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Summary7

Many data sets encountered in machine learning exhibit symmetries that can be exploited8

to improve performance, a technique known as equivariant machine learning. The classical9

example is image translation equivariance that is respected by convolutional neural networks10

(LeCun et al., 1989). For data sets in the physical sciences and other areas, we would also like11

equivariance to rotations and reflections. This Python package implements a convolutional12

neural network that is equivariant to translations, rotations of 90 degrees, and reflections. We13

implement this by geometric convolutions (Gregory et al., 2024) which use tensor products and14

tensor contractions. This additionally enables us to perform functions on geometric images, or15

images where each pixel is a higher order tensor. These images appear as discretizations of16

fields in physics, such as velocity fields, vorticity fields, magnetic fields, polarization fields, and17

so on.18

The key features and use cases are summarized below.19

Key Features20

1. Create, visualize and perform mathematical operations on geometric images, including21

powerful jax (Bradbury et al., 2018) features such as vmap.22

2. Combine geometric images of any tensor order or parity into a single MultiImage data23

structure.24

3. Build equinox (Kidger & Garcia, 2021) neural networks with our custom equivariant25

layers that process MultiImages.26

4. Or , use one of our off-the-shelf models (UNet, ResNet, etc.) to start processing your27

geometric image datasets right away.28

Statement of need29

The geometric convolutions introduced in (Gregory et al., 2024) are defined on geometric30

images–an image where every pixel is a tensor. If 𝐴 is a geometric image of tensor order 𝑘31

and 𝐶 is a geometric image of tensor order 𝑘′, then value of 𝐴 convolved with 𝐶 at pixel ̄𝚤 is32

given by:33

(𝐴 ∗ 𝐶)( ̄𝚤) = ∑
𝑎̄

𝐴( ̄𝚤 − ̄𝑎) ⊗ 𝐶( ̄𝑎) ,

where the sum is over all pixels ̄𝑎 of 𝐶, and ̄𝚤 − ̄𝑎 is the translation of ̄𝚤 by ̄𝑎. The result is a34

geometric image of tensor order 𝑘 + 𝑘′. To produce geometric images of smaller tensor order,35

the tensor contraction can be applied to each pixel. Convolution and contraction are combined36
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DRAFT
into a single operation to form linear layers. By restricting the convolution filters 𝐶 to rotation37

and reflection invariant filters, we can create linear layers which are rotation-, reflection-, and38

translation-equivariant.39

[package name] targets two main use cases:40

As a drop-in replacement for CNNs41

We define equivariant versions for all the common CNN operations including convolutions,42

activation functions, group norms, pooling, and unpooling. Each of these layers require keeping43

track of the tensor order and parity of each geometric image, so we define a special data44

structure, the MultiImage, for these equivariant layers to operate on. We can then easily turn45

a non-equivariant CNN into an equivariant CNN by replacing the layers and converting the46

input to a MultiImage. For practitioners, we also provide full fledged model implementations47

such as the UNet, ResNet, and Dilated ResNet.48

This package is the only one implementing geometric convolutions, but there are alternative49

methods for solving 𝑂(𝑑)-equivariant image problems. One such package is escnn which uses50

Steerable CNNs (Cohen & Welling, 2016; ?). Steerable CNNs use irreducible representations51

to derive a basis for 𝑂(𝑑)-equivariant layers, but it is not straightforward to apply on higher52

order tensor images.53

Other alternative methods are those based on Clifford Algebras, in particular (Brandstetter54

et al., 2023). This method has been implemented in the Clifford Layers package. Clifford55

based methods can process vectors and pseudovectors, but cannot handle higher order tensors.56

Additionally, both these methods are built with pytorch, rather than jax.57

For designing and understanding geometric images58

For equivariance researchers, we provide all the common operations on geometric images such59

as addition, scaling, convolution, contraction, transposition, norms, rotations, and reflections.60

This makes it easy to generate group invariant images and experiment with equivariant functions.61

We also provide visualization methods to easily follow along the operations.62
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