

Remote Module Installation Guide

October 8, 2005

1

Overview
The “Remote module dock” is a LabVIEW-based software package that is designed to allow end users to
integrate new devices into the ACQ II data acquisition system. This guide describes the process of installing a
remote device module and is intended for those end users having at least moderate proficiency in LabVIEW.
The goal is to minimize the amount of time and effort required to add devices, as well as to shield the end user
from the details of the ACQ II system. Functionality common to all device modules has been generalized and
collected into the Remote module dock. This includes all database-related activity, communication with the
DAQ controller, and reformatting of data and meta-data (such as for HDF5 conversion). The functionality
which the end user must provide is limited to the low-level control of the device and the management of the
device configuration and run-time state. These end user responsibilities are discussed in detail below, but first
it is necessary to know something about the overall architecture of the Remote module dock.

The architecture breaks into two parts, configuration-time and run-time, as shown in the schematic drawings
on the next two pages. The existing DAQ controller is shown in purple. The three main components of the
Dock, “Dock – bridge”, “Dock – configuration”, and “Dock – run-time” are shown in blue. At configuration-
time data run configuration and device configuration are done independently on the DAQ controller PC and the
remote device PC, respectively. On the DAQ controller PC, device related information is provided by the
Dock – bridge. At configuration-time there is no direct communication between these two PC’s. However, at
run-time the DAQ controller communicates via DataSockets to the Dock – run-time VI. The Remote module
dock supports one device per PC at the moment. Once it is well-established in this mode, it could be modified
to handle multiple devices per PC with a small amount of effort.

The remaining “Device module” and “Low-level core” parts of the architecture are to be provided by the end
user (see detailed instructions below). In general, it would be best to adhere to a convention of naming the
Device module “<device>.vi” and the Low-level core “<device> core.vi”. Note that there is no database access
from the Device module. This frees the end user from any database-related coding. The database is used to
store device configuration data and the related custom database I/O code has proved to be a bottleneck in
implementing previous device modules. This bottleneck has now been eliminated in the Remote module dock
by using a general approach whereby the database tables and I/O are defined by the structure of a LabVIEW
data element (typically a cluster). Thus, the Device module simply has to pass the device configuration,
specified in a LabVIEW cluster, to the Dock which then handles any database operation without needing to
know the details of the configuration. Another point to note, communication between the Dock and the Device
module is by a call by reference node. This allows the Dock to call any device module via a standard interface,
using a well-defined request protocol.

2

3

4

1. Device module
The best place to start is with the Device module. Create a new folder under “ACQ II home\Modules”. The
folder should be named after the device. Either copy an existing Device module or start a new VI here, again
named after the device. Working from a copy of an existing Device module will greatly reduce the amount of
time required for many of the steps below. For example, replacing the configuration and run-time state
clusters with the new ones will save a considerable amount of reconnecting wires.

1.1) Configure the connector pane
 Ensure that the connector pane is configured as follows:

Connector pane inputs and outputs

 Request input string
 Request data input variant
 Response data output variant
 Error in input error cluster
 Error out output error cluster

The basic idea is that the Device module is called with a Request and optional Request data, performs the
appropriate action, and optionally returns Response data.

1.2) Design the configuration cluster
All of the configuration parameters for the device must be contained within a single configuration cluster. It
should be saved as a LabVIEW custom control of the type “Strict Type Def”. An instance of the configuration
cluster should be placed, as a control, in the display section of the Device module. It is convenient to make the
display section be one page of a tab control. The configuration cluster will be used by the end user when
interactively changing the device configuration (see the Configure request). Since it also determines the
structure of the database tables used to store the device configuration, it is subject to some restrictions related
to data types and naming.

Valid data types
§ boolean
§ unsigned (8-, 16-, and 32-bit)
§ enum unsigned (8-, 16-, and 32-bit)
§ integer (8-, 16-, and 32-bit)
§ single, double, extended,
§ string
§ path
§ cluster – may contain any of these data types
§ array – may contain any of these data types except cluster and array

Note that while arrays are not allowed to contain arrays or clusters, multi-dimensional arrays are allowed.

5

Naming conventions
The naming of the configuration cluster and the data elements within determines the naming of corresponding
elements in the database so it is important to choose these names carefully.

