia.org/wiki/UK railway signalling — Its Wikipedia (enough said).

* http://www.railway-technical.com/signalling/ - A section of the Railway Technical Website
covering signalling. There are many great resources on these pages including:

o http://www.railway-technical.com/signalling/infopaper-6-basic-railway.pdf — A paper
(downloadable pdf format) on Basic Railway Signalling.

o http://www.railway-technical.com/signalling/british-signalling--what.pdf — A paper
(downloadable PDF) on “What the driver sees”.

But Beware — Railway modeling is always about compromise and that is definitely going to be the
case for whatever signalling scheme you design and implement for your layout. Although the
application has been developed to add a touch of realism to the operation of your layout, it will
never measure up to the million-pound-plus signalling systems of the ‘real thing’.

And never forget - Rule 1 of Railway Modelling applies — it’s your layout and its therefore entirely
up to you how you signal your layout. Hopefully the features provided by the application will
enable you to achieve whatever level of realism you want to achieve.

http://www.railway-technical.com/signalling/british-signalling--what.pdf
http://www.railway-technical.com/signalling/infopaper-6-basic-railway.pdf
http://www.railway-technical.com/signalling/
https://en.wikipedia.org/wiki/UK_railway_signalling
https://signalbox.org/

The Schematic Editor

The application opens in ‘Edit’ mode with a blank drawing canvas. The panel on the left contains
the buttons to add schematic drawing objects to the canvas, whilst the Menubar across the top of the
window contains various controls and options for configuring the application.

For the time being we’ll focus on the basic controls and options needed to get you up and running:

File Save Mode selection
and Load (Edit mode)
new_layout.sig v oA X
DEC™ s File Mode:Edit SPROG:Disconnected MQTT:Disconnected Utilities Settings Help

=

textbox K R
SPROG DCC

controls

GO HERE
FIRST I!!

Track Occupancy
/ Sections
Intermediate

Track sensors

[

Il [N

H Block Instruments |
<+

Schematic Routes |

]

Firstly, open the Help Window from the Main Menubar (Help => Help) to familiarise yourself
with the basic Schematic Editor functions and practice creating, moving and deleting objects:

* Add objects to the canvas by left-clicking the buttons on the left hand side.

* Select objects by left-clicking on them (small circles will be displayed at each end of lines
to show they are selected - a border will be displayed around other drawing objects)

* Add/Remove objects to/from the current selection by shift-left-clicking on them

* Move selected objects by dragging and dropping (left-click => move => left-release).

* Move the ends of a line by selecting the line and then dragging and dropping the line ends

* Rotate selected objects (points and signals) by pressing the ‘r’ key

* Delete selected objects by using the backspace key

/I Line is selected I
= \ o1} — o0
—) |
i / I Point is selected H 7
Drag and drop line end oint is selecte I

with left mouse button 3

Other Schematic Editor functions summarised in the Help window, but once you are comfortable
with the basics as described above, we’ll continue with the first quick-start example by clearing
down the schematic to start afresh (from the Main Menubar select File => New).

Drawing your layout schematic

For the first exercise, we are going to create a simple layout comprising a single track line serving a
small double platformed terminus station (with no run round facilities):

Siding

[

The rest of

/

the world -

4

Point 1 (left hand point) can be added straight to the layout and moved into the appropriate position.
To create point 2, either add another left hand point to the layout or, alternatively, select point 1
(Left Click on the point) and then copy/paste (Cntl-c / Cntl-v). When items are created, they are
assigned the next available ‘one-up’ identifier so in this case the added / pasted point will be created
as Point 2. Whilst it remains selected, press the ‘r’ key to rotate by 180 degrees, it can then be
moved into position to form the required crossover.

Now add the track lines to the schematic. To add end-stops or arrows to the lines, double-left-click
on the line to bring up the configuration dialog. A different line end style can then be selected and
applied to one or both ends. Once the required selection has been made, click the OK button to
apply the changes and close the configuration dialog.

Text boxes can be added to annotate the schematic. Once created, double-left click on the ‘Text’ to
bring up the configuration dialog and edit the contents. Note that textboxes will always be sized to
fit the contents on the schematic, but padding (extra lines or spaces) can be used if required. In this
example, text boxes with padding before and after the text have been used for the two ‘platforms’.

To complete the track layout, we’ll configure the points to switch together and add a facing point
lock'. Firstly, double-left-click on point 2 to bring up the configuration dialog, set it to be fully
automatic and then Apply the changes. Now double-left-click on Point 1, configure it to switch
Point 2 and select the facing point lock. We’ll also configure the DCC address we’re going to use to
switch the points out on the layout (as both points are switched together, we only need a single
address to switch both points) before Applying the changes.

Point 2 v oA

Configration] Interl ocking]

x

2 “ RH & LH

~Point 1D~ ’rPoint type "Cl)lt)ur

Change

~General configuration

~ Rotated <_l:

Point 1 has a
Facing Point Lock

[~ Reversed

oimnt

Configration] Interlocking]

Switch point: Switched with:

¥ Fully autom‘a'tic\
~Automatic switching

T

~DCC Address and command logic
=

N

Ok ‘ Apply | Reset ‘ Cancel |

1

Point 1D~ -Point type rColour—————;
Set Point 1 to 1 { T RH & LH [Change
Switch Point 2 ! | !
\—General cohfiguration
Point 2 has already been [~ Rotated v Facing point lock
rotated on the schematic eversed I Fully automatic
SeiPomioiobe EE— ~Automa witching
et the . : . .

Eully/Altomatic Address Switch point: | 2 Switched with:

Indication that Point 2

S~
Ws and command logic———
1000 [Reversed

is now configured to be

switched with point 1

(on re-loading window)

Ok | Apply ‘ Reset ‘ Cancel ‘

Facing Point locks (FPLs) physically lock points in position to prevent them accidentally changing as a train passes

over them. In the UK it is not permitted for passenger trains to pass over points from a facing direction (diverging
direction) without them being locked into place.

The schematic should now look as follows. Point 2 no longer has a control button as it will now be
switched with Point 1, and Point 1 now has an additional ‘L’ button for the facing point lock (FPL).
When this is active, then the main point control is ‘greyed out’ and unresponsive (the point is
locked). To switch the point, first release the FPL to enable the point control, switch the point and
then re-activate the FPL to lock the point in the switched position.

Siding | Platform 2

The rest of / 1

the world ot 1
Hﬂ Platform 1

Planning your signalling scheme

The next step is to plan your signalling scheme in terms of the possible train movements on the
layout. For this example, the main movements we want to signal are:

* Rest of the world => Platform 1 or Platform 2
* Platform 1 => Rest of the world
* Platform 2 => Rest of the world
We also want to signal the following shunting movements:
* Platform 2 => Siding
* Siding => Platform 2

This (together with the knowledge gleaned from our research in the previous section) allows us to
define the signals we want to add to the layout and where they should be positioned.

Adding signals to the layout schematic

Use the buttons on the left hand side of the window to add signals to the schematic and move them
into position (rotating as required). To keep things simple, we’ll use two aspect colour light signals
for the main signals. The signals are initially created as four aspect but we’ll change them to two
aspect as we configure them. Signal 4 will be a ground position (shunting) signal.

The rest of

the world -

To signal the train movements we have defined, we need to edit Signal 1 to provide a route
indication (to differentiate between the routes into Platform 1 and Platform2). At the same time,
we’ll change it to a two-aspect signal and configure the DCC addresses. As before, double-left-

click to bring up the configuration dialog and use Apply or OK to save the changes

Change the signal to
Two-aspect (green/red)

Fsignal Subtyp

w
(=)
w

Configration] Interlocking} Automation}

’—Signal ID- -Signal Type
1]

@ Colour Light Ground Pos

 Semaphore Ground Disc

* 2ZAspG/R T 2AspG/Y © 2AspY/R 3 Aspect

4 Aspect

[~ Rotated

’—General Config- ’—Route Indications

 None © Route feathers

Select feathers

‘7

" Theatre indicator

Example configuration
for a 2 aspect signal
that uses a single DCC
Address (toggle on/off)
to set the aspect

No feather is
provided for the

Configure a single
feather indication
For the diverging

Left hand route

-
/RHlI—
-

~DCC command sequences for Colour Light signal aspects

to provide the

route indication

(Dark) I [101 OFF
MAIN (default) route \L MAN — [To1 #

—
|

RH2

NARAI

LLLLIE

Danger 100 OFF |]]]]]
— proceed 100 | ON]]]]]
Caution | | | | |]
Prelim Caution | | | | |]
Flash Caution | | | | |]
Flash Prelim | | | | |]
[~ Subsidary signal l—
Feather Route Indications and associated DCC command sequences

] I

]

LH1L ¥ 101 | ON —

|

_

_

L

|
|
|
-

Auto inhibit route indications on DANGER

0ok ‘ Apply | Reset | Cancel |

The feather for the
diverging route is
controlled (On or Off)
by a single DCC
Address. Note that this
needs to be set Off when
The signal is at Danger
(the ‘Dark’ aspect) and
also set Off when the
Main route is set

We also need to add a subsidiary aspect to Signal 2 to signal the shunting move from platform 2
into the siding (we’ll also change this one to a two aspect signal and set up the DCC addresses).

Note that we don’t need route indications for Signal 2 as the only route controlled by the main

aspect is the departure out to the rest of the world (the MAIN route for this signal). The subsidiary
aspect controls the shunting move back into the siding, which is effectively a right hand divergence
from the main route (the RH1 route for this signal).

