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Abstract

Self-driving laboratories (SDLs) are the future; however, the capital and expertise required can be
daunting. We introduce the idea of an optimization task for less than $100, a square foot of desk
space, and an hour of total setup time from the shopping cart to the first “autonomous drive.” We
use optics rather than chemistry for our demo; after all, light is easier to move than matter. While
not materials-based, importantly, several core principles of a self-driving materials discovery lab are
retained in this cross-domain example: sending commands to hardware to adjust physical parameters,
receiving measured objective properties, decision-making via active learning, and utilizing cloud-based
simulations. The demo is accessible, extensible, modular, and repeatable, making it an ideal candidate
for both low-cost prototyping of SDL concepts and learning principles of SDLs in a low-risk setting.
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1. Introduction

Data informatics applied to chemistry and ma-
terials science have led to many computationally
and experimentally validated discoveries [1–3]. As
the accessibility to robotics and advanced optimiza-
tion algorithms has increased, there has been a
shift towards implementing self-driving laborato-
ries (SDLs) for materials discovery (i.e. materi-
als acceleration platforms (MAPs)) [4–16]. These
systems can be expensive and often require exper-
tise across a range of disciplines. Several excellent
platforms in chemistry and materials science for
low-cost SDLs have been developed [17–22] which
can serve as both educational and research tools.
For wider adoption of a low-cost demo, the system
needs to be cheaper, smaller, and simpler to set up
while still preserving many functional aspects of a
MAP.
In programming, a minimal working example

(MWE) “is a code snippet that can be copied-and-
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pasted into an empty ... file and still have the same
features (working) and that does not include unnec-
essary details (minimal). [23]” Here, we pose the
question:

What does a minimal working example
look like for a self-driving laboratory?

To elaborate the connection, we provide our in-
terpretation of corresponding definitions for a mini-
mal, complete, reproducible programming example
[24] applied to SDLs in Table 1.

In this work, we provide an overview of the self-
driving laboratory demonstration (SDL-Demo) in-
cluding required and optional bills of materials and
hardware/software setup in Section 2. We then
discuss limitations and design considerations (Sec-
tion 3), extensions (Section 4), task complexity
(Section 5), and hardware, software, and task al-
ternatives (Section 6). Finally, we describe mile-
stones, deliverables, and outlook for the project in
Section 7.

1



Table 1: Definitions of “minimal”, “complete”, and “reproducible” in the traditional programming context of minimal
working examples and SDLs.

Programming Self-driving Laboratory

Minimal Use as little code as possible that still pro-
duces the same problem [23]

Minimize the cost, size, and setup while
still being a SDL

Complete Provide all parts needed to reproduce the
problem in the question itself [23]

Provide software with documentation and
a bill of materials with setup instructions

Reproducible Test the code you’re about to provide to
make sure it reproduces the problem [23]

Benchmark the SDL using a fixed configu-
ration and verify the results are expected

2. Self-driving Laboratory Demo Overview

We introduce the idea of an optimization task for
less than $100, a square foot of desk space, and an
hour of total setup time. We believe our SDL-Demo
adequately meets the minimal, complete, and re-
producible requirements of a MWE SDL (Table 1)
and meets the non-materials aspects of a MAP [13]:

[A system that] carries out high-
throughput and/or automated experi-
ments, the results of which are fed back
into the AI that guides the selection of
subsequent rounds of experimentation to
optimize or make a discovery.

The SDL-Demo involves controlling the bright-
ness of a red green blue (RGB) light-emitting diode
(LED), sensing the light mixture via a discrete-
channel spectrophotometer, decision-making to
tune the inputs to best match a desired spectrum,
and optionally, cloud-based simulations to aid in
decision-making. The setup is summarized in Fig-
ure 1 with required and optional bills of materials
given in Figures 2 and 3, respectively.
The basic steps and substeps of assembling the

hardware and running the demo—connecting com-
ponents, mounting the sensor, setting up the RPi
Pico W, and remote access—are given in Table 2.