§ Names may contain alphanumeric characters as well as “-“, “_”, and “ “.
§ The name of the configuration cluster should be “<device name> configuration”, i.e. the device name

followed by “ configuration”.
§ All clusters and arrays within the configuration cluster become separate tables in the database and so

their names should begin with “<device name>”. This way all the tables related to the device will be
listed consecutively when viewed with a database browser.

Completeness

If possible, identify all necessary configuration parameters from the start. Adding more parameters later is not
impossible but the Remote module dock will not handle this kind of change automatically; custom intervention
will be necessary. Also, do not include the configuration name as part of the configuration cluster; the Remote
module dock automatically adds the configuration name as a primary key.

Example
Throughout this document I will be using the GPIB interface as an example. Thus, its configuration cluster
would be:

Two database tables would be produced:

gpib_configuration
configuration_name varchar(120) primary key
gpib_channel smallint

gpib_strings
gpib_strings_index0 int primary key
configuration_name varchar(120) primary key
gpib_string text

Note that the end user need not be aware of these tables at all. They are completely equivalent to the
configuration cluster itself.

6

1.3) Identify the device-specific run-time state parameters
The run-time state of a device is the minimum set of parameters which completely defines the state of the
device at a moment in time. In general, the state of the machine is defined by the configuration. However, in
some cases, there are items that can change within a given configuration. These are referred to as the “device-
specific run-time state parameters”. A typical example would be the index into an array contained within the
configuration. Collect all such device-specific parameters into a cluster and place it in the internal data section
of the Device module. The name of this cluster does not matter because the Dock automatically takes its data
elements and adds them to the full run-time state cluster. If there are no device-specific parameters, no cluster
is necessary. If there is only a single parameter, it does not have to be placed within a cluster.
Example

The GPIB interface device-specific run-time state would be:

1.4) Setup block diagram
The Device module must handle a certain number of standard requests. Also, it must handle at least one
request specific to the device (otherwise the module would accomplish nothing). In fact, the list of requests
defines the functionality of the Device module.
Request list

Get configuration
§ Returns the configuration cluster.

Load configuration
§ Replaces the internal configuration cluster with the input.

Configure
§ Allows the user to interactively modify the device configuration, typically by actually operating the

device. Returns the configuration cluster.
Get run-time state

§ Returns a cluster or simple data element which represents all device-specific run-time state parameters.
Get device-specific requests

§ Returns a list of device-specific requests along with their key-value pairs, used for creating a data run
sequence.

Get integer names
§ Returns a list of the names of integers available using the Get integer request (see below).

Get integer
§ Returns the value of the integer specified in the Request data. This would typically be the index of the

last element in an array; for example, the index of the last GPIB command string in a list.
<Device-specific requests>

§ Causes the device to perform one of its defined run-time actions. Response data must not be returned.

7

Block diagram structure
A simple way to implement the Device module is to use a case structure with the case selector wired to the
Request input. Note that the Request case structure is executed only when there is no error. Here is what the
block diagram for the GPIB interface would look like, with the case selector values highlighted.

1.5) Implement “Get configuration” request
If the device hardware is capable of storing configuration parameters, then the best approach is to use it as the
prime repository of the configuration. In this case the configuration must be read back from the device, copied
into the configuration cluster, and returned via Response data. If the device does not store configuration, as in
the GPIB example, then the configuration cluster in the Device module is the prime repository and is simply
returned via Response data.

8

1.6) Implement “Load configuration” request
Use the Variant to data VI to translate the Request data into the configuration cluster. Then load the
configuration into the device, if necessary.

1.7) Implement “Configure” request
With the Configure request, the Device module is expected to enter an interactive mode where the end user can
modify the configuration and interact with the device. Note that the Dock – configuration VI takes care of
showing and hiding the Device module front panel before and after the call. All other user interface details are
the responsibility of the Device module. The implementation of this request is where the majority of the code
for the Device module will be. All the rules regarding valid configuration parameters will need to be enforced
here and all device functionality should be exercised here as well. All configuration changes should be
transmitted to the device as they are made, if appropriate. (Also see “2. Low-level core”.)