Configration]

(Signal ID—‘ [Signal Type

2

Signal 2

Interlocking] Automation]

= Colour Light

 Ground Pos

~

Semaphore Ground Disc

Change the signal to
Two-aspect (green/red)

Signal Subtyp
*H # 2ASpG/R 2AspG/Y 2AspY/R [3 Aspect © 4 Aspect

General Config- -Route Indications
(w Rotated [

The 2 aspect signal
uses a single DCC
Address (toggle on/off)
to set the aspect

« None (Route feathers

" Theatre indicator

-

Select to add a
Co-located subsidiary
Signal

DCC command sequences for Colour Light signal aspects

The only route
Controlled by the
Main signal aspect
Is out to the rest
Of the world

[Routes to be controlled by the Subsidary Signal

[T MAIN T LH1 " LH2 & RH1 [RH2

Ok | Apply | Reset | Cancel |

Danger 200 OFF | | | | A~]

Proceed 200 | ON

Caution | | I I ~ — | The subsidiary aspect

_) Uses a single DCC

Prelim Caution | | ~ | ‘/J— ~| address (toggle On/Off)

Flash Caution | | | |/,J J

Flash Prelim *A 4

v Subsidary signal | 201

RO e controlled by the Main Signal The shuntin
[7 [TLH1 " LH2 " RH1 [RH2 g

Movement back into
The siding is a right
Hand divergence
From the main route

Signals 3 and 5 also need to be edited to change them to two-aspect signals and have their DCC
addresses configured. Note that Signal 5 should be configured as a two-aspect Green/Yellow signal
to act as the distant signal for our layout (as this is a terminus station, we’ll configure it as a fixed
distant when we configure the interlocking later in this example).

Finally, configure the DCC addresses for signal 4 (the ground position signal).

Once all signal configurations have been applied, the schematic should look like this:

/

Distant Signal

Subsidiary signal
Is for siding
N\
! ! ! L]
“ ez]
o5} —ce o1} — g0/ cof o
| The rest of -t b L o |
the world f k H_ij ”—Iﬂg[
|
T T TT

Single feather indication is for for Platform 2
(no feather indication for the main route into platform 1)

Configuring the basic interlocking

The application allows signals to be interlocked with points, conflicting signals, track sections, and
block instruments. Initially, we’ll configure interlocking with points and conflicting signals. In this
context, ‘conflicting signals’ are any other signals that control a route that would conflict with a
route controlled by the signal we are configuring.

All interlocking is defined via the configuration dialog of the appropriate signals. Double-left-click
on a signal to bring up the configuration dialog and select the Interlocking tab.

Signal 1

From the schematic on the previous page, Signal 1 needs to be interlocked with Point 1, but there
are two possible routes (into platform 1 and into platform 2). To enable Signal 1 to be cleared for
the MAIN route (into platform 1), Point 1 needs to be NORMAL. To enable Signal 1 to be cleared
for the LH1 route (into platform2), Point 1 need to be SWITCHED. We do not have to interlock the
signal with Point 2 as we have already configured this to be ‘switched with’ Point 1.

Each ‘route’ from Signal 1 also needs to be interlocked with any signals that could clear conflicting
movements, in this case Signals 2 and 3. Both of these signals only have a single route controlled
by the main signal aspect (out to the rest of the world), so we only need to interlock with the MAIN
routes controlled by these two signals.

The MAIN route for Signal 1 (into Platform 1) therefore needs to be interlocked with the MAIN
route (departing from Platform 1) for Signal 3. Similarly, The LH1 route for Signal 1 (into platform
2) needs to be interlocked with the MAIN route (departing from Platform 2) for Signal 2.

Configration] Interlocking] Automation]

Signal L into Plaior L [———— wain [o] | L [Llse Bl
Requires Point 1 LH1 1 [t |]] |] |] | sig: Blk:
to be NORMAL % L sie B[
I N I Blk:[
The LH1 route for / Riz [[[[[_|sie Blk:[

rInterlock with occupied track sections

Signal 1 into Platform 2 :
Requires Point 1 F‘ﬂam ‘ ’rLHl
to be SWITCHED

~Conflicting signals not locked by the above point selection
~MAIN Route - interlocking with conflicting signals

‘ rLH2 r rRH1 rRH2 0
0

I NG Tl 3 [MAIN LHI | LH2 | RH1 | RH2]
Signal 1 into Platform 1 | | | | | | |
Is interlocked with the J _
MAIN route for Signal 3 rLH1 Route - interlocking with conflicting signals

(to rest of the world) /v 2 |MAIN LH1 | LH2 | RH1 | RH2 | | | |

I I [
The LH1 route for /
Signal 1 into Platform 2

Is interlocked with the
MAIN route for Signal 2
(to rest of the world)

Ok | Apply | Reset | Cancel |

Signal 2

Signal 2 also needs to be interlocked with Point 1, but in this case, the only valid route for the main
signal (as opposed to the subsidiary signal) is out from Platform 2 to the rest of the world. Point 1
therefore needs to be SWITCHED to allow Signal 2 to be cleared for the MAIN route.

When Signal 2 was initially configured (see earlier), the subsidiary aspect was configured to allow a
shunting move is back into the siding (which is a right-hand diverging route). Point 1 therefore
needs to be NORMAL to enable the subsidiary signal to be cleared for the RH1 route.

For the MAIN route (departure from Platform 2 to the rest of the world), Signal 2 needs to be
interlocked with the LH1 route of Signal 1. For the RH1 route (back into the siding), Signal 2 needs
to be interlocked with the MAIN route of Signal 4.

The MAIN route for Configration] Interlocking] Automation]
Signal 2 to the rest ~Signal routes and point interlocking
Of the world requires Main | 1 |1 J J J J J sig: Blk:
Point 1 to be SWITCHED LH1 ’_JI_JI_JI_JI_JI_J sig[Bl ,—
_ we [s ek
The R_Hl (shuntlng) route RH1 1 j J J J J J sig: Blk:
e 0 i
to be SWITCHED —InterloFk with occupied track sections
’—Malr‘. ‘ |—LH1 7 |—LH2 7 "RHI ‘ ’—RHZ ‘
The MAIN route for Signal ——— L LT = | | I
2 to the rest of the world ~Conflicting 5|gf1als not I'ocket'i by the 'ab'ove |E)0|nt selections
is interlocked with the \.—MAIN Route - interlocking with conflicting signals
LH1 route for Signal 1 1 | MAIN|[LH1 LH2 | RH1| RH2 | | | | |
[| || ||
: ~RH1 Route - interlocking with conflicting signals
The RH1 (shunting) route
for Signal 2 back into the /a 4 [MAIN LH1 | LH2 | RHL | RH2| N ||
Siding is interlocked with | | | | | || | |
the MAIN route for Signal 4

Signal 3

Signal 3 controls a single MAIN route (from Platform 1 out to the rest of the world) which needs to
be interlocked with Point 1 (which needs to be SWITCHED to allow Signal 3 to be cleared). The
signal also needs to be interlocked with the MAIN route of Signal 1.

Configration] Interlocking] Automation]

~Interlock with occupied track sections
The MAIN route for F""ai“ ‘ “'-H1| | ﬂ'—“z

Signal 3 to the rest L |
Of the world Is AT . .
. ~Conflicting signals not locked by the above point selections
Interlocked with the \ e~ ¢ i

MAIN Route - interlocking with conflicting signals

MAIN route for Signal 1 T T MaN TR R e | | | |
N N [A [

The MAIN route for ~Signal routes and point interlocking
Signal 3 to the rest Main [1 -] [|]] | sig: Blk:
Ofthe world requires LH1 I_JI_JI_JI_JI_JI_J sig:imk:,_
Point 1 to be NORMAL LH2 I_J,_J,_J’_J,_J,_J Sig:iBlk:l_
e [se Bk
Ri2 [[[[[[_|sie Blk:|
|—RH2

j RHl |
Ll

Signal 4

Signal 4 controls a single shunting route (from the siding to Platform 2) which needs to be
interlocked with Point 1 (which needs to be NORMAL to allow Signal 4 to be cleared. The signal
also needs interlocking with the RH1 route of Signal 2 (the shunting route into the siding).

The MAIN route for
Signal 4 into Platform 2
requires Point 1
to be NORMAL

Configration] Interlocking] Automation]
. Signal routes and point interlocking

The MAIN route for
Signal 4 into Platform 2

is interlocked with the
RH1 route for Signal 2

Man (1 o [[[[[|sg Bk [
wi [[| |se Bik:[
we [s Bk |
o [[| |se Bik:[
m2 [[i se B[

rinterlock with occupied track sections

rMain i rLH1 7 rLH2 1 RH1 rRH2
| L] |

~Conflicting signals not locked by the above point selections

~MAIN Route - interlocking with conflicting signals

(2 MAIN| w2 R R2)) |]

Signal 5

As mentioned earlier, Signal 5 will be configured as a ‘fixed distant’. In this case we can just pick
any point and configure the signal such it is only unlocked when the point is both SWITCHED and

I e e

NORMAL (which can never happen, meaning the signal is always locked at Caution).

