Processing Data and Making 2D Images

This notebook demonstrates how to open a Nanosurf image file (*.nid) and perform basic post-processing operations

In [1]:
# import required modules
from NSFopen.read import read

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
In [2]:
# import the data
data_file = "MoS2.nid"
afm = read(data_file)
data = afm.data
Reading Header
Reading Data
Elapsed Time: 0.04 sec

In [3]:
# make a function to flatten the image with an optional mask
def flatten(data, order=1, mask=[]):
    data_out = np.copy(data)  # create copy of data
    data_in = np.copy(data)
    
    if np.any(mask):
        data_in[mask] = np.nan
    for idx, (out, line) in enumerate(zip(data_out, data_in)):
        ix = np.isfinite(line)
        
        x = np.arange(len(line))
        p = np.polyfit(x[ix], line[ix], order)  # fit data to polynomial
        y = np.polyval(p, x)
        data_out[idx] = out - y  # subtract fit from data
    return data_out
In [4]:
Zaxis = data['Image']['Forward']['Z-Axis'] * 1e9  # height data scaled to nanometers

Zaxis_ = flatten(Zaxis, order=1)  # flatten data with 1st order polynomial (i.e. line)
In [5]:
# X and Y data is stored in the parameters
param = afm.param
Xmin = param.X['min'][0] * 1e6  # the minimum of X of channel 0 scaled to um
Xmax = param.X['range'][0] * 1e6  # the range of X of channel 0 scaled to um

Ymin = param.Y['min'][0] * 1e6  # the minimum of Y for channel 0 scaled to um
Ymax = param.Y['range'][0] * 1e6  # the range of Y for channel 0 scaled to um

extents = [Xmin, Xmax, Ymin, Ymax]

We want to limit the color range of the plot to not include the upper and lower 2% of data

In [6]:
# caluculate the 2% and 98% percentiles
clip = [np.percentile(Zaxis_, percent) for percent in [2, 98]]
In [7]:
# define function to plot data with colorbar
def plot2D(data, extents=extents, limits=clip):
    plt.figure(figsize=(14, 10))
    im = plt.imshow(data,
                    extent = extents,
                    origin = 'lowerleft',
                    clim = limits,
                    cmap=cm.afmhot)

    plt.xlabel('[$\mu$m]')
    plt.ylabel('[$\mu$m]')
    cb = plt.colorbar(im)
    cb.set_label('[nm]')
    plt.show()

plot2D(Zaxis_, extents=extents, limits=clip)
In [8]:
# create mask to ignore data > 2 nm
mask = Zaxis_>2
In [10]:
# flatten data again but using mask
Zaxis_2 = flatten(Zaxis_,mask=mask)
plot2D(Zaxis_2)
In [ ]: