30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

NVISO Labs

Cyber security research, straight from the lab! a8,

v [MO a

Intercepting traffic from Android Flutter
applications

& Jeroen Beckers @ android, burpsuite, Mobile (© August 13,2019 = 9 Minutes

Update: The explanation below explains the step for ARMv7. For ARMvS8 (64bit), see this
blogpost.

Flutter is Google’s new open source mobile development framework that allows developers to
write a single code base and build for Android, iOS, web and desktop. Flutter applications are

written in Dart, a language created by Google more than 7 years ago.

v 2

It’s often necessary to intercept traffic between a mobile application and the backend (either for a

security assessment or a bounty hunt), which is typically done by adding Burp as an intercepting

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 1712

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

proxy. Flutter applications are a little bit more difficult to proxy, but it’s definitely possible.

TL;DR
o Flutter uses Dart, which doesn’t use the system CA store
» Dart uses a list of CA’s that’s compiled into the application
 Dart is not proxy aware on Android, so use ProxyDroid with iptables

e Hook the @ session_verify_cert_chain function in x509.cc to disable chain validation

» You might be able to use the script at the bottom of this article directly, or you can follow the

steps below to get the right bytes or offset.

Test setup

In order to perform my tests, I installed the flutter plugin and created a Flutter application that
comes with a default interactive button that increments a counter. I modified it to fetch a URL

through the HttpClient class:

1| class _MyHomePageState extends State<MyHomePage> {

2 int _counter = 0;

3 HttpClient client;

4

5 _MyHomePageState()

6

7 _start();

8

9 void _start() async
10 {
11 client = HttpClient();
12 }
13 void _incrementCounter() {
14 setState(() {
15 if(client != null)
16 {
17 client
18 .getUrl(Uri.parse('http://www.nviso.eu')) // produces a reque
19 .then((request) => request.close()) // sends the request
20 .then((response) => print("SUCCESS - " + response.headers.val
21 _counter++;
22 }
23 })s
24 }

The app can be compiled using flutter build aot and pushed to the device through adb
install.

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 2/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs
A B @ 3 W5 (@926

Proxy me please

You have made this many requests:

0

< @) O

Every time we press the button, a call is sent to http://www.nviso.eu and if it’s successful it is

printed to the device logs.

On my device I have Frida installed through Magisk-Frida-Server and my Burp certificate is
added to the system CA store with the MagiskTrustUserCerts module. Unfortunately, Burp does
not see any traffic passing through, even though the app logs indicate that the request was

successful.

Sending traffic to the proxy through ProxyDroid/iptables

The HttpClient has a findProxy method and its documentation is pretty clear on this: By default

all traffic is sent directly to the target server, without taking any proxy settings into account:

Sets the function used to resolve the proxy server to be used for opening a HTTP connection to

the specified url . If this function is not set, direct connections will always be used.

— findProxy documentation

The application can set this property to HttpClient.findProxyFromEnvironment which
searches for specific environment variables such as http_proxy and https_proxy . Even if

the application would be compiled with this implementation, it would be pretty useless on
Android since all applications are children of the initial zygote process which does not have these

environment variables.

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 3/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs
It’s also possible to define a custom findProxy implementation that returns the preferred proxy. A

quick modification on my test application indeed shows that this configuration sends all HTTP

data to my proxy:

1 client.findProxy = (uri) {
return "PROXY 10.153.103.222:8888";
}s

w N

pe

~ ~

Extender T Project options T User options T OpenAPI Parser Add Custom Header
Dashboard T Target T Proxy T Intruder T Repeater T Sequencer Decoder T Comparer

| Intercept I HTTP history TWebSockets history TOptions]

Filter: Hiding CSS, image and general binary content; matching expression nviso.eu; showing only high@

-

v | Host | Method | URL ' Params | Edite

.~

J R_equ_e_st_T Response]

_[Raw T Headers T Hex]

GET / HTTP/1l.1 [&
user-agent: Dart/2.4 (dart:io) L\
Accept-Encoding: gzip, deflate

content-length: 0

host: www.nviso.eu

Connection: close

N
-l

4

|¥
@ [- J[+][> J Type a search term 0 matches

.

y

Of course, we can’t modify the application during a black-box assessment, so another approach is
needed. Luckily, we always have the iptables fallback to route all traffic from the device to our

proxy. On a rooted device, ProxyDroid handles this pretty well and we can see all HTTP traffic
flowing through Burp.