The MAIN route for
Signal 5 requires Point 1
to be both NORMAL
and SWITCHED

Configration] Interlocking] Automation]
Signal routes and point interlocking

ain (1 =[1 ([[[_|sg Bik[
wi [T se Biki[
we [| _|se Bik [
RiL [e Biki|
Rz [[|so Bik: [

~Interlock with occupied track sections
2 T

rMain T rLH1 T rLH2
| |

| i HRHI . rRH

~Conflicting signals not locked by the above point selections

 MAIN Route - interlocking with conflicting signals

I I S R R
D D [

Distant signal interlocking
[[Interlock distant with all home signals ahead

Testing the basic interlocking

Once configured, the basic interlocking can be tested. If a signal or point is ‘locked’ then the
associated control buttons will be ‘greyed out’ and unresponsive.

Firstly, ensure the layout is in a default state by selecting Mode => Reset from the Main Menubar
and selecting OK in the pop-up dialog to confirm. This will reset all signals to ‘ON*’ and reset all
points to NORMAL with their Facing Point Locks (FPLs) ACTIVE.

Signal 5 will be locked as we configured this as a ‘fixed distant’. The main aspect of Signal 2 will
also be locked as the route controlled by this signal is out from Platform 2 to the rest of the world
and the points are currently set back into the siding. The subsidiary aspect of signal 2 (controlling
the shunting route back into the siding) will be unlocked.

Signals 5 (fixed Signal 2 main aspect locked
Distant) locked Signal 2 subsidary aspect unlocked
: ¥ : :
- oor [ool
01 s
The rest of J : J ! / ! JJ 1

the worla ~% T

1] e o S —

FPL Active (‘L' Button)

In this state, the interlocking with conflicting signals can be tested. If Signal 4 is switched ‘OFF’
then the subsidiary aspect of Signal 2 will be locked, and vice versa. Similarly, if signal 1 is
switched ‘OFF’ then Signal 3 will be locked, and vice versa. Note that as soon as a route is cleared
the points are locked and cannot be changed until the signals are returned to ‘ON’

Signal 4 is OFF Subsidiary Signal 2 is Locked
: :4 i :
—Co 01 '_../
The rest of J : : / : JJ 1

the worla % T T

0T e p—
A

Signal 1 is OFF Point 1 is Locked Signal 3 is Locked

Once all signals have been returned to ‘ON’ then the points can be changed to test the other signal
routes. Click on the ‘L’ button to ‘release’ the Facing Point Lock (FPL) and enable the main point
control button. The point can then be switched . Note that as soon as the FPL is ‘released’ then all
signals will be locked to prevent a route being cleared across the points and will remain locked until
the FPL is ‘reactivated’ (after the points have been switched).

2 When asignal is ‘ON’, it is displaying its most restrictive aspect (DANGER for Home signals or CAUTION for
distant signals). When a signal is ‘OFF’ it is displaying its least restrictive aspect (PROCEED for most signal types)

Signal 2 main aspect unlocked

Signal 4 locked (no route) Signal 2 subsidiary aspect locked

— Ny] T
o My
The rest of] —T %I _Jf M%»ﬁ_
" the worla % i i ng ”._I |
ya - ——

Point 1 switched
with FPL active

Signal 1 unlocked Signal 3 locked (no route)

The interlocking with conflicting signals can now be tested in this configuration. If signal 1 is set to
‘OFF’ then Signal 2 will be locked and vice-versa. Note that when Signal 1 is ‘OFF” it will display
the appropriate route indication (in this case a left hand feather).

Signal 2 locked

El

=
| T T T T

Point 1 locked

The rest
the world

Signal 1 cleared for Platform 2

Although interlocking is defined via the signal configuration dialog , the resultant Point interlocking
can be viewed (as read only) via the Interlocking tab of the point configuration dialog. This shows
all the signals/routes which (when cleared for a movement) would lock the point.

Point 1 v oA X

Configration] Interlocking]

Signals interlocked with point

_LH1 | LH2 | RH1 | RH2 | Point 1 is additionally
L Interlocked with the
RH1 route of signal 2
| (Platform 2 => Siding)
o [
/ o N ——
T~ Point 1 is additionally

Point 1 is interlocked Interlocked with the

with the MAIN route
of all signals

Ok | Apply | Reset | Cancel |

LH1 route of signal 1
(Into Platform 2)

Operating your Layout

Once you are happy with your layout you can ‘lock’ the schematic to prevent further editing by
setting RUN mode. Either use the keyboard shortcut to toggle into RUN Mode (Cntl-a) or select
via the Menubar (Mode => Run). This also removes the grid lines and the schematic object
buttons down the left hand side of the window.

If you are running the application on a Raspberry-Pi with a Pi-SPROG DCC programmer controller
then controlling the signals and points out on the layout is simple.

* The default configuration should work ‘out of the box’ for the Pi-SPROG 3 v2 (as long as it
has been installed correctly following the instructions provided). If you are using an earlier
Pi-SPROG then the baud rate will need reducing - Menubar => Settings => SPROG)

¢ Select SPROG => Connect from the Menubar. If connection is successful then the
Menubar will show a SPROG status of CONNECTED and the Menubar DCC Power
selection will be enabled.

* Select DCC Power => ON from the Menubar to enable DCC Power. If the power was
successfully enabled then the Menubar will show a DCC Power Status of ON.

-InteriocKIinNg-contigured.sic O

File Mode:Run Automation:On SPROG:Connected DCC Power:On MQTT:Disconnected Utilities Settings Help

\ \ 1

RUN Mode SPROG is CONNECTED with
DCC Power to the Accessory Bus ON

Siding 04| ¥ | Platform 2

1 I
I .._‘j 1
The rest of J | = I /) JJ 1
the world ~ - - 1 1
oo—! 03] | Platform 1

=

=

Note that the actual states of the signals and points out on the layout may not reflect the state of the
points and signals shown in the application (as we haven’t sent out any DCC commands yet). To
synchronise everything, set the layout back to its default state via the Menubar (Mode => Reset).
This will send out the required DCC commands to all signals and points on the layout.

All subsequent changes to signals or points in the application will send out the required DCC
commands to change the signals and points on the layout accordingly.

Adding and configuring track occupancy

Once you have completed all of the steps above, you will have have created a layout configuration
that provides basic interlocking of signals / points, and DCC control of the signals and points out on
the layout. The next step is to add track occupancy indications to provide a ‘mimic’ diagram
showing the position of trains out on the layout.

Firstly (in EDIT mode), add ‘track sections’ to the schematic and position them on the layout
accordingly. Track sections should be provided for all positions a train could occupy within the
signalling scheme. In this case, trains could occupy Platform 1, Platform 2, the Siding, the section
of track between the distant and home signals and the ‘rest of the world’.

Next Train Siding ol 4 _
: g
The rest& J | J | / M 1
the world 7

i

Track Sections

Each signal then needs to be edited to define the track section ‘behind’ the signal (i.e. the track
section that would be ‘cleared’ when the signal is passed) and the track section ‘ahead of’ the signal
(i.e. the track section that would be set to ‘occupied’ when the signal is passed). For signals
controlling multiple routes, the track section ‘ahead’ needs to be defined for each route. This
configuration is defined via the Automation tab of the signal configuration dialog.

Signal 1 controls two routes (into platform 1 and into platform 2) so the configuration would be:

Section 4 will be OCCUPIED Signa
when Signal 1 is passed with Configration] Interlocking Automation]
the route into Platform 1 set Track sensors to associate with signal

\k Signal 'passed' sensor: Signal 'approached' sensor:
Section 3 will be OCCUPIED TrMupancy changes --General settings
when Signal 1 is passed with MAIN => | 4 I~ Fully automatic signal (no control button)
The route into Platform 2 set == r

L => iB== [~ Override signal to ON if section(s) ahead occupied
RH1 =>
_ Ll
Section 2 will be CLEARED _ RH2 =>
when Signal 1 is passed ~Trigger timed signal sequence
in the direction of travel MAIN T signal to trigger: start delay: Time delay:
LH1 [~ Signal to trigger: Start delay: Time delay:
Routes to q q q
trigger LH2 [~ Signal to trigger: Start delay: Time delay:

RH1 [~ Signal to trigger: Start delay: Time delay:
RH2 [~ Signal to trigger: Start delay: Time delay:

-Approach control selections

MAIN [Releaseon: o o
Routes LH1 [Releaseon: © o o
subject to
: O o o
approach LH2 [” Release on:
control RH1 [T PReleaseon: o]
RH2 " Releaseon: & i

Ok | Apply | Reset | Cancel ‘

Signal 2 similarly controls two routes (the MAIN route from platform 2 out to the rest of the world
and the RH1 shunting route from platform 2 back into the siding) so the configuration would be:

Section 2 will be OCCUPIED T - R
when Signal 2 is passed with Il 2 Voo
the route set out to the Configration] Interlocking | Automation
Rest of the world Track sensors to associate with signal
\I: Signal 'passed' sensor: Signal 'approached' sensor:
Section 3 will be CLEARED Ncupan(y changes . -General settings
MAIN == | 2 [~ Fully automatic signal {no control button)

when Signal 2 is passed
in the direction of travel

LH1 => -

3 = LH2 =) .) ' '
- RH1 - [~ Override signal to ON if section(s) ahead occupied
==

5
RH2=> [[[| E

Section 5 will be OCCUPIED
when Signal 2 is passed with
The route set into the siding

All other signals control a single (MAIN) route, so the configuration is straightforward:
* Signal 3 — Section behind is Section 4, Section Ahead is Section 2
* Signal 4 — Section behind is Section 5, Section Ahead is Section 3
» Signal 5 — Section behind is Section 1, Section Ahead is Section 2

Once the sections ‘ahead of’ and ‘behind’ each signal have been defined, the resultant configuration
of each track section can be viewed (as read only) via the Automation tab of the relevant track
section configuration dialog. This shows the signals/routes that provide access into the section, and
the signals/routes that control access out of the section.