9

1.8) Implement “Get run-time state” request
Return the run-time state data element in Response data. Clearly, at run-time, this data element must be kept
current. For most devices, the prime repository for the run-time state will be the Device module but it is
conceivable that it be stored in the device itself.

1.9) Implement “Get device-specific requests” request
In order for a remote device to be used in a data run, its run-time request syntax must be published. At the
time of data run sequence creation, the DAQ controller requests, via the Dock -- bridge, the “device-specific
requests” and “integer names” from each module. These are formatted, along with the standard requests, into a
comprehensive syntax. Thus, the first step is to identify all device-specific requests. They correspond to all
the well-defined actions of the device that could be requested during a data run. Typically there will only be
one or two. In the case of the GPIB interface, there is only the “Send string” request. This request has the key

10

“String index” whose value is of type “<int>”. The next step is to proceed, as in the block diagram (above), to
package this information, for each request, into the Device-specific request defs data structure. If the request
has no key-value pairs associated with it, just use an empty Key-value types array. A typedef of the data
structure can be found in “Remote module dock\Typedefs\Device-specific request defs.ctl”.

Device-specific request def cluster
The request definition cluster is summarized as follows:

Cluster of 2 elements
Request (string)
Key-value types (1-D array of)

Key-value type (cluster of 2 elements)
Key (string)
Value type (enum {“<string>”, “<int>”})

1.10) Implement “Get integer names” request
Identify what integers will be necessary for use in a data run sequence. Currently, the data run sequence
scripting language supports two uses for these device-specific integers. First, a script variable can be set to the
value of the integer; this variable can subsequently be incremented or passed to any device via a key-value pair
of a request. Second, the integer can be used as the start, stop, or increment value in a for loop. The for loop
stop value is, by far, the most common role of device-specific integers. For example:
For @i: 0 | GPIB interface:Last string

Build the integer name strings into an array and return the array via Response data. If there are no integers,
return a zero-length array of strings.

11

1.11) Implement “Get integer” request
Use the Variant to Data VI to convert the Request data to a string representing the integer name. Connect the
integer name to the selector of a case structure and return the corresponding integer. In the example, the “Last
string” integer is simply: length(GPIB string array) – 1.

1.12) Implement “<Device-specific requests>”

It is not possible to discuss the implementation of a device-specific request in details as it depends on
what the request is, but some general points can be noted. If the request has any key-value pairs
associated with it, they will be passed in as Request data.

12

The Key-value pairs data structure is a:
1-D array of

cluster of 2 elements -> { Key (string), Value (string) }
In the example, the single key is verified to be “String index” and the value string is converted to an integer
before being passed to the Low-level core. If there are multiple key-value pairs, parsing them becomes a little
more involved. Communication with the Low-level core is by call by reference, though other methods may be
used, as long as the Low-level core is not called directly (see “2. Low-level core” for more on communication).
Finally, note that Response data is never returned for device-specific requests. These requests are always
performed at run-time and the data run sequencer has no way of handling feedback, other than in the case of an
error.

1.13) (Optional) Edit VI icon
If desired, change the Device module VI icon to something appropriate for the device. This icon will appear in
the upper left hand corner of the Dock – configuration VI.

Finally, please note that the example Device module and Low-level core VI’s, from which the screen shots
were taken, are included with the installation guide as “Example device module.vi” and “Example low-level
core.vi”, respectively.

13

2. Low-level core
The Low-level core should reside under the same folder created for the Device module. Before beginning to
write or modify any code for the Core, it is necessary to consider 1) its form or architecture and 2) the method
of communication between it and the Device module. Considering communication first, there are two standard
methods in LabVIEW that could be used: call by reference and queues.
2.1) Communication methods
Call by reference
The simplest communication method is call by reference. If there is a choice between the Core being callable
or free-standing, then it is preferable to have it callable because there is a performance penalty in LabVIEW for
running multiple VI’s simultaneously. Use a Call by Reference Node, which is fairly straightforward to code
except for obtaining the VI reference. For this, place an Open VI Reference VI on the block diagram, right-
click the type specifier VI Refnum input and create a control. Then on the front panel, right-click the newly-
created VI refnum control and choose Select VI Server Class >> Browse…, then browse to the Low-level core
VI. The purpose of all this is to inform the Call by Reference Node of the connector pane of the Low-level
core. Finally connect the inputs and outputs as you would with a regular VI. Note that the two error outputs
coming from the call by reference are merged.