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 4/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs
Aap e d 0 2 (® 205

&8 FProxyDroid

PROXY SETTINGS

ProxyDroid with root access using

iptables

Intercepting HTTPS traffic

This is where it gets more tricky. If I change the URL to HTTPS, Burp complains that the SSL
handshake fails. This is weird since my device is set up to include my Burp certificate as a trusted

root CA.

After some research, I ended up on a GitHub issue that explains the issue for Windows, but the
same is applicable to Android: Dart generates and compiles its own Keystore using Mozilla’s NSS

library.

This means that we can’t bypass SSL validation by adding our proxy CA to the system CA store.
To solve this we have to dig into libflutter.so and figure out what we need to patch or hook in
order to validate our certificate. Dart uses Google’s BoringSSL to handle everything SSL related,
and luckily both Dart and BoringSSL are open source.

When sending HTTPS traffic to Burp, the Flutter application actually throws an error, which we

can take as a starting point:

E/flutter (10371): [ERROR:flutter/runtime/dart_isolate.cc(805)]

Unhandled exception:

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 5/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs
E/flutter (10371): HandshakeException: Handshake error in client
(0S Error:
E/flutter (10371): NO_START_LINE(pem lib.c:631)
E/flutter (10371): PEM routines(by file.c:146)
E/flutter (10371): NO_START_LINE(pem lib.c:631)
E/flutter (10371): PEM routines(by file.c:146)
E/flutter (10371): CERTIFICATE_VERIFY_FAILED: self signed

certificate in certificate chain(handshake.cc:352))

E/flutter (10371): #0 _rootHandleUncaughtError.
(dart:async/zone.dart:1112:29)
E/flutter (10371): #1 _microtaskLoop

(dart:async/schedule_microtask.dart:41:21)

E/flutter (10371): #2 _startMicrotaskLoop
(dart:async/schedule_microtask.dart:50:5)

E/flutter (10371): #3 _runPendingImmediateCallback
(dart:isolate-patch/isolate_patch.dart:116:13)

E/flutter (10371): #4 _RawReceivePortImpl. handleMessage
(dart:isolate-patch/isolate_patch.dart:173:5)

The first thing we need to do is find this error in the BoringSSL library. The error actually shows
us where the error is triggered: handshake.cc:352 . Handshake.cc is indeed part of the
BoringSSL library and does contain logic to perform certificate validation. The code at line 352 is
shown below, and this is most likely the error we are seeing. The line numbers don’t match

exactly, but this is most likely the result of a version difference.

352 | if (ret == ssl_verify_invalid) {

353 OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
354 ssl send_alert(ssl, SSL3_AL_FATAL, alert);
355 }

This is part of the ssl_verify_peer_cert function which returns the ssl_verify_result_t enum

which is defined in ssl.h at line 2290:

2290 | enum ssl verify result_t BORINGSSL_ENUM_INT {

2291 ssl verify ok,

2292 ssl verify_ invalid,
2293 ssl verify retry,
2294 | };

If we can change the return value of ssl_verify_peer_cert to ssl_verify_ok (=0), we should be

good to go. However, a lot of stuff is going on in this method, and Frida can only (easily) change

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 6/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs
the return value of a function. If we change this value, it would still fail due to the

ssl_send_ alert() function call above (trust me, I tried =).

Let’s find a better method to hook. Right above the snippet from handshake.cc is the following
code, which is the actual part of the method that is validating the chain:

347 | ret = ssl->ctx->x509_method->session_verify cert_chain(

348 hs->new_session.get(), hs, &alert)
349 ? ssl_verify_ok
350 : ssl_verify_invalid;

The session_verify_cert_chain function is defined in ssl_x509.cc at line 362. This function also
returns a primitive datatype (boolean) and is a better candidate to hook. If a check fails in this
function, it only reports the issue via OPENSSL_PUT_ERROR, but it doesn’t have side effects like
the ssl_verify_peer_cert function. The OPENSSL_PUT_ERROR is a macro defined in err.h at
line 418 that includes the source filename. This is the same macro that was used for the error that

made it to the Flutter app.

418 | #define OPENSSL_PUT_ERROR(1library, reason) \
419 ERR_put_error(ERR_LIB ##library, @, reason, _ FILE_ , _ LINE_)

Now that we know which function we want to hook, we need to find it in libflutter.so. The
OPENSSI,_PUT_ERROR macro is called a few times in the session_verify_cert_chain function,
which makes it easy to find the correct method using Ghidra. So import the library into Ghidra,

use Search -> Find Strings and search for x509.cc .