As an example, for Section 3 (Platform 2), there are 2 signals that provide access into the section,
the MAIN route from signal 4 (from the siding into Platform 2) and the LH1 route from Signal 1
(from the rest of the world into Platform 2). There are also two routes out of the section (into the
siding or out to the rest of the world), both of which are controlled by signal 2 (MAIN and RH1).

Track Section3 « b

Configuration] Interlocking] Automation L Signal 4 MAIN Route - from the siding

| ‘
! | R — S Signal 1 LH1 Route - from the rest of the world

Sensors controlling access

|
{
| e
|
|

Signal 2 MAIN Route - out to the rest of the world
D Signal2 RH1 route — back into the siding

Sensors controlling access out of section
MNothing configured ‘

Sigs overridden when section occupied—;
MNothing configured ‘

Ok | Apply | Reset | Cancel |

Testing track occupancy changes

Once all signals have been configured, track occupancy changes can be tested (in RUN mode).
Although we haven’t configured any external GPIO sensors, the ‘signal passed’ events to trigger
track occupancy changes can be simulated by clicking on the buttons at the base of each signal.

On entering RUN mode, all track sections will initially show as CLEAR (greyed out). To set up the
‘next train’ to run into the layout, right-click on the track section and enter an appropriate train
designation code (for this example we’ll use ‘HST’ for simplicity). Once entered, this will set the
track section to OCCUPIED (signified by white text on a black background). Track sections can
also be toggled between OCCUPIED and CLEAR by left-clicking on them.

Right-click to enter a train
Designation code and set the
track section to OCCUPIED

Next Tr s1ding ol | 4 [Placformz]
HST } 0] 0] i
The reft of J|_O. o0 JI_../ / “‘JJJ

the wprid % = J IJ

: Other track sections
Left-click to toggle between :
OCCUPIED and CLEAR remain CLEAR

To simulate a train movement from the rest of the world into Platform 2, first configure the route
into platform 2 (ensure all signals are ‘ON’, release the FPL for point 1, switch the point and then
re-activate the FPL) and then clear the route by setting Signal 1 to ‘OFF’.

/ o) o2 5|

The rest of = T
*\ ol —

the world - a -

Route set and cleared from the
Rest of the world into Platform 2

As per the ‘real thing’, it is the driver’s responsibility not to pass a signal at danger, but if you want
to shame the drivers then the application can be configured to generate popup Signal Passed At
Danger (SPAD) warnings (select Settings and then General to enable).

Genera - X

Check Box and click OK or APPLY ’.' [~ Enable Signal Passed at Danger popup warnings
to enable popup SPAD warnings

Ok | Apply | Reset ‘ Cancel ‘

Next, trigger a ‘signal passed’ event for Signal 5 by left-clicking on the small button at the base of
the signal to ‘pass’ the train onto the next track section.

Track Section
Is now CLEAR

Next T¥ain Siding p [oo]

_HST | I 00K i g P ——
] oo o —oe / ook o)
The rest of) - : . I
the world -‘ - - T -
o ee—] | [Pt
Click on the button to simulate Next Track Section
A ‘signal passed’ event Is now OCCUPIED

Finally, trigger a ‘signal passed’ event for Signal 1 to ‘pass’ the train into Platform 2.

Next Train sy Y [e]

bt | 00| eT |
I_C. 01
The rest of J : I_KR / : JJ 1
the worla % - _HST | = 1 1
T ee— 03]
Track Section Click on the button to simulate Next Track Section
Is now CLEAR A ‘signal passed’ event Is now OCCUPIED

At completion of the train movement, all signals should be returned to ‘ON’, ready for the next one.
Other movements you could test would be:

* Platform 2 back into the siding
* From the siding into Platform 2
* Platform 2 to the rest of the world
* The rest of the world to Platform 1

e Platform 1 to the rest of the world

Configuring the GPIO sensors

The benefit of using the Raspberry-Pi is that we can connect external sensors into the GPIO ports of
the Raspberry-Pi and use them to trigger the ‘signal passed’ events.

Firstly, we need to define the physical GPIO pins we want to use for each GPIO sensor. To do this,
open the GPIO Sensors window by selecting Settings => GPIO from the Main Menubar.
Individual ‘GPIO sensors’ can then be associated with each of the GPIO ports.

Note that only a subset of GPIO ports are available for use by the signalling application.
Never connect external sensors to the unsupported GPIO inputs (1, 2, 3, 14, 15, 16, 17)

For this example, we’ll allocate ‘GPIO sensors’ to each signal, matching the numbering of each
signal. To do this, just enter a unique identifier for the ‘GPIO sensor’ against the required GPIO port
(this identifier will be the identifier we will use when subsequently configuring the signals). We
have a total of 5 signals so need to allocate a total of 5 Sensors, each mapped to a GPIO port.

~GPIO Port Setting

Delay (ms): 1 Timeout (ms): | 1000 Atrigger on GPIO port 4
~GPIO port to GPIO Sensor mappings Will trigger “GPIO Sensor 1”
GPIO-4 [1 [T [o T T I —
GPIO-5 | 2] s L -
< A trigger on GPIO port 5
GPIO-6 | 3 = R Will trigger “GPIO Sensor 2"
GPIO-7 -21
GPIO-8 GPIO-22 =
GPIO-9 GPIO-23 | ceeeemeeee] Atrigger on GPIO port 6
S ez B Will trigger “GPIO Sensor 3
GPIO-11 | —eeeeemmemes GPIO-25 | —eeeemmemees
GPIO-12 | 4 GPIO-26 | e
GPIO-13 | 5 -! GPIo=27

Etc

ok | Apply | Reset

Cancel |

Each signal then needs to be configured to use a GPIO Sensor to generate the ‘signal passed’ event.
This configuration is defined via the Automation tab of the signal configuration dialog.

Configration] Interlocking] Automation] \
Track sensors to associate with signal
’V Signal 'passed' sensor: 1 i’gnal ‘approached" sensN

e o~

Track occupancy changes -~General settings \
MAIN => | 4 [~ Fully automatic signammm@\ Map each signal to its
LH1=> | 3 - Associated GPIO sensor

-

[

2 => LH2= . . .) Signal 1 => Sensor 1 etc
= = [~ Override signal to ON if section(s) ahead occupied (Sig)
RH1 ==
RHZ => -

Once all signals have been mapped to their associated GPIO sensors, ‘signal passed’ events will be
triggered whenever the associated GPIO port is connected to OV.

Normally Open (closed when triggered) sensors can therefore be connected directly between the
appropriate GPIO input pin and a 0V DC pin (available on the GPIO header).

Note that other sensor types (providing a switched voltage) should never be connected directly
to the GPIO pins as this could damage the Raspberry-Pi. In these cases, external opto-
isolators are recommended to protect the GPIO input pins.

Re-opening the GPIO settings window will now display all Signal mappings to provide an overview
of the GPIO sensors (and GPIO Ports) used in the layout configuration.

GPIO Sensors v x
~GPIO Port Settings A tri_gger on GPIO port 4
Delay (ms): 1 Timeout (ms): | 1000 L Will trigger GP'Q Sensor 1
— Mapped to Signal 1
~GPIO port to GPIO Sensor mappings
GPIO-4 | 1 - sSignal 1 m -------------------------
GPIO-5 | 2 - signal 2 F —CRIO-10. A trigger on GPIO port 5

Will trigger “GPIO Sensor 2"

GPIO-20 :
Mapped to Signal 2

GPIO-6 3 - Signal 3

GPIO-T | e GPI

GPIO-8 | e GPIO-22 | e —

GPIO-9 | oo GPIO-23 | —remremmeeemeeeeeees Atrigger on GPIO port 6
GPID-10 | —————— GPIO-24 | | ——————— Will trigger “GPIO Sensor 3"

Mapped to Signal 3

GPIO-11 [-wreeemeeemememeonenees GPIO-25 [e
GPIO-12 | 4 - Signal 4 GPIO-26
GPIO-13 [5 - Signal 5 < GPIO-27

ok | Apply | Reset | Cancel |

Etc

Interlocking with Track Sections

So far, we have configured interlocking for signals and points, but it would still be possible to signal
a train onto a track section that was already occupied.

Next Train sy £ [4 T

X000 I X000 X000 I
oo o1 ,—oo’ / ce ‘ JJ
The rest of) - — 1
the world "1 = 1
/< 1 e /_1 [Pustroms]
Track Section 2 is already Signal 3 is unlocked so could be cleared
Occupied by a Train (HST1) to signal a departure from Platform 2

To overcome this, we can also interlock signals with Track sections. In this case we want to
Interlock Signal 3 with Track Section 2 and also Track Section 1 (representing a train about to enter
the layout from the rest of the world). To configure this, open the signal configuration dialog (in
EDIT mode) and select the Interlocking Tab.