3. Limitations, Design Considerations

Something unique to our approach is that there
are no robotic movements in the default configu-

ration. While this can be considered a limitation,
we also consider it to be a strength because it dra-
matically reduces the cost, lessens the expertise re-
quired, and reduces the chance for initial closed-
loop failure. There is still a need for a low-cost
robotic MWE for SDLs which could serve as a com-
plementary and more advanced extension to SDL-
Demo (this work).
While the capital involved for this demo is low,

it’s possible that this could perpetuate the practice
of only demonstrating rather than dedicating ef-
fort to materials acceleration for societal solutions
(MASS) tasks [13]. In other words, the time that
could potentially be spent modifying and bench-
marking this setup can follow Boyle’s law in ex-
panding to fill the space available and siphon the
“air” (resources) that might otherwise have been
applied to a MASS task. In order to mitigate this
risk, we recommend that researchers interested in
extending the framework do so as a miniature test-
ing piece and limited-scope stepping stone for a
larger, established plan to create a MAP geared
towards a MASS.

4. Extensions

As an illustrative example of using the SDL-
Demo in the context of a larger plan, this demo
could be extended to accommodate a distributed
autonomous laboratory framework, where multi-
ple copies of the demo are implemented at sep-
arate locations and operate collaboratively with
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Figure 1: Summary of the self-driving laboratory demonstration (SDL-Demo). A microcontroller (Raspberry Pi (RPi))
sends commands to a dimmable red green blue (RGB) light-emitting diode (LED) to control the brightness at different
wavelengths. A spectrophotometer measures the light signal at eight individual wavelengths. The microcontroller reads
the intensity values from the spectrophotometer and uses these newly measured values and prior information (including
e.g. prior measurements and physics-based simulations performed in the cloud) to choose the next set of LED parameters
in an effort to better match a target spectrum. The setup adequately meets the minimal requirement of a minimal working
example (MWE) self-driving laboratory (SDL) by costing less than 100 USD, occupying less than 1 ft2 (0.1m2) of desk
space, and requiring less than 1 h of setup time.
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Figure 2: Bill of materials for required hardware to assemble the SDL-Demo using a Raspberry Pi (RPi) Pico WH. This
Adafruit “wishlist” is available publicly at http://www.adafruit.com/wishlists/553992. This hardware configuration
was designed to require no soldering and leverages Stemma-QT and Grove ports for easy interfacing between the RPi, Maker
Pi Pico, and spectrophotometer. As an alternative to the Pico WH, a Pico W can be used, though it requires soldering the
headers. Sculpting wire (14 American Wire Gauge) is recommended for adjustable mounting of the spectrophotometer
relative to the Maker Pi Pico base RGB LED.
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Figure 3: Bill of materials for optional accessories for the SDL-Demo using a RPi Pico WH. This Adafruit “wishlist”
is available publicly at http://www.adafruit.com/wishlists/554001. The optional hardware has three primary
intentions: exposing additional general-purpose input/output pins for extending functionality of the demo, operating as a
standalone computer package (i.e. no existing computer needed by adding a display, keyboard, and mouse), and providing
an alternate method for setting up a “headless” RPi (i.e. when RPi must be accessed through a separate computer due
to lack of standalone display, keyboard, and mouse).

Table 2: Hardware and software setup instructions for the SDL-Demo. Full instructions will be made available at
https://hackaday.io/project/186289-autonomous-research-laboratories. In the interim, individual product
pages from the bill of materials have links to hardware and software tutorials that will form the basis for the detailed
SDL-Demo instructions.

Step Substep

Connect components
Connect AS7341 to Maker Pi Pico base via Stemma-QT/Grove connector
Insert RPi Pico W into Maker Pi Pico base

Mount the sensor Thread sculpting wire through mounting holes on Maker Pi Pico base
Thread same sculpting wire through mounting holes on AS7341
Position AS7341 perpendicular to and about 3 inches from NeoPixel LED

Set up Pico W Hold BOOTSEL button, connect RPi to computer via micro-USB-B/USB-A
Drag the latest Pico CircuitPython download onto the computer’s D:/ drive
Install Thonny editor, configure for CircuitPython, and install libraries
Replace code.py with the (web server) SDL-Demo version, click “Run”

Remote access Install the SDL-Demo library to Google Colab or a local Python installation
Remotely connect to the Pico W through the web server
Run the basic SDL-Demo optimization script
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model training and decision making happening in
the cloud. This is another interesting aspect of the
development of MAPs that could be explored in a
low monetary risk setting; however, we believe this
kind of extension to the demo would better serve
as a proof-of-concept to be included in a grant pro-
posal for a MASS MAP or as a test-bed for an ex-
isting distributed autonomous laboratory network
working towards a MASS. See also the limited task
complexity described in Section 5.