ﬁ] Strings [String Search - 11:30, String Search - 12:22] [CodeBrowser: Flutter:/libflutter.so] = O X
Help

h. String Search - 1items (of 17334) - [ibfiutterso, Minimum Siee ALAA|YT | S| S[H(x
Code Unit | String View |str... |Le... |IsWord

A 000815c2 s_ofufthir.., ds "../../third pa... ".[.fthird_partyboringsslfsrcfssl/ssl_x509... str.. 43 true

Filter: 'x509.cc b Q = | T

[] Auto Label Offset: 0 | Preview: |
[[] Indude Alignment Mulls
[] Truncate If Needed
Make String Make Char Array

@h String Search - 11:50 X gy String Search - 12:22 x

Searching for the x509.cc string

There are only 4 XREFs so it’s easy to go over them and find one that looks like the

session_verify_cert_chain function:

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 7/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

3_../../third_party/boringssl/src/_000815c2 XREF[4]: 002fd9c6 (*), 0034b3ec(¥),
0034b546 (*), 0034b55a(*)
000815c2 2e 2e 2f ds "../../third party/boringssl/src/ssl/ssl_x509....
2e 20 21
74 68 &9 ...
Only 4 xrefs

One of the functions takes 2 ints, 1 ‘undefined’ and contains a single call to
OPENSSI._PUT_ERROR (FUN_00316500). In my version of libflutter.so, this is

FUN_0034b330 . What you typically do now is calculate the offset of this function from one of the
exported functions and hook it. I usually take a lazy approach where I copy the first 10 or so bytes
of the function and check how often that pattern occurs. If it only occurs once, I know I found the
function and I can hook it. This is useful because I can often use the same script for different

versions of the library. With an offset based approach, this is more difficult.

e e s s R R L R R R L e e s s R e s R L R R

: FUNCTICON "

2 222 eSS R ittt il it it st Rl

undefined FUN_0034b330()

undefined

FUN_0034b330+1 XREF[0,1]: 005be220 (*)
FUN_0034b330

0034b330) 2d 9 £0 4f push { r4, r5, r6, r7, rg, r9, rl0, rll, 1lr 1}

0034b334| a3 kO sub sp, #0x8c

0034b336| £2 46 mov rl0,x0

0034b338| 50 20 mov r0, #0x50

0034b33&| 10 70 3trb r0, [r2, #0x0]

0034b33c da £8 98 70 ldr.w r7, [r10, #0x98]

0034b340 00 2f comp r7,#0x0

0034b342 4c do beg LAE 0034b3de

0034b344 38 &2 ldr rl, [x7,#0x0]

0034b346 00 28 cImp i, #0x0

So now we let Frida search the libflutter.so library for this pattern:

1| var m = Process.findModuleByName("libflutter.so");

2 | var pattern = "2d e9 fO 4f a3 bo 82 46 50 20 10 70"

3 . var res = Memory.scan(m.base, m.size, pattern, {

4 onMatch: function(address, size){

5 console.log('[+] ssl verify_result found at: ' + address.toString());
6 ¥

7 onError: function(reason){

8 console.log('[!] There was an error scanning memory');
9 }s

10 onComplete: function()

11

12 console.log("All done")

13 }

14 1

Running this script on my Flutter application gives just a single result:

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/

8/12

30.12.21, 11:16

Intercepting traffic from Android Flutter applications — NVISO Labs

(env) ~/D/Temp » frida -U -f be.nviso.flutter_app -1 frida.js --

no-pause

[LGE Nexus 5::be.nviso.flutter_app]-> [+] ssl_verify_result found

at: 0x9a7f7040

All done

Now we just need to use the Interceptor to change the return value to 1 (true):

LooONOTUVTSA WNER

function hook_ssl verify result(address)

{
Interceptor.attach(address, {
onEnter: function(args) {
console.log("Disabling SSL validation")
}s
onLeave: function(retval)
console.log("Retval: " + retval)
retval.replace(0x1);
}
})s
}
function disablePinning()
{

var m = Process.findModuleByName("libflutter.so");
var pattern = "2d e9 f0 4f a3 bo 82 46 50 20 10 70"
var res = Memory.scan(m.base, m.size, pattern, {
onMatch: function(address, size){
console.log('[+] ssl verify_ result found at:

+ address.toString());

// Add 0x01 because it's a THUMB function
// Otherwise, we would get 'Error: unable to intercept function at ©x
hook_ssl verify result(address.add(0xe1l));

}s

onError: function(reason){
console.log('[!] There was an error scanning memory');

}s

onComplete: function()

console.log("All done")

}
s

setTimeout(disablePinning, 1000)

After setting up ProxyDroid and launching the application with this script, we can now finally see