(:onfigration] Interlocking] Automation]

Signal routes and point interlocking
Man (1| | | [|se[ek
w [|se Bik:|
we [_se Blk:|
The MAIN route for Signal 3 o liJ,iJ,iJ’iJ,iJ,iJ Sig —— Blk:,i
will be locked (at DANGER) R PO s S
If Track Section 1 or Track Interlock with occupied track sections
Section 2 is OCCUPIED rMain T | LH2 | (RHL | [RH2 I
(N3 N0 1 0 e e e
Conflicting signals not locked by the above point selections
MAIN Route - interlocking with conflicting signals
1 MAN wHL| 2 REL|RA2| 0]] |
Y I [

Signal 1 will now be locked (at ‘ON’) whenever Track Section 1 or 2 is OCCUPIED. Note that if a
signal is ‘OFF’ when a Track Section becomes OCCUPIED then it will only be locked when
returned to ‘ON’ (signals must always be capable of being returned to DANGER).

Next Tratn siding 4 ST

X000 I X00XKK] X00XKK] :
ol —ce o —eof / =R

The rest of . - 1

the worla % - 1

/< 3] -—u—

/

Track Section 2 is already Signal 3 is now Locked (at DANGER)
Occupied by a Train (HST1) Preventing a departure from Platform 2

Other signals should be similarly configured to complete the interlocking schema. For example,
signal 2 should be interlocked with Track Sections 1 and 2 for the MAIN route (out to the rest of the
world) and Track Section 5 for the RH1 route (back into the siding).

Signal 2 v A X
Configration] Interlocking] Automation]
~Signal routes and point interlocking
Main (1 [t] | | o [[fsig[Bk
wi [se[k[
we [| s Bik:|
The MAIN route for Signal 2 RHL [1 =f]] O][] sie: Blk:|
will be locked (at DANGER) RH2 LI e sie Blk:[
If either of the Track sections \—Interlock with occupied track sections
Out to the rest of the world Main - rLHl - rLH2 - rRH1 - rRH2 I
Are OCCUPIED *ﬁz|1||||||||||<u|s|||||||
~Conflicting signals not locked by the abo selections
~MAIN Route - interlocking wi icting signals
1 1 LH2 | RH1|RH2| | S]] |
The RH1 route for Signal 2 | — A O Y S
will be locked (at DANGER) ~RH1 Route - interlocking with conflicting signals
If The Track Section for the |4 [MAIN LH1| LH2 | RH1| RH2| | I |
Siding is OCCUPIED | . I

Ok | Apply | Reset | Cancel ‘

Once all signals have been configured, the interlocking of signals with Track Sections can be
viewed via the Interlocking tab of the Track Section configuration dialog (read only).

Track Section2 ~ ~ x
configration} Interlocking] Automation]

Signals locked when section occupied
The MAIN routes for Signal 2 _LHL | LH2 | RH1 | RH2 |
and Signal 3 will be locked _LH1 | LH2 | RH1 | RH2 |

When Track Section 2
Is OCCUPIED

Ok ‘ Apply | Reset | Cancel |

One click route setting

If you’ve followed the previous sections then you should now have a fully interlocked layout, with
automatic passing of trains between track sections as they move through the layout.

However, setting up routes through your layout might be time consuming (especially for complex,
larger layouts), so if you’d rather concentrate on keeping the trains moving, you might want to use
‘route buttons’ to simplify layout operation. These enable you to automatically set up and clear
down routes through your layout with a single click of the mouse.

For this example, we’re going to take the basic layout from the previous section and configure four
‘route buttons’, one for each of the main movements into and out of the layout:

* Route 1 - The rest of the world to Platform 1
* Route 2 - The rest of the world to Platform 2
* Route 3 - Platform 1 to the rest of the world
* Route 4 - Platform 2 to the rest of the world

We’re also going to use intermediate ‘track sensors’® to automatically clear down routes when the
train has cleared all signals and points along the route.

Firstly (in EDIT Mode), add the ‘track sensors’ to the schematic to signify the ‘end’ of each route.
Route 3 and Route 4 share the same end-point (the rest of the world), so you only need to add three
track sensors to cover all four routes. You might have to slightly re-jig the schematic from the
previous section to make room for the ‘track sensors’.

L Next Train Siding | Flatform 2 |
D = l 214 B = —
/ cod | |° %
The rest of [05] oo 01 o
/_ the world _Gfl [n 2 AT i =] — GJ; I
D e [A Fiat 1 |
N
@ |
Button to add .
Track Sensors Track Sensor Objects

Note that we are going to refer to the ‘track sensor’ IDs in the route configuration, so make sure you
put them in the right place (track sensor 1 going out to the rest of the world, track sensor 2 at the
end of platform 2 and track sensor 3 at the end of platform 1).

w

The main purpose of intermediate ‘track sensors’ is to extend train tracking into areas of the layout that aren’t fully
signalled (e.g. goods yards, fiddle yards etc) or provide a finer granularity of train tracking between signals. They
can be mapped to GPIO sensors (similar to how signals can be mapped to GPIO sensors for ‘signal passed’ events)
and configured to pass trains from one track section to another when triggered (again, similar to signals). In this
instance we’re just going to use them to detect when a train has ‘cleared’ a route.

For the next step, add 4 ‘route buttons’ to the schematic (which we are going to use to set up and
clear down the routes through our layout routes).

L Next Train Siding o) ' | Platform 2 |
. 04
| I f
(D N I L0 2 / -a == - ——
The rest of J [os) ﬂ (o

_/ the world _Gfl b n b A _:EI “_GJ: I

—_— it | Platform 1 |

AY

——

Hol

[route wame |
= \ /

Button to add .
Route Buttons Route Button Objects

Basic configuration of each route is relatively straightforward in that we just need to define the
required point settings for the route and list the signals that need to be cleared. We don’t need to
worry about point 2 as this is automatically switched with Point 1.

* For Route 1 (into platform 1), we need Point 1 to be ‘normal’ and Signal 1 to be cleared

* For Route 2 (into platform 2), we need Point 1 to be ‘switched’ and Signal 1 to be cleared
* For Route 3 (from platform 1), we need Point 1 to be ‘normal’ and Signal 3 to be cleared

* For Route 3 (from platform 2), we need Point 1 to be ‘switched’ and Signal 2 to be cleared

Defining the highlighting of the route is slightly more complicated in that we need to specify all
points and lines which need to be highlighted (in a different colour) when the route is set. This
includes any automatic points along the route.

* To find the ID of an automatic point (if you can’t remember it) double click on it to bring up
the Point configuration Window.

* Similarly, to find the ID of a route line, double click on the line to bring up the Line’s
configuration window

The route configuration on the next page assumes the following:

Point ID = 2 Line ID =2
Next Train | Siding ﬂ'\ | PUENEREED & |
“ “ [[“—J
|] A Ul
The rest of =] oo o e
the world _Gfl [“ i = J 2 “_J_I

L | Flatform 1 - |

LineID=1 LineID =3

To configure a Route, double click on the button (in EDIT Mode) to bring up the Route’s
configuration window. For this example we’re going to configure all routes with:

* A switching delay of 1 second (1000 milliseconds) — this will be the time delay between
each layout change that needs to be made in order to set up or clear down the route — e.g
unlocking a FPL, changing a point, re-locking the FPL, changing a signal etc.

* Automatic clear-down of routes (when the track sensor at the end of a route is triggered).

* Reset of points back to their default (un-switched) state when a route is cleared down rather
than leaving them as is.

The first Route we are going to set up is Route 1 (into platform 1 from the rest of the world):

Route 1 v x Click to select the colour that will be used
to highlight the route once set up

\

"Route ID+

Route Colour————————————
1 { B crence 4
~Route information

Name: | Into Platform 1 K

From the rest of the world
into platform 1 "

The name that will appear on the Button

The description that will appear when you
hover the cursor over the button in RUN Mode

|\

= L L

The list of points to set/lock for the route
and their required settings (normal or switched)

Route button width (chars): | 20

rPoints to set The list of signals to clear for the route

I

rMain signals to clear

These are the route lines that will be highlighted

| 1 | | | | | | | | B / once the route has been successfully set up
[Subsidary signals to clear——— —— These are the points that will be highlighted
| | | | | | | | | 4 once the route has been successfully set up
rRoute lines to highlight

afsf T T T 0 1 1 &

rPoints to highlight The time delay between each event (setting/
| 1 | | | | | | | | 5| Clearing facing point locks, switching

Points and changing signals etc) needed
rRoute settings

to set up or clear down the route
Switching delay (ms): | 1000 A/

Track Sensor for route reset:]_ < The ID of the track sensor that (when
triggered), will clear down of the route

v Reset points on deselection

Ok ‘ Apply ‘ Reset ‘ Cancel ‘ Points can either be left ‘as is’ when a route
Is cleared down or reset to their default state.

Once you are happy with the configuration click on OK to save it and then similarly configure the
other 3 routes (see next page for details).