When used for education rather than research,
we believe that similar considerations as mentioned
above should be taken. In educational settings,
equipment funding must be sourced. Successful
implementation of the demo in classroom settings
can provide a source of trust for more expensive,
higher-impact demonstrations such as those in-
volving movement of solids and liquids (robotics),
changes in state variables (temperature, pressure),
and multi-step syntheses. The SDL-Demo is a
MWE that can help bolster confidence and mo-
tivate buy-in for future, larger scale implementa-
tions. This is similar to how developers are more
likely to devote their time and resources to a pro-
gramming question that contains a well thought out
MWE.

The SDL-Demo can be used to explain what ma-
chine learning algorithms can be used for chemistry
and materials science tasks and how they work.
We are particularly interested in using SDL-Demo
to convey important topics related to the efficien-
cies of various search algorithms: for example, a
comparison of grid search vs. random search vs.
Bayesian optimization. Optimization topics that
are of interest to explore using the SDL-Demo are
constrained [25, 26]1, multi-fidelity [27–32]2, and/or
multi-objective [33–44] optimization.

The demo can also be used directly to prototype
a system for a more advanced task. For example,

1The presence of search space degeneracies and how these
are handled either explicitly or implicitly within an opti-
mization algorithm are important for many, if not all mate-
rials optimization tasks.

2An example of discrete multi-fidelity optimization in-
volves incorporating online and/or offline simulations into
an experimental optimization scheme.

the system could be converted from a light mix-
ing demo to a chemical mixing demo by replacing
the LED with an appropriate motor controller and
peristaltic pump(s). For a chemistry-based color
matching demo, the spectrophotometer could be
used directly with longer integration times. Like-
wise, the light/sensor setup could be used to mea-
sure reflection, absorption, and transmission in var-
ious materials. For other tasks, the spectropho-
tometer could be replaced with the appropriate
sensor (e.g. pH, temperature, conductivity). The
ability to fall back to the original SDL-Demo also
allows for more efficient, modular debugging and
potentially less frustration for the user.

5. Task Complexity

There is nothing particularly complex about task
of mixing several distinct wavelengths and match-
ing a target spectrum; to a large extent, the spec-
trum response surface is linear with respect to the
underlying inputs (red, green, and blue LED cur-
rents), aside from experimental noise. There exists
only a single local optimum in the case of single-
objective optimization of mean absolute error mis-
match between measured and target spectra or a
more robust metric such as Wasserstein distance
between the discrete distributions. This can be
contrasted with many chemistry and materials op-
timization tasks, where non-linear correlations, dis-
continuities, and multiple local optima come into
play.
Depending on the use-case, the limited complex-

ity of the SDL-Demo task can be seen as either
a limitation or a strength. Used as a pedagogical
tool, students are less likely to be overwhelmed.
Used as a prototyping tool, debugging is likely to
be more efficient and straightforward.
However, due to the relative simplicity, the SDL-

Demo is of less interest from an optimization bench-
marking scheme. Pulling again from a program-
ming analogy, there is a phrase “duck typing”
which refers to applying the duck test adage “If
it walks like a duck and it quacks like a duck,
then it must be a duck” to the concept of assigning
types to variables (e.g. integers vs. floating-point).
Adapted to the case of materials acceleration:
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If it looks like materials optimization
and it behaves like materials optimization
problem, then it must be a good bench-
mark for materials optimization.

Three input variables with linear responses nei-
ther looks like nor behaves like many materials op-
timization tasks; however, other benchmarking so-
lutions exist. To this end, we are also developing a
customizable computational benchmark as follow-
up work to [45] that can be easily adapted to the
number of constraints, input parameters, and out-
puts while retaining a more realistic response sur-
face complexity.
While the SDL-Demo may be less suitable as a

state-of-the-art benchmarking framework, we be-
lieve it can effectively serve as a hands-on teach-
ing tool for optimization topics (Section 4) such
as comparing search efficiency of well-known algo-
rithms. Perhaps in future work, others may design
a low-cost, self-driving experimental setup that re-
tains input-output response complexity character-
istic of many MASS tasks.