Block diagram Front panel

14

Queues
If the Low-level core must be a free-standing application that runs independently of the Device module, then
the best choice of communication is by queues. Note the Device module and the Core must run on the same
machine. It is worth encapsulating the details of the queue communication in a pair of VI’s; one for the Device
module and one for the Core. I suggest implementations for these as follows.
Queue communication VI (Device module side)

This VI has two functions: “Initialize” and “Send + get”. The first, “Initialize”, merely creates two queues:
one for sending messages to the core and one for getting messages back from the core. This function should
not be called repeatedly as it will cause a memory leak. The Send queue is initialized for Message to core,
which is a cluster of two elements: { Message (string), Message data (variant) }. The Get queue is initialized
for Message from core, which is a cluster of three elements: { Message (string), Message data (variant), Error
out (standard error cluster) }. Note that the names of the queues, i.e. “Device module to core” and “Core to
device module”, must be unique on any given PC. Obviously, the actual name of the device should be
substituted for “Device module”.

The “Send + get” function (shown on the next page) first clears both the Send and Get queues, then it puts the
Message to core on the Send queue and waits for a message back from the Core on the Get queue. The
message back must occur within the specified timeout period.

15

Note that both the “Initialize” and the “Send + get” functions execute regardless of the state of the Error in
cluster; however, Error in is merged with any error from queue operations and the error returned by the Core
and returned in Error out.
Queue communication VI (Core side)

The Core side VI has three functions: “Initialize”, “Send”, and “Get”. The “Initialize” is the same as for the
Device module side except that it does not create the queues; instead, it merely obtains references to them. Of
course, what the Device module calls the Send queue, the Core calls the Get queue, and vice versa.

16

The “Get” function is simply an attempt to read the Get queue with a short timeout. If there is no message it
returns. Timing out is not an error for this function.

The “Send” function is equally simple. The Message, Message data, and Error in are bundled into a cluster
and put onto the Send queue.

Using the queue communication VI’s

On the Device module side, the “Send + get” function is the equivalent of a call by reference. On the Core
side, the “Get” function needs to be repeatedly called to see if there is anything on the queue. If there is, the
Core should fulfill the request and send a message back as soon as possible
Both of the queue communication VI’s described above are included with this installation guide as “Queue
example (device module side).vi” and “Queue example (core side).vi”.

17

2.2) Low-level core architectures
There are virtually no restrictions as to what the Low-level core code can be. The three most likely
possibilities are 1) a simple wrapper VI for a collection of low-level calls or API’s provided with the device, 2)
a fully functional application provided with the device or found through an Internet search, and 3) a separate
system such as the Housekeeper which is not merely a device to be used in a data run but has other
responsibilities and typically runs all the time. I will discuss these three in general but clearly cannot provide
detailed coding examples because the final form of the Low-level core is so specific to each particular device.
Simple wrapper VI

The simple wrapper VI is a callable VI and the communication method is, of course, call by reference. It
should be named something like “<device> core.vi”. The desired functions will have been determined at the
time of coding the Device module. Besides the device-specific requests, it is likely that the Low-level core will
have to handle “Load configuration” and “Get configuration” requests. A framework for a simple wrapper VI
can be found in “Example low-level core.vi”, provided with this guide.
Supplied application

This is an interesting case because it may be possible to take advantage of a large amount of functionality with
a fairly small effort. The difficult choice is whether to make it into a callable VI or leave it as an independently
running application. Again, the tradeoff is that the callable VI has better performance but is harder to code,
whereas the independent application has worse performance but is easier to code. Strategies for both of these
two approaches are suggested below.
Supplied application made callable:

In general, a fully functional application will have an initialization phase after which it will enter a while loop,
repeatedly exercising various functions of the device based on the current configuration parameters. To
convert this to a callable VI involves extracting (a) the initialization code and (b) the core code within the
while loop into two or more separate VI’s. These VI’s will then be used within a framework similar to the
simple wrapper VI mentioned above. Since a complete user interface likely comes with the original
application, it is worth implementing the “Configure” request within the Low-level core, as opposed to in the
Device module where it normally would be. This requires making the front panel of the Low-level core visible
for the duration of the “Configure” request. To do this, first change the Core to be a dialog: open the Core VI,
right-click the icon in the upper right and select VI properties… >> Window Appearance >> Dialog. Then, in
the Device module show the Core before the “Configure” request and hide it again after. This can be done by
connecting the path of the Low-level core to an Open VI Reference VI, then connecting the VI reference to a
Property Node (see below). The property to set is Front Panel Window >> Open.