Point 1 needs to be switched for the For the departure routes, we'll use a different
Platform 2 arrival/departure routes Colour to differentiate them from the arrival routes

Route 2 v x Route 3 v x oute 4 v x

Route ID- fRoute Colour————————————————— RoutdND - Route Colour Route ID--Route CoMur————— |
2 B cenge { 3 B change { 4 { I change
~Route infgrmation rRoute information™_- rRoute information
Nam | Into Platform 2 Name: | Depar®glatform 1 Name: | Depart Platform 2
From thf rest of the World Al Platform 1 departure = Platform 2 departure =
into Platform 2 J to rest of the world J to the rest of the world J
If’ 7| I/
oute button width (chars): E Route button width (chars): IE Route button width (chars): ’Z

~Points o set —Points to set Points to set

(] =l =l [=) R N T
~Main signals to clear ~Main signals to clear rMain signals to clear

Ll L P L0 1 1 [7= sl L L L L0 1 | ' JE O O
~Subsidary signals to clear ~Subsidary signals to clear [Subsidary signals to clear
HEEEEEENN- HREREEEEEEEE | [[[[117
rRoute lines to highlight ——————— rRoute lines to highlight —————————— rRoute lines to highlight ————————
[d2] T [0T 1 7 1 7= sl I P I 1 1 7S JEN T O O
~Points to highlight ~Points to highlight rPoints to highlight
nd2] | T T 1 1 1 '™ HEREEREEN- f20 1 L [[1 1 &
rRoute s§&ngs ~Route settings f?lﬂe settings

ing delay (ms): | 1000 Switching delay (ms): | 1000 Switching delay (ms): W
Track Se for route reset: ’7 Track Sensor for route reset: ’1_ Track Sensor for route reset: ’1_
¥ Reset poindson deselection ¥ Reset points on deselection M Reset points on deselection

- ‘ e ‘ — ‘ — ‘ ok ‘ Apply ‘ Reset ‘ cancel

Dk‘ Apply‘ RN Cancel

Note that for Routes 2 and 4 we want to highlight both
Points (the one we need to switch and the automatic
Point switched with it) to show the full route

The Routes can now be tested in RUN Mode.

First, click on the Route 2 button (Into Platform 2) and watch the points and signals being changed
in sequence to set up the route. Once the route has been successfully set up it should be highlighted:

Next Train Belss B I
[| I [J 4 m——
oo d |
The rest of J <o ’ﬁ @0
th 1g = 4 [[[-——
= e []o1f s [From 1]
Route Other Routes are ‘locked’
set up T [e |) IR
__nto Platfom 1| \b—

Note that (assuming you have configured interlocking correctly following the previous sections of
this guide), the other route buttons will be ‘locked’. If you hover the cursor over these buttons, a
‘tool tip’ will appear to tell you why the route button is ‘locked’.

Routes can be cleared down by either clicking on the route button or triggering the track sensor at
the end of the route. In this case, the signals will be reverted to danger and the points along the route
reverted to their default (un-switched) states, with each change sequenced in a similar fashion to the
route set up. Once the route has been cleared down then it will be un-highlighted and the other route
buttons re-enabled ready for you to set up the next movement.

Next Train B

| ¥ .
L I L A / T
The rest of : J : o o : @o :
L pra—T

the world - -

De-select the Route button to ”

manually clear down the route or

[Intc platform z | A/ Click on the track sensor to Depart Platform 2
automatically clear down the route
Into Platform 1 Depart Flatform 1

Note that if you make any changes that invalidate a route that has been successfully set-up (for
example, changing signal 1 back to DANGER), the route highlighting will be immediately cleared
down (to show the route has been invalidated), but any other signals or points along the route will
be left in their current states (in this case, point 1 will remain switched).

Full interlocking (assuming you have configured it correctly) is preserved. For example, if you have
set up a movement from the siding back into Platform 2 (point 1 un-switched and Signal 4 cleared)
then the routes into and out of Platform 2 will be ‘locked’.

Signal 4 cleared for a movement
From the siding into Platform 2

Next Train

04 y
. I . M 4 m——
/ eo d |-
The rest of J o ﬂ e~
the world = A [i 0] A -_J_I

]|
[sl

Routes 2 and 4 ‘locked’ as
nto platform 2 ‘ B) : — ’ rt platform 2
e Point 1 s locked by Signal 4 e

Inte Platform 1 pepart Platform 1

The final part of the configuration is to link external GPIO events to the track sensors so they can be
triggered by the trains out on your layout.

The first thing to do is to assign another three GPIO ports to your layout via the GPIO Sensor
Settings window (Settings => GPIO):

GPIO Sensors A4 x
~GPIO Port Settings
Delay (ms): ’1— Timeout (ms): W
~GPIO port to GPIO Sensor mappings
GPIO4 | 1 - Signal 1 GPIO-18 |
GPIOS | 2 - Signal2 GPIO19 |
GPIO6 | 3 —sSignal3 GPIO-20 | 6 <7 We'll use GPIO Ports 20, 21 & 22
crio7 | criozt | 7 ‘7 — For tge track sensors and assign
L L ensor IDs of 6, 7 and 8
GPIO-8 e GPIO-22 | 8 Z
GPIO9 | GPIo23 |
GPIO-10 | GPIO-24 |
GPIO11 | GPIO-25 |
GPIO-12 | 4 —sSignal4 GPIO-26 |
GPIO-13 | 5 - Signal 5 GpIo27 |

ok ‘ Apply ‘ Reset ‘ Cancel ‘

Now, in EDIT Mode, click on each track sensor object in turn and configure the GPIO sensors:
* Track Sensor 1 — GPIO Sensor 6
* Track Sensor 2 — GPIO Sensor 7
* Track Sensor 1 — GPIO Sensor 8

Track Sensor 1 v x

Track Sensor ID - GPIO sensor events FOC: ;:gcgsnesr;ioé %mv;ep’:)leadsil)gn
’7 1 ’7 Track Sensor 'passed' sensor: 6 GPIO Port 20) to trigger
‘track sensor passed’ events

rRoutes / Track Sections 'behind' Track Sensor

Main_J_J_J_J_J_J Section:_

LH1 0 o o ol ol L section: |

LH2 _J_J_J_J_J_J Section:_

e [L] O O O O] Section:_\

A EEE. DT
rRoutes/ Track Sections 'ahead of Track Sensor—— — track sensors to automatically clear
main| | | | | || | section: down routes and not passing trains
1 _J_J_J_J_J_J Section:_‘/ from one track section to another
wz | | | | I | section:| |

RH1 _J_J_J_J_J_J Section:_

2| | | | | | section:| |

Apply ‘ Reset ‘ Cancel ‘

o
=

Once all three track sensors have been configured, our ‘one click’ route configuration is complete.

Saving and loading your layout

Once you are happy with your layout, it can be saved to file (File => Save or File => Save-as from
the Main Menubar — in the case of a ‘first time’ save or ‘save as’, this will bring up a dialog to
choose the filename and destination folder). Files are saved with a ‘.sig” extension.

Note that the current state of the layout (in terms of signal and point settings) is saved with the
configuration, allowing you to pick up a running session from where you left off.

The current mode is also saved so if your layout was saved in RUN mode it will be loaded in RUN
mode (and if saved in EDIT mode it will be loaded in EDIT Mode).

To load your layout select File => Load from the Main Menubar. This will bring up a dialog to
choose the filename load the layout configuration in the mode/state at the point of save.

When a layout is loaded, the Pi-SPROG settings will default to DISCONNECTED with DCC
Power OFF. If you are using the application in a ‘fixed’ configuration (i.e. with the Pi-SPROG
permanently connected to your layout), then you may want to configure the application to
automatically connect to the Pi-SPROG and turn on DCC Power on layout file load.

This is achieved via the application settings (select Settings => SPROG from the Main Menubar,
select the appropriate checkboxes and click on OK or APPLY to save the changes).

SPROG DCC ~ x

Port: fdev/serial0 Baud: 115200 — |
[~ Enhanced SPROG debug logging
Application will connect -
To the Pi-SPROG and ——}I? Initialise SPROG on layout load
Enable DCC Power ——} Enable DCC power on layout load
On Layout Load

Test SPROG connectivity ‘

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

Note that these SPROG settings are specific to the layout configuration (i.e. saved and loaded as
part of the layout file) and will not apply to other layouts you load into the application.

Similarly the Track Sensor configuration (in terms of GPIO port mappings to “Track Sensors’) is
specific to the layout and will be saved / loaded with the rest of the layout configuration.

An automation example

Now we’ve mastered the basics, we’ll create a new layout to demonstrate some of the advanced
automation features provided by the application, with a double track main line junction signalled
with 4 aspect colour light signals:

ﬂ—'_““ >
-—IJ_E “_f—ﬂT_lJ—lﬂ—IJ]“T—IJ_“_

As this layout is quite large, first you need to increase the size of the canvas. To do this, select
Settings => Canvas from the Main Menubar and increase the width accordingly.

Canvas v X
Canvas width: | 1300 @¢—————| |ncrease the width of the Canvas

Canvas height:| 500 and click OK or APPLY
Canvas Grid: 25
v Snap to Grid

Ok ‘ Apply ‘ Reset ‘ Cancel ‘

Configure interlocking

Now draw the basic schematic as per the diagram above and add the signals and track occupancy
sections in the appropriate positions. Point 1 should be configured with a FPL, but point 2 can be
left “as is’ as this is a trailing point with respect to the direction of travel. Signal 1 should be
configured with a left hand route feather for the diverging route.

Interlocking can then be configured for Signals 4, 8 and 10:

* Signal 4 needs to be interlocked with Point 1 (Point 1 needs to be NORMAL for the MAIN
route and SWITCHED for the LH1 diverging route).

* Signal 8 needs to be interlocked with Point 2 (Point 2 needs to be SWITCHED).
* Signal 10 needs to be interlocked with Point 2 (Point 2 needs to be NORMAL).

As this layout includes a diamond crossover, we also need to interlock the conflicting Signals:
* Signal 4 needs to be interlocked with the MAIN route of Signal 8.