6. Alternatives

Because the design involves low-cost components
that each come with pre-built Python libraries, the
startup cost and time is minimal. While we propose
a set of hardware and compatible software libraries,
we comment on some alternatives here. For exam-
ple, the Maker Pi Pico that contains an embedded
RGB LED could be replaced by a custom printed
circuit board with a single NeoPixel (or DotStar)
RGB LED, a Blinkt! LEDs array, or a custom ar-
ray of LEDs with many distinct wavelengths. In
the cases involving custom printed circuit boards,
an LED driver chip or board is likely necessary.
An alternative to the AS7341 spectrophotometer is
a do-it-yourself spectrophotometer; however, cur-
rently available open-source designs for spectropho-
tometers are likely to violate either the 100 USD
cost or 1 hour setup time constraints outlined pre-
viously.
In the simplest setup, a single LED with a single

brightness sensor could be used; however, this is
missing qualitative features of SDLs for real-world

tasks involving multiple tunable inputs and multi-
ple signal measurements; it also presents additional
hardware challenges and design considerations. For
example, we wanted to keep the signal (i.e. LED)
and sensor on separate boards while attached via a
cable rather than integrating everything onto a sin-
gle printed circuit board because it better mimics
the SDL best practice of modularity [8, 11]. We did
not find off-the-shelf components that adequately
met these needs. While it would be possible to use
a two-wire LED with a breadboard, breadboards
can introduce insecure connections, a greater like-
lihood of wiring mistakes by novice users, and poor
aesthetics. We argue that the first two issues im-
pede the long-term extensibility of the SDL-Demo
to other designs and applications while the latter
issue of aesthetics may lead to less user appeal and
lower adoption rates.
While this example is based on CircuitPython

software, alternative computing languages such as
MicroPython, Python, Arduino, and C/C++ are
also viable, with preference towards languages with
support for general-purpose input/output and ease-
of-use. Rather than control the LEDs through Cir-
cuitPython libraries, a lower-level interface that di-
rectly controls electrical current could be employed.
The use of other microcontrollers and single board
computers are possible and would likely require
only minor redesign for hardware peripherals and
software.
We also note that while the use of LEDs seemed

the most compatible with “Hello, World!” style
electronics projects, alternative signals such as
sound, Bluetooth, WiFi, and vibrational modes
(e.g. a drumhead or water surface) could be used
in a similar optimization scheme given the appro-
priate signal source and sensor hardware.

7. Milestones, Deliverables, and Outlook

Previously, we described limitations and design
considerations (Section 3), extensions (Section 3),
task complexity (Section 5), and alternatives (Sec-
tion 6) in the context of SDL-Demo. Here, we
describe basic milestones and deliverables for the
project. Basic milestones involve ordering the bill
of materials, assembling the system, setting up the
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microcontroller (i.e. RPi Pico W), unit testing in-
dividual components, writing the adaptive design
script, and running the first “autonomous drive”.
There are four final deliverables: build instruc-
tions hosted on https://hackaday.io (project
ID: 186289), software documentation and usage in-
structions hosted on GitHub (https://github.c
om/sparks-baird/self-driving-lab-demo),
validation results, and a video demonstration/tuto-
rial of an autonomous drive. It may also be worth-
while to package the system as a kit through a ser-
vice such as Crowd Supply to accelerate buy-in and
adoption and circumvent future supply chain prob-
lems.
Our goal is for every cheminformatics and mate-

rials informatics researcher or prospective student
to have at least one hands-on exposure to imple-
menting a SDL. We believe that as scientists, engi-
neers, and educators implement this demonstration
for prototyping and teaching the principles of SDLs
at minimal cost, the community will get closer to
the critical MASS [13] necessary for accelerating
impactful materials discovery.

Glossary

LED light-emitting diode 2–4, 6, 7

MAP materials acceleration platform 1, 2, 6

MASS materials acceleration for societal solu-
tions 2, 6–8

MWE minimal working example 1–3, 6

RGB red green blue 2–4, 7

RPi Raspberry Pi 2–5, 8

SDL self-driving laboratory 1–3, 7, 8

SDL-Demo self-driving laboratory demonstra-
tion 1–8
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