Supplied application made free-standing:
Taking the route of the independent free-standing application implies queue communication. Probably the best
strategy is to add a separate while loop within the Core in which the Core side “Get” function (see Queue
communication VI (Core side) above) is called at the beginning of each iteration, followed by a case statement
which switches on the request received. Inside the case statement various controls/indicators would be set or
read depending on the request. After processing of the request is complete, a response must be returned using

18

the “Send” function. The overall effect is similar to being able to operate the front panel of the application by
sending requests over a queue. If care is taken to minimize the amount of CPU time used by the application,
then the performance penalty can be limited. Also, if there are no other modules running on the same PC, then
performance may not be a critical issue.

Separate system
The Housekeeper is a perfect example of a system separate from the data acquisition system which could be
integrated into it using the Remote module dock. Queues are the clear choice for communication and the
implementation strategy is the same as for the supplied application (above).

Since the Housekeeper is a large system which may very well grow in time, it would be worth assigning
multiple Device modules to it. That is, there should probably be one Device module for each complete sub-
system within the Housekeeper. Remember that once a Device module has been integrated into the data
acquisition system it is difficult to change the configuration associated with it. Adding functionality, on the
other hand, is not a problem.

19

3. Final integration

Once the Device module and Low-level core are functioning properly, it is time to do the final integration.
These are the steps that make the new Device module known to the ACQ II system.

3.1) Install Remote module dock package
If the Remote module dock is not already installed, copy the 2005-10-21_remote_module_dock.zip release
package into the ACQ II home\releases folder. Unzip it and follow the instructions in the release document
contained within the unzipped folder. This should produce two folders: ACQ II home\Remote module dock
and ACQ II home\SeamlessDB.

3.2) Create Dock – configuration (<device>).vi
Enter ACQ II home\Remote module dock and make a copy of Dock – configuration (Template).vi. Rename
the copy “Dock – configuration (<device>).vi, i.e. insert the device name between the parentheses. Note that
the device name string is an important identifier in the Remote module dock and must be identical in all places
in which it appears.

Replace configuration cluster
Now open Dock – configuration (<device>).vi and replace the Template configuration cluster with the

20

configuration cluster specific to the new device. Ensure that the newly placed cluster is a control: right-click
and make sure third line is “Change to Indicator” (see previous page). Also, ensure that the cluster is disabled.

Replace device name constant
Switch to the block diagram and scroll to the far left to find the Device name constant. Enter the actual device
name here.

3.3) Modify Dock – run-time.vi
Open Dock – run-time.vi. Replace the device name constant exactly as in the Dock – configuration VI.

3.4) Run Dock – configuration (<device>).vi
The Dock – configuration VI must be run once before proceeding further with the new device. As part of its
initialization, the Dock – configuration VI checks to see if the device database installation has been done and,
if not, does so automatically. This requires some input from the end user:

§ Device type (selected from a list)
§ Device module IP address
§ Device module VI path (selected using a browser)
§ Device description

Once this last step is completed, the device is fully integrated and ready to use.

21

4. Checklist

1. Device module
1.1) Configure the connector pane
1.2) Design the configuration cluster
1.3) Identify the device-specific run-time state parameters
1.4) Setup block diagram
1.5) Implement “Get configuration” request
1.6) Implement “Load configuration” request
1.7) Implement “Configure” request
1.8) Implement “Get run-time state” request
1.9) Implement “Get device-specific requests” request
1.10) Implement “Get integer names” request
1.11) Implement “Get integer” request
1.12) Implement “<Device-specific requests>”
1.13) (Optional) Edit VI icon

2. Low-level core
3. Final integration

3.1) Install Remote module dock package
3.2) Create Dock – configuration (<device>).vi
3.3) Modify Dock – run-time.vi
3.4) Run Dock – configuration (<device>).vi