» Signal 8 needs to be interlocked with the MAIN route of Signal 4.

Configure track occupancy

The track occupancy configuration should then be defined for each signal:

» Signal 4 needs to be configured with a ‘section ahead’ for both routes (Section 5 for the
MAIN route and Section 6 for the LH1 route) and a ‘section behind’ (Section 4).

» Signals 6, 5 and 13 only have a ‘section behind’ configured (no ‘section ahead’) .

» All other signals have a ‘section behind’ and a ‘section ahead’ for the MAIN route.

Configure basic automation

For this layout, we want all signals to:

* Reflect the state of the ‘signals ahead’ so when the signal is ‘OFF’ the displayed aspect will
take into account the displayed aspect of the signal ahead (e.g. if the signal ahead is
displaying DANGER, the signal should display CAUTION rather than PROCEED).

* Automatically change to DANGER as soon as a train passes the signal (and then cycle
through the aspects back to PROCEED as the train progresses further down the track).

Firstly, configure each signal with details of the ‘signal ahead’ This is achieved via the Interlocking
tab of the signal configuration dialog. Note that Signal 4 supports two routes, so we have to specify
the signal ahead for each route:

4 v oA X

T . : If Signal 4 is cleared for the
Conflgratlon] Interlocklng] Automatlon] .
Signal routes and point interlocking _/ MAlall\,l]eF;?juvt\ﬁ"thnSt%?]as;gsnal

wan (1 |] | [|sel 5 et

L1 [1 [t L L Lsie[s k[

w2 [[s lk:] " T———_1 If Signal 4 is cleared for the

RaL [T T | sie: Blk:| LH1 Route then the signal

RH2 [[T sie Blk: ahead will be Signal 6
~Interlock with occupied track sections

Secondly, configure each signal to be ‘Overridden’ to ‘ON’ if the track section ahead of the signal
is occupied (so the signal will display DANGER as soon as the train passes the signal and enters the
section). At the same time we can also make the signals we don’t need to manually control ‘fully
automatic (without a control button). For this example, the only signals where we need to retain
manual control are those signals ‘protecting’ the junction (Signals 4, 8 and 10). These selections are
enabled by checkboxes on the Automation tab of the signal configuration dialog.

Configration] Interlocking] Automation]

Track sensors to associate with signal Select to create the signal
(Signal 'passed' sensor: Signal 'approached' sensor: ‘ without a control button

Track occupancy changes - -General settings (all signals apart from 4, 8 & 10)
MAIN == | 2 W Fully automatic signal (no control button) ‘/
LH1 => -

1 => LH2=> L . . . Select to enable the signal to

T = w Override signal to ON if section(s) ahead occupied be overridden (to DANGER) if
I = [~ Override to CAUTION to reflect home signals ahead the section ahead Is occupied

Once all signals have been configured, the overriding of signals by Track Sections can be viewed
via the Automation tab of the Track Section configuration dialog (read only).

Signal 3 (immediately
Behind this track section)
Will be overridden to ‘ON’

When section 4 is occupied

Track Section4 ~ ~ x
Configration] Interlocking] Automation]
’—Signals controlling access into section——

[3 v | | w2 | i | w2 |

{Signals controlling access out of section—‘

[+ | RH1|

Signals overridden when section occupied—‘

[[3] man || kit |RET | 2]

ok | Apply | Reset | Cancel |

The configuration can then be tested (in RUN mode with Automation ENABLED) by left clicking
on each track section in turn to change from CLEAR to OCCUPIED and then back to CLEAR.
When the track section is OCCUPIED, the signal behind the track section will display DANGER.

Configure timed signals

You will note that Signals 5, 6 and 13 do not have any track sections ‘ahead of’ the signal as these
go out to the ‘rest of the world’ . To add realism, we still want these signals to change to DANGER
when passed and then cycle back through the aspects to PROCEED as the train supposedly travels
further down the track. This is achieved, by configuring them as ‘timed signals’ via the automation

tab of the signal configuration dialog.

Timed sequences can be configured for each route supported by the signal. In this case, Signals 5, 6
and 13 control a single route and so we only need to configure a sequence for the MAIN route.

Configration] Interlocking] Automation]

Track sensors to associate with signal
’V Signal 'passed' sensor:

Signal 'approached' sensor:

Track occupancy changes

-General settings

A start delay of zero
means that the sequence
will be started (signal
changed to DANGER)
as soon as the
Signal is passed

MAIN == v Fully automatic signal (no control button)
LH1 ==> - /
= = o
13 |== ::li = [~ Override signal to ON if section(s) ahead occupi
==
_ [~ Override to CAUTION to reflect home si ahead
RH2 =>
Trigger a timed -Trigger timed signal sequenc {
Sequence when i MAIN ~ Signal to trigger:| 13 Startdelay:| 0 Time delay: 5 '_
The Slgnal 1S passed LH1 [~ Signal to trigger: Start delay: Time delay: \
Routes to - . .
trigger LH2 [~ Signal to trigger: Start delay: Time delay:
RH1 [~ Signal to trigger: Start delay: Time delay:
RH2 [~ Signal to trigger: Start delay: Time delay:

~Approach control selections

MAIN [

Routes LH1 I
subject to

approach [k =

control RH1 -

RH2 [

Release on:
Release on:
Release on:
Release on:

SIS S T S
SIS G S
18 T T B B

Release on:

ok | Apply | Reset | Cancel |

The time delay defines
the time between
Subsequent aspect
Changes as the signal
Cycles through the
Supported aspects
Back to PROCEED

To test the timed signal, click on the ‘signal passed’ button at the base of the signal (in RUN mode
with Automation ENABLED). The signal will initially change to DANGER and then cycle through
the aspects (CAUTION, PRELIMINARY CAUTION) back to PROCEED.

Configure approach control

Approach control is normally used when a diverging route has a lower speed restriction. Even
though the route ahead may be clear, the signal controlling the diverging route will display a more
restrictive aspect (either DANGER or CAUTION) to slow down the train. As the train approaches,
the signal will then be ‘released’ to display its normal aspect (PROCEED).

Note that if you are going to use approach control for your layout, this will require an additional
track sensor located on the approach to the signal, to trigger the ‘signal approached’ event.

The application supports both ‘release on red’ and ‘release on yellow’ approach control modes. For
‘release on red’, the signal will display a DANGER aspect and the signals behind will display the
expected aspects (CAUTION, PRELIMINARY CAUTION). For ‘release on yellow’, the signal will
display a CAUTION aspect and the signals behind will display special aspects to provide the driver
with pre-warning of the diverging route (FLASHING-CAUTION for the previous signal and
FLASHING-PRELIMINARY-CAUTION for the signal behind that).

We’ll configure Signal 4 to apply ‘release on yellow’ approach control for the diverging route, and
configure an additional track sensor to trigger the ‘signal approached’ event. This is achieved via
the automation tab of the signal configuration dialog.

anal 4 v A X
Cnnfigration] Interlocking] Automation]
Track sensors to associate with signal
’V Signal 'passed' sensor: 4 Signal 'approached"' sensor: 14 Track Sensor to
Track occupancy changes - -General settings Trigger the 'signal
MAIN == | 5 [~ Fully automatic signal (no control button) Released’ event
LH1 => 6 r
ull = ::i == v Override signal to ON if section(s) ahead occupied
==
AH2 => [” Override to CAUTION to reflect home signals ahead
| ! Release on yellow
Approach Control rTrigger timed signal sequenc / Mode selected
Selected for the MAIN [Signal to trigger: Start delay: Time delay: 2
LH1 diverging route \ LH1 [~ Signal to trigger: Start delay: Time delay:
RS i LH2 [~ Signal to trigger: Start delay: Time dela

trigger
RH1 [~ Signal to trigger: Start delay: Tim ay:
RH2 [~ Signal to trigger: Start delay: me delay:
)

~Approach comsgl selections
M [~ Releaseom: o /‘

R;Utes LHL ¥ Releaseon: ¢ Red & Yellow ©
subject to . - -

approach LH2 [Release on:
control RH1 " Releaseon: @ o
RH2 [T Releaseon: & o

ok | Apply | Reset ‘ Cancel |

Signal 4 will now be displayed with a second button positioned on the track (on the approach to the
signal). This is the button to simulate the ‘signal approached’ event to ‘release’ the signal.

This can be tested (in RUN mode with Automation ON) by setting up the diverging route (Point 1
SWITCHED) and clearing Signal 4. Signals 4, 3 and 2 should display CAUTION, FLASH-
CAUTION and FLASH-PRELIMINARY-CAUTION respectively. Clicking on the ‘signal
approached’ button should then ‘release’ the signal (to PROCEED).

Testing the competed layout

The completed layout can now be tested in much the same way as the first quick-start example
layout by feeding trains into the layout (via Track Sections 1, 8 or 9) and then progressing them
through the layout from one track section to the next by clicking on the ‘signal passed’ buttons (and
the ‘signal approached’ button) along the route.

quickstart_example3.sig v oA

File Mode:Run Automation:On SPROG:Disconnected MQTT:Disconnected Utilities Settings Help

: Signal 4 is OFF but in Displaying
P':zl,ﬁ;r?r?a?ry Flashing Approach control mode Caution

Caution i i —ooeo
Caution For diverging route 0 -
o — — . —

\ \ & lO../ ceco—] o8 ceco—

—e0e0 —ecee [/ K —coe0
— S — -—ﬂ—-—J—-'%' / — -
-t —Se - — +— [= — ——

esoo— ccoe— .. esos—] 18] esco—]

/"

Signal 12 overridden to ON as
track section ahead is occupied

Displayed aspect
Reflects signal ahead

Button to simulate
‘signal approached’ events

Displayed aspects
Reflects signals ahead

Still to discover

There are still several features of the application that have not been covered in this quick-start
guide, but once you are familiar with the features above, you should be able to experiment and
figure them out for yourself:

Intermediate Track Sensors — These are used to extend track occupancy to areas of the
layout that aren’t fully signalled (e.g. goods yards, fiddle yards, Traction Maintenance
Depots etc) or provide finer granularity of train tracking between signals. The track Sensors
can be associated with GPIO sensors (in the same way as signals) to pass trains between
Track Sections when external sensor is triggered by the passing train.

Theater Route Indications — supported by main semaphore and main colour light signals.
Provides the ability to display a single ‘character’ for the selected signal route

Block Instruments — intended for layouts split into separate ‘block sections’ . This is a
particularly useful feature when using multiple application instances networked together,
where each instance represents a different signal box, as the block instruments can be used
to communicate (via bell codes) between the signal boxes and control the movement of
trains between the two block sections. A basic example including Block Instruments is
included in the application networking guide (which can be downloaded from the website).

Automation - Approach control ‘release on red (signals ahead)’ for automation of Home
signals in a block section. In this case, signals are overridden to ‘ON’ if any Home signals
ahead are still at DANGER and only ‘released’ to ‘OFF’ as the train approaches them
(reverting to ‘ON’ as soon as the train has passed).

Automation - Override to caution to reflect home signals ahead — For distant signals
(semaphore or colour light) — Will override the distant signal to display CAUTION if any
home signals ahead (within the block section) are at DANGER.

Interlocking - Interlock on home signals ahead — For distant signals (semaphore or colour
light) - To interlock the distant signal (prevent it being cleared) unless all home signals
ahead (within the block section) are also clear.

MQTT Networking — Publishing and subscribing to Signals, Track Sections, Track sensors
and Block Instruments. The ‘remote’ items can then be used within the signalling scheme to
provide seamless integration of different signalling areas. This is the subject of a separate
networking guide (which can be downloaded from the website).

Application Logging (select Settings and then Logging from the main menubar) — allows
you to change the logging level to see what the application is doing ‘under the hood’.
Setting the log level to “Info” may help you to debug your layout configurations.

The DCC Mappings utility (select Utilities and then DCC Mappings from the main
menubar) — Allows you to view all DCC addresses used in your layout configuration an
what signals and points they are associated with.

Appendix 1 - Using semaphore signals

In the first quick-start example, we configured a layout using colour light signals. Depending on the
period modeled, you might prefer the use of semaphore signals on your layout.

. . Semaphore with a subsidary arm
Ground Disc Signal For the RH1 route into the siding

XXHKX [XXXXX] - o XXX
o5 Y Y o2 5]
The rest of
the world = - = -
O o) [Piasrorm s

Semaphore with a secondary route arm
For the LH1 route into Platform 2

Once you have your layout configured, its easy to swap between the two signal types as the only
major differences in the configuration are:

* The route indications — route feathers vs additional semaphore route arms

* DCC addressing — DCC command sequence per colour light aspect vs a single DCC address
for each semaphore arm (which is either OFF or ON)

In this example, Signal 1 has been changed to a Semaphore Home signal with Route Arms (a MAIN
route arm for Platform 1 and a LH1 route arm for platform 2). Each signal arm has been allocated
its own DCC address. The remainder of the configuration (on the Interlocking and Automation tabs)
remains identical to Signal 1 in the colour light signalling example.

S gna] v oA X
Configration] Interlocking] Automation] Signal Type and
. . Subtype have
Signal 1D+ -Signal Typ — Been changed
’V 1 HV " Colour Light ¢ Ground Pos @ Semaphore © GroundM
Signal Subtype —
’V & Home Distant 4/ ‘
é‘dld'tltor:jafl rO#;[e E:?. General Config- -Route Indications | "1 Rgmle ':‘n(?s
CUSIBTel ety LAIS ’V I Rotated ’V " None © Theatre indicator + Route arms GEEs
Route (MAIN route
Is always selected) Semaphore Signal Arms and DCC Addresses
Main [100 [Sybsidary arm [~ Distant arm
LH1 ¥ Main (home) arm | 101 [SBbsidary arl i m
LH2 [~ Main (home) arm [~ Subsidary arm | | Sm?:le DCChaddress
or each arm
RH1 [~ Main (home) arm [~ Subsidary arm [
RH2 [~ Main (home) arm [~ Subsidary arm L

The other signals have also been changed to Semaphore types. Note that for signal 2, the MAIN
route (controlled by the main home arm) remains the route out from platform 2 to the rest of the
world. A subsidiary arm controls the RH1 route back into the siding.

As per Signal 1, only the signal types, route indications and DCC addressing needs to be changed.
The rest of the configuration remains identical to the colour light signalling example.

Appendix 2 - DCC programming of signhals and points

A basic DCC programming utility is provided to enable ‘one touch’ programming (suitable for the
majority of DCC point & signal decoders on the market) and Configuration Variable (CV)
programming (suitable for more complex decoders such as the Signallist SC1).

If ‘One touch’ programming is supported by the device, this is always the preferred method as this
can be done ‘on layout’ without disconnecting all other devices from the DCC accessory bus.

The utility can be opened by selecting Utilities = > DCC Programming from the Main Menubar.
Note that The Pi-SPROG needs to be CONNECTED with DCC Power ON to program devices
(refer to the ‘Operating your layout’ section for further information).

One-touch DCC programming

Ensure the device it is connected to the DCC bus and has been put into ‘one touch’ Programming
mode (refer to the device documentation for specific instructions).

Enter the required DCC address and click the required command (On or Off) to program. Once
programmed, the device should respond to all subsequent DCC commands.

DLCL Frogramming v oA X

~DCC One Touch Programming
Address to program |1000 On (fwd) | Off (rev) |

/

N\

~DCC Configuration Vari CV) Programming
WARNING; ore programming CVs, ensure only the devce%
] nnected to the DCC bus - all other devices should be disconne
Value New Motes CV Value New Notes \
200 Click the appropriate

\ Button to send the
Required DCC command

Enter the required e
DCC address

Read CVs | Write CVs || |

Document your CV configuration here

|5 I

= I
Open | Save | Save as || |

Ok / Close

DCC Configuration Variable (CV) programming

Warning — before using the Cvs programming utility the DCC accessory bus should only be
connected to the device you want to program (all other devices should be disconnected).

Enter the addresses of the CVs you want to inspect / program and click Read CVs to retrieve the
current values. New values can then be entered and programmed by clicking on Write Cvs.

A partial configuration (for the Harman Signallist SC1 decoder) is shown below:

DCC Programming v 3

~DCC One Touch Programming
Address to program on (fwd) Off (rev)

~DCC Configuration Variable (CV) Programming

WARNING - Before programming CVs, ensure only the device to be programmed
is connected to the DCC bus - all other devices should be disconnected

CV Value New Notes CV Value New Notes
1 5 Lower Address bits
s [| o Upper Address Bits]
29 [[192 (Address Mode)
33 [[o (Default Mode) —
38 | | 8 Decoder Type \]
Values to Free text notes —
Write
CVs to read Read / Write
Or write Current values Status / Errors
(populated after
Py ? Free text notes
1

Read CVs | Write CVs |\ |

Minimum Configuration for Harman Signallist SC1 Decoder
The base DCC address of the 5C1 decoder is configured by CV1 and CV9

- For Pi-SPROG3 V1, you need to set this to the required DCC address plus 4 (e.g. DCC 1: CV1=5 and CV9=0)

- For the Pi-SPROG3 VW2 everything works as expected (not sure whats going on - just something I discovered)
Also, another thing I have found is that the base address has to be a multiple of & for it to work correctly
(so DCC addresses need to be set as 1, 9, 17,25 etc - trying to set a DCC address of, say 4, doesn't work)
The decoder type of 8 gives 8 individually controlled outputs (addresses 1,2,3,4,5,6,7,8)

(=

Open | Save ‘ Save as || Configuration file: signalist_scl.cvc |

0Ok / Close

Loaded
configuration file

During a ‘read’ operation, either the retrieved values will be displayed or “---” signifying a
particular CV could not be read.

During a ‘write’ operation, the displayed values will either turn Green (if the write was successful)
or Red (if the write operation failed).

	Introduction
	The importance of research
	The Schematic Editor
	Drawing your layout schematic
	Planning your signalling scheme
	Adding signals to the layout schematic
	Configuring the basic interlocking
	Signal 1
	Signal 2
	Signal 3
	Signal 4
	Signal 5

	Testing the basic interlocking
	Operating your Layout
	Adding and configuring track occupancy
	Testing track occupancy changes
	Configuring the GPIO sensors
	Interlocking with Track Sections
	One click route setting
	Saving and loading your layout
	An automation example
	Configure interlocking
	Configure track occupancy
	Configure basic automation
	Configure timed signals
	Configure approach control
	Testing the competed layout

	Still to discover
	Appendix 1 - Using semaphore signals
	Appendix 2 - DCC programming of signals and points
	One-touch DCC programming
	DCC Configuration Variable (CV) programming