HTTPs traffic:

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 9/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

-

Extender T Project options T User options T OpenAPI Parser T Add Custom Header
Dashboard T Target T Proxy T Intruder T Repeater T Sequencer T Decoder T Comparer

| Intercept | HTTP history TWebSockets history TOptions]

Filter: Hiding CSS, image and general binary content; matching expression nviso.eu; showing only high@

v Host | Method | URL | Params | Editec

2730 https://www.nviso.eu

- - g i LS
J Request TResponse]

J Raw T Headers T Hex]

GET / HTTP/1.1 A
user-agent: Dart/2.4 (dart:io)

Accept-Encoding: gzip, deflate

content-length: 0

host: www.nviso.eu

Connection: close

v
@ L < J{ + Jl > J Type a search term 0 matches

I've tested this on a few Flutter apps and this approach worked on all of them. As the BoringSSL

library will most likely stay rather stable, this approach might work for some time to come.

Disable SSL Pinning (SecurityContext)

Finally, let’s see how we can get around SSL Pinning. One way of doing this is by defining a new
SecurityContext that contains specific certificates. While this is not technically SSL pinning (you
don’t protect against a compromised private key), it’s often implemented to prevent against easy

eavesdropping of the communication channel.

For my app, I added the following code to have it accept only my burp certificate. The

SecurityContext constructor takes one argument, withTrustedRoots , which defaults to false.

1 ByteData data = await rootBundle.load('certs/burp.crt');

2 SecurityContext context = new SecurityContext();

3 context.setTrustedCertificatesBytes(data.buffer.asUint8List());
4 client = HttpClient(context: context);

The application will now automatically accept our Burp proxy as the certificate for any website,
which shows that this method can be used to specify a specific certificate that the application
must comply to. If we now switch this to the nviso.eu certificate, we can no longer intercept the

connection.

Fortunately, the Frida script listed above already bypasses this kind of root-ca-pinning

implementation, as the underlying logic still depends on the same methods of the BoringSSL

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 10/12

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

library.

Disable SSL Pinning (ssl_pinning_plugin)

One of the ways Flutter developers might want to perform ssl pinning is through the
ssl_pinning_ plugin flutter plugin. This plugin is actually designed to send one HTTPS connection
and verify the certificate, after which the developer will trust the channel and perform non-pinned
HTTPS requests:

With correct timing of ProxyDroid, this can already be circumvented, but let’s just disable it

anyway.
1| void testPin() async
2 {
3 List<String> hashes = new List<String>();
4 hashes.add("randomhash");
5 try
6
7 await SslPinningPlugin.check(serverURL: "https://www.nviso.eu", heade
8
9 doImportanStuff()
10 }catch(e)
11 {
12 abortWithError(e);
13 }
14 }

The plugin is a bridge to a Java implementation which we can easily hook with Frida:

1 function disablePinning()

2

3 var SslPinningPlugin = Java.use("com.macif.plugin.sslpinningplugin.SslP
4 Ss1lPinningPlugin.checkConnexion.implementation = function()

5 {

6 console.log("Disabled SslPinningPlugin™);

7 return true;

8 }

ol }
10
11 | Java.perform(disablePinning)

»
Conclusion

This was a pretty fun ride, and it went quite smoothly since both Dart and BoringSSL are open
source. Due to just a few interesting strings, it’s pretty easy to find the correct place to disable the
ssl verification logic, even without any symbols. My approach with scanning for the function
prologue might not always work, but since BoringSSL is pretty stable, it should work for some

time to come.

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 1112

30.12.21, 11:16 Intercepting traffic from Android Flutter applications — NVISO Labs

About the author

Jeroen Beckers is a mobile security expert working in the NVISO Cyber Resilience team and co-
author of the OWASP Mobile Security Testing Guide (MSTG). He also loves to program, both on
high and low level stuff, and deep diving into the Android internals doesn’t scare him. You can

find Jeroen on LinkedIn.

Like this:

Like &

2 bloggers like this.

Tagged: andoid, Mobile

Published by Jeroen Beckers

Jeroen Beckers is a mobile security expert working in the NVISO Software and Security assessment team. He
is a SANS instructor and SANS lead author of the SEC575 course. Jeroen is also a co-author of OWASP
Mobile Security Testing Guide (MSTG) and the OWASP Mobile Application Security Verification Standard
(MASVS). He loves to both program and reverse engineer stuff. View all posts by Jeroen Beckers

< Solving Flaggy Bird (Google CTF 2019)

Extracting Certificates From the Windows Registry >

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/ 12/12

