4.28 Radiative transfer: Thermal spectral range: exponential emit-
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b)

ter and absorber
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nz)= n:e?

Now assume that the “exponential atmosphere” is illuminated from below by thermal emis-
sion from the Earth’s surface and that we are only interested in the thermal infrared spectral
range (wavelength ~10 pm), i.e. we can neglect solar radiation and scattering. For simplic-
ity we assume the atmosphere at a constant temperature 74 and the Earth’s surface at a tem-
perature 7. Calculate the radiance I (z) upwelling in zenith direction at a certain point P
at height z. Since the outgoing radiation is pointing in z direction, use 7(z) := [; o-n(z)-dz
for optical density here. The Earth’s surface may be assumed a black body.

What is the upwelling monochromatic radiance I™(0o) that an observer would measure at
the top-of-the-atmosphere? In case you could not solve part a) of this exercise, assume
I'(z) = B(Tg) exp [—Too(l - e_%)] + B(T}y) [1 — exp {—Too(l - e_%)H with 7o =
g ng H.

Plot the fractional contribution of surface emission and atmospheric emission to the up-
welling top-of-the-atmosphere radiance I'(oco) as a function of 7., = o ng H for ¢ €
[10724,107201 em? (T = 283 K, Ty = 255 K, ng = 1 x 10'® molecule/cm?, H = 8km).
Choose a logarithmic scale for the 7, axis. At what 7, are surface and atmospheric contri-
butions equal?
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4.28.1 Solution

First, we define our coordinate system (see Figure 4.25), where the upwelling radiance at z and
optical depth 7(2) is IT(z).
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Figure 4.25: Definition of the coordinate system. At the ground I'(0) is thermally emitted and at any altitude
z, or 7(z) the thermal radiance I (7(z)).

a) At any atmospheric level z the upwelling radiation I'(7(z)) has two contributions: (i)
the surviving thermal radiation emitted from the ground B(Tg) - exp(—7(z)), and (ii) the

from 0 to 7(z) integrated thermal radiation emitted from the atmosphere fg () B(Ta(2)) -
exp (_(7:(2) - 7:/(2’)) -dr'(z), or in sum

- 7(2) - -
I'(#(2) = BTyexp(—FE)+ [ BIa()e— (7(2) = 7()) -47(2) @212)

Here for simplicity we assume, that the atmosphere has a uniform temperature, i.e. B(T4(z)) =
const. Next we calculate 7(z) as function of z, H, and n,

7(2) = /Z oa(N)-n(2)-d = /z ga(N) - ng -exp(—2'/H) - dz’ (4.213)
0 0
or
T(2) =Too - (1 — exp(—2z/H)) (4.214)
with 7o = o ng H. Inserting 7(z) into equation 4.212 yields
I'(7(z)) = B(Ir)-exp(~7o - (1 —exp(—2/H)))
7(2)

+[B(Ta) - exp (- (7(2) - 7(2)))] (4.215)

0
or

IM(Fs,2,H) = B(Tg)-exp(—7s - (1 — exp(—z/H)))
+B(Ta) - (1 — exp (—Too - (1 —exp(—2/H))))  (4.216)

517



b) At top of the atmosphere, the term exp(—z/H) = 0, and hence from equation 4.216, we
obtain

IT(7(2)) = B(Tg) - exp (—7oo) + B(T) - (1 — exp (—7oo)) 4.217)

c) Figure 4.26 displays the solution, which indicates that with increasing 7, increasingly less
thermal radiation emitted from the ground reaches the space, and an increasing fraction of
the total thermal radiation escaping to space originates from the atmosphere.
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Figure 4.26: Emission of thermal radiation from the ground (Ig/I(c0)) and the atmosphere (14/1(c0)) as
function of the total atmospheric optical depth 7.

Finally, we calculate 7(z) for which the contribution of the thermal emission from the

ground and the atmosphere are the same, i.e., jz};(%(z)) = fg(%(z)). From equation 4.217
we finally obtain

B(Tg) - exp (=) = B(T4) - (1 — exp (—70)) (4.218)
o B(Tg) + B(Ta)
— E)+ A
Too = In ( B(Ta) > (4.219)
which for B(T4) = B(255K) = 0.57 - B(283K) = 0.57 - B(Tg) yields
. 1+0.57
Too = In (W) ~ 1 (4.220)
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