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Abstract

Long-context autoregressive modeling has significantly ad-
vanced language generation, but video generation still
struggles to fully utilize extended temporal contexts. To in-
vestigate long-context video modeling, we introduce Frame
AutoRegressive (FAR), a strong baseline for video autore-
gressive modeling. Just as language models learn causal
dependencies between tokens (i.e., Token AR), FAR models
temporal causal dependencies between continuous frames,
achieving better convergence than Token AR and video dif-
fusion transformers. Building on FAR, we observe that
long-context vision modeling faces challenges due to vi-
sual redundancy. Existing RoPE lacks effective tempo-
ral decay for remote context and fails to extrapolate well
to long video sequences. Additionally, training on long
videos is computationally expensive, as vision tokens grow
much faster than language tokens. To tackle these issues,
we propose balancing locality and long-range dependency.
We introduce FlexRoPE, an test-time technique that adds
flexible temporal decay to RoPE, enabling extrapolation
to 16× longer vision contexts. Furthermore, we propose
long short-term context modeling, where a high-resolution
short-term context window ensures fine-grained temporal
consistency, while an unlimited long-term context window
encodes long-range information using fewer tokens. With
this approach, we can train on long video sequences with
a manageable token context length. We demonstrate that
FAR achieves state-of-the-art performance in both short-
and long-video generation, providing a simple yet effective
baseline for video autoregressive modeling.

1. Introduction

Advanced long-context autoregressive language models
have demonstrated remarkable capabilities, enabling vari-
ous applications that require test-time scaling, such as ex-
tended conversations [1], chain-of-thought reasoning [22,
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Figure 1. Evaluation on Long Video Prediction. FAR effective
exploits long video contexts and achieves accurate prediction.

42, 44], in-context learning [14], and retrieval-augmented
generation [19]. However, video modeling has not achieved
comparable progress. Recent video autoregressive mod-
eling [32] directly adapts the paradigm of language mod-
els [8], where frames are factorized into discrete [16, 62]
codes for next-token prediction (denoted as Token-AR).
However, Token-AR still fails to achieve comparable qual-
ity to video diffusion transformers [7] due to the unidirec-
tional modeling of visual tokens [18] and the irreparable in-
formation loss caused by vector quantization. On the other
hand, video diffusion models [26, 27, 37, 55], which gener-
ate long videos using a progressive sliding window, struggle
to effectively use earlier context.

In this paper, we introduce Frame AutoRegressive (FAR)
model, specifically designed for video autoregressive mod-
eling. FAR is trained using a frame-wise flow match-
ing objective with autoregressive contexts. Unlike Token-
AR, which learn causal dependencies between discrete to-
kens, FAR captures causal dependencies between contin-
uous frames while still allowing full attention modeling
within each frame. However, as a hybrid AR-Diffusion
model [10, 31, 58], FAR also encounters a common issue
observed in such models, namely, the discrepancy in ob-
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served contexts between training and inference. During
training, later frames are exposed only to noised context
frames due to diffusion objective, whereas inference relies
on clean context frames. Recent methods [30, 65] mitigate
this issue by appending a clean copy of the noised sequence
during training, but this approach doubles the training cost.

To address the discrepancy of observed context, we pro-
pose training FAR with stochastic clean context. During
training, we randomly replace a portion of noisy frames
with clean frames and assign them a unique timestep em-
bedding beyond the diffusion schedule to indicate represen-
tation extraction from clean context. During inference, this
special embedding guides the model to effectively utilize
clean context frames. We demonstrate FAR with stochas-
tic clean context achieve same training efficiency to video
diffusion transformers while achieving better convergence,
served as a strong autoregressive video generation baseline.

Building on FAR, we investigate long-context video
modeling and explore two common settings, similar to those
in language modeling: (1) test-time lengthy extrapolation
and (2) long-sequence training. Unlike language model-
ing, long-context video modeling suffers from visual redun-
dancy. On one hand, RoPE [51] exhibits weak temporal
decay, leading to the accumulation of redundant visual con-
text and degrading test-time extrapolation performance. On
the other hand, training on long videos is computationally
expensive, as vision tokens grow significantly faster than
language tokens.

To address these challenges, we propose to balance the
locality and long-range dependency. For test-time temporal
extrapolation, we introduce FlexRoPE, which incorporates
a controllable temporal decay into RoPE using a linear bias.
FlexRoPE is applied only at test time and remains compat-
ible with models trained using RoPE. It enhances tempo-
ral locality and effectively reduces redundancy from distant
contexts while still allowing the learned RoPE to model
long-range dependencies. For long-video training, we in-
troduce long short-term context modeling. Specifically,
we maintain a high-resolution short-term context window to
ensure fine-grained temporal consistency, while using a un-
limited long-term context window with aggressive patchi-
fication to reduce redundant context tokens. This strategy
enables efficient training on long video sequences with a
manageable token context length.

Our contributions are summarized as follows:
1. We introduce FAR, an strong autoregressive video gen-

eration baseline, combined with stochastic clean context
to bridge the training-inference gap in observed context.

2. Building on FAR, we introduce FlexRoPE to enable 16×
test-time temporal extrapolation, and long short-term
context modeling for efficient long-video training.

3. FAR achieves state-of-the-art performance in both short-
and long-video generation.

2. Related Work

2.1. Video Generation
Video Diffusion Models. Recent advances in video gener-
ation have led to the scaling of video diffusion transform-
ers [7, 33, 61] for text-to-video generation, resulting in su-
perior visual quality. Pretrained text-to-video models are
subsequently fine-tuned to incorporate images as conditions
for image-to-video generation [23, 59, 61]. The trained
image-to-video models can be utilized for autoregressive
long-video generation using a sliding window [37, 55], but
their ability to leverage visual context is limited by the slid-
ing window’s size. In this work, we show that FAR achieves
better convergence than video diffusion transformers for
short-video generation while naturally supporting variable-
length visual context.
Token Autoregressive Models. Video generation based on
token autoregressive models (i.e., Token AR) aims to follow
the successful paradigm of large language models. These
models typically quantize continuous frames into discrete
tokens [21, 62] and learn the causal dependencies between
tokens using language models [28, 32]. While they achieve
plausible performance, their generation quality remains in-
ferior to that of video diffusion transformers due to infor-
mation loss from vector quantization. Additionally, unidi-
rectional visual token modeling may be suboptimal [18].
Subsequent studies have explored continuous tokens [34]
without vector quantization but have not demonstrated their
effectiveness in video generation. In this work, we show
that FAR can learn causal dependencies from continuous
frames and achieve better performance than Token AR in
both short- and long-video modeling.
Hybrid AR-Diffusion Models. To leverage the strengths
of both continuous latent spaces and autoregressive model-
ing, recent studies [40, 58, 64] have explored hybrid AR-
Diffusion models. These models typically employ a dif-
fusion objective for image-level modeling with autoregres-
sive contexts. Hybrid AR-Diffusion models are widely ap-
plicable to both visual [10, 31, 58] and language genera-
tion [5, 57]. Recent research has also applied it in frame-
level autoregressive modeling [10, 31] for video generation.
However, they suffer from a training-inference discrepancy
in the observed context. Some studies [30, 65] have at-
tempted to mitigate this issue by maintaining a clean copy
of the noised sequence during training, but this approach
doubles the training cost. Among these methods, FAR ef-
ficiently addresses the training-inference gap through the
proposed stochastic clean context, demonstrating its supe-
rior performance in long-context video modeling.

2.2. Long-Context Language Modeling
Test-time Lengthy Extrapolation. Lengthy extrapolation
is an appealing characteristic of autoregressive models, al-



Figure 2. Illustration of FAR’s Training and Inference Pipeline. In short-video training, a portion of frames is randomly replaced with
clean context frames, marked with a unique timestep embedding (e.g., -1) beyond the flow-matching scheduler. In long-video training, we
adopt long short-term context modeling. A long-term context window with aggressive patchification is adopted to reduce redundant vision
tokens, while a short-term context window is used to model fine-grained temporal consistency.

Table 1. Model Variants of FAR. We follow the model size con-
figurations of DiT [46] and SiT [38].

Models #Layers Hidden Size MLP #Heads Params

FAR-B 12 768 3072 12 130M
FAR-M 12 1024 4096 16 230M
FAR-L 24 1024 4096 16 457M
FAR-XL 28 1152 4608 18 674M

FAR-B-Long 12 768 3072 12 150M
FAR-M-Long 12 1024 4096 16 280M

lowing them to be trained on short sequences while per-
forming inference on longer ones. However, extrapola-
tion performance primarily depends on the characteristics
of the position embedding. Two common relative position
embeddings that support extrapolation are RoPE [51] and
ALiBi [48]. RoPE encodes relative distance through dot-
product operations, while ALiBi achieves this using atten-
tion bias. Subsequent studies [6, 47] have further advanced
RoPE to enhance extrapolation performance. In this work,
we introduce FlexRoPE and demonstrate its superior perfor-
mance compared to RoPE and ALiBi in temporal extrapo-
lation for video modeling.
Long Sequence Training. A straightforward approach to
improving long-context modeling performance is to directly
train the model on longer sequences. Recent work in lan-
guage modeling has explored efficient long-sequence fine-
tuning with position interpolation [12, 13]. However, vision
tokens scale much faster than language tokens as context in-
creases. To address this, we introduce long short-term con-
text modeling to eliminate visual redundancy in long-video
training.

2.3. Long-Context Video Modeling
Recent advancements in video generation models have en-
abled their use as interactive world simulators [9, 45, 53],

Figure 3. Visualization of Attention Mask. FAR enables full
attention within a frame while maintaining causality at the frame
level. In long-context training, we adopt aggressive patchification
for long-term context frames to reduce tokens.

which require the ability to exploit long-range context and
memorize the observed environment. However, existing
video diffusion transformers lack effective mechanism to
utilize long-range context. Although early work [60] has
explored long-context video prediction, it has been limited
in visual quality and long-range consistency. In this work,
we introduce FAR, a scalable framework for both short- and
long-context autoregressive video modeling.

3. Preliminary

3.1. Flow Matching

Flow Matching [2, 35, 36] is a simple alternative objective
for training diffusion models. Rather than modeling the re-
verse process with stochastic differential equations, Flow
Matching learns a continuous vector field that deterministi-
cally conntect two distribution.

Specifically, given a data sample x0 ∼ pdata(x) and a
noise sample x1 ∼ N (0, I), we construct a continuous tra-



Figure 4. Effect of Stochastic Clean Context. This technique
eliminate training-inference gap in observed context.

jectory connecting them via linear interpolation:
x(t) = (1− t)x0 + tx1, t ∈ [0, 1]. (1)

This formulation implies a constant velocity:
dx(t)

dt
= v∗ = x1 − x0. (2)

To enable the model to learn the optimal transport between
the data and noise distributions, we introduce a learnable
time-dependent velocity field vθ(x, t). During training, a
random time t ∼ U(0, 1) is sampled, and the model is opti-
mized by minimizing the following objective:

L(θ) = Ex0,x1,t

[
∥vθ(x(t), t)− v∗∥2

]
. (3)

3.2. Autoregressive Models
Autoregressive models are a class of probabilistic models
where each element in a sequence is conditioned on its pre-
ceding elements, denote as context. Formally, given a se-
quence of tokens (x1, x2, . . . , xn), an autoregressive model
assumes that each token xi is generated based on its previ-
ous tokens (x1, x2, . . . , xi−1). The generative process can
be expressed as a factorization of the joint probability:

p(x1, x2, . . . , xn) =
n∏

i=1

p(xi|x1, x2, . . . , xi−1). (4)

By modeling each token conditioned on its preceding to-
kens, autoregressive models naturally capture the sequential
dependencies inherent in data.

4. FAR
In this section, we first present the framework of FAR in
Sec. 4.1. Then, we discuss the difficulties and solutions in
training FAR in Sec. 4.2. In Sec. 4.3, we analyze the key
design that enables FAR for long-context video modeling.

4.1. Framework Overview
Architecture. As shown in Fig. 2 (a), FAR is built upon the
diffusion transformer [38, 46]. We adopt the model con-
figuration of DiT [46] and Latte [39], as listed in Tab. 1.
The key architectural difference between FAR and video

Figure 5. Comparison of FAR and video diffusion transformer.
FAR achieves better convergence than video diffusion transformer
in unconditional video generation on UCF-101.

diffusion transformers (e.g., Latte [39]) lies in the atten-
tion mechanism. As shown in Fig. 3(a), for each frame,
we apply causal attention at the frame level while maintain-
ing full attention within each frame. We adopt this causal
spatiotemporal attention for all layers, instead of the inter-
leaved spatial and temporal attention used in Latte. In FAR,
image generation and image-conditioned video generation
are jointly learned thanks to the causal mask, whereas video
diffusion transformer [39] requires additional image-video
co-training.
Basic Training Pipeline. The training pipeline of FAR is
illustrated in Fig. 2 (a). Given a video sequence X, we first
employ a pretrained VAE to compress it into the latent space
Z ∈ RT×H×W , where T , H , and W denote the number of
frames, height, and width of the latent features, respectively.
Note that although we primarily adopt an image VAE in this
work, FAR can also be trained with a video VAE since our
autoregressive unit is the latent frame. Following diffusion
forcing [10], we independently sample a timestep for each
frame. We then interpolate between the clean latent and the
sampled noise using Eq. (1) and apply the frame-wise flow
matching objective in Eq. (3) for learning. The key differ-
ence between FAR and image flow matching lies in that we
adopt causal spatiotemporal attention, allowing each frame
to access previous context frames during denoising.

4.2. Short-Video Modeling
Training-Inference Gap in Observed Context. As a hy-
brid AR-diffusion model, FAR also encounters a training-
inference gap in the observed context. As illustrated in
Fig. 2(a), each clean latent is fused with sampled noise for
the flow matching objective, as defined in Eq. (1). Con-
sequently, later frames can only access the noised version
of previous frames during training. However, during infer-
ence, this leads to a distribution shift when clean context
frames is used.

As shown in the example in Fig. 4(a), the training-
inference gap in the observed context leads to a distribution
shift when inferring with a clean context. Although adding



Figure 6. Visualization and Comparison of Various Temporal Position Embeddings. The proposed FlexRoPE incorporates a linear bias
to induce controllable temporal decay at test time, enhancing extrapolation performance as context increases. In contrast, other methods
degrade when the inference context exceeds the training window.

mild noise to the context during inference can help miti-
gate this effect, it still causes low-level flickering, degrading
the quality of the generated video. Recent works [30, 65]
attempt to address this issue by maintaining a clean copy
of the noised sequence during training. However, this ap-
proach doubles the training costs.
Our Solution: Stochastic Clean Context. To bridge the
gap in observed context, we introduce stochastic clean con-
text for training FAR. As illustrated in Fig. 2(a), we ran-
domly replace a portion of the noised frames with their cor-
responding clean context and assign them a unique timestep
embedding (e.g., -1) beyond the flow-matching timestep
scheduler. These clean context frames are excluded from
loss computation and are implicitly learned through later
frames that use them as context. During inference, this
unique timestep embedding guides the model to use clean
context effectively.

Training FAR with stochastic clean context does not
add extra computation and does not conflict with differ-
ent timestep sampling strategies during training (e.g., logit-
normal sampling [17]). It effectively resolves the training-
inference discrepancy, as exemplified in Fig. 4(b).
FAR vs. Video Diffusion Transformer. FAR and video
diffusion transformer differ only in their training schemes.
FAR is trained with independent noise and causal atten-
tion, while the video diffusion transformer is trained with
uniform noise and full attention. This raises an interesting
question: Can FAR surpass video diffusion transformers?

To explore this, we convert FAR to video diffusion trans-
former as a baseline, denoted as Video DiT. We align the
training settings to compare the two paradigms. As shown
in Fig. 5, FAR achieves better convergence than the Video
DiT, demonstrating its potential to become a strong baseline
for autoregressive video modeling.

4.3. Long-Context Video Modeling
In this section, we discuss the challenge of long-context
video modeling. We focus on two practical long-context
settings, similar to those in language models: test-time
temporal extrapolation (Sec. 4.3.1) and long-video training
(Sec. 4.3.2).

4.3.1. Test-Time Temporal Extrapolation
Weak Temporal Decay. An appealing characteristic of au-
toregressive models is their potential to be trained on short
sequences while being tested on long sequences, enabling
lengthy extrapolation at test time. This capability relies on
effective positional embedding. Following 3D-RoPE [61]
for video data, the spatial and temporal dimensions (i.e.,
height, width, and frame) are treated as independent 1D-
RoPE embeddings. Consequently, we keep RoPE positional
embedding for height and width unchanged while focusing
only on the temporal position embedding. In this study,
we examine RoPE [51] and ALiBi [48], two common po-
sitional embedding methods for capturing temporal relative
distances. From the visualization in Fig. 6(a), RoPE does



Figure 7. Relation between Token Context Length and Vision
Context Length. With the proposed long short-term context mod-
eling, the token context length scales more slowly as the vision
context length increases compared to uniform context modeling.

not impose sufficient temporal decay, leading to accumu-
lated redundant visual context. Similarly, ALiBi exhibits
this issue in parts of attention heads with small slopes.

To evaluate extrapolation performance, we gradually
increase the number of context frames at test time and
measure the resulting improvement in predictions. From
Fig. 6(b), position interpolation of RoPE performs slightly
better than position extrapolation. Additionally, we retrain
the model using ALiBi as temporal position embedding.
ALiBi applies a linear decay based on temporal relative dis-
tance, with different decay rates assigned to each attention
head. Our results suggest that ALiBi achieves slightly bet-
ter extrapolation than RoPE due to its explicit temporal de-
cay mechanism. However, all solutions exhibit performance
degradation as vision context increases. Therefore, we aim
to develop a more effective temporal position embedding
method to improve temporal extrapolation.
Our Solution: FlexRoPE. To address this problem, we
propose FlexRoPE, which explicitly controls temporal de-
cay to suppress redundant visual context while still allowing
the model to capture long-range dependencies using RoPE.
The FlexRoPE is defined as:

Attention(qi, kj) = Softmax

 used in training︷ ︸︸ ︷
RoPE(qi, kj)−λ · |i− j|︸ ︷︷ ︸

FlexRoPE, used in inference

 ,

(5)
where the temporal decay is flexibly controlled by the
slope λ, and i and j represent the temporal indices of the
frame. We visualize FlexRoPE with λ = 0.2 in Fig. 6(a).
FlexRoPE is inference-compatible with models trained us-
ing RoPE since it does not modify the dot-product compu-
tation but instead compensates for RoPE’s temporal decay.

We compare FlexRoPE with RoPE in Fig. 6(b).
FlexRoPE effectively balances locality and long-range cor-
respondence, leading to improved performance as the con-
text frame increases, whereas RoPE interpolation and ex-
trapolation exhibit poorer extrapolation performance.

Table 2. Quantitative Comparison of Conditional and Uncon-
ditional Video Generation on UCF-101. We follow the evalua-
tion setup of Latte [39]. † denotes FVD reported on 10,000 videos.

Methods Type Params Double Cond. Gen Uncond. Gen
Train Cost FVD2048 ↓ FVD2048 ↓

Resolution-128×128

MAGVITv2-MLM [62] Non-AR 307 M ✗ 58† -
MAGVITv2-AR [62] Token-AR 840 M ✗ 109† -
TATS [20] Token-AR 331 M ✗ 332 420

FAR-L (Ours) Frame-AR 457 M ✗ 99 (57†) 280

Resolution-256×256

LVDM [26] Video-DiT 437 M ✗ - 372
Latte [39] Video-DiT 674 M ✗ - 478
CogVideo [28] Token-AR 9.4 B ✗ 626 -
OmniTokenizer [56] Token-AR 650 M ✗ 191 -
ACDIT [30] Frame-AR 677 M ✓ 111 -
MAGI [65] Frame-AR 850 M ✓ - 421

FAR-L (Ours) Frame-AR 457 M ✗ 113 303
FAR-XL (Ours) Frame-AR 674 M ✗ 108 279

4.3.2. Long-Video Training
Token Redundancy in Long Video. Visual data contains
spatial redundancy, causing vision tokens to expand much
faster than language tokens as context increases. For exam-
ple, a video sequence of 128 frames requires more than 8K
tokens, with 64 tokens per frame, as illustrated in Fig. 7.
As a result, training and inference on long videos become
computationally inefficient.
Our Solution: Long Short-Term Context Modeling.
To address the token redundancy in video, we introduce
long short-term context modeling, which exploits the spa-
tial and temporal locality in video data. As illustrated in
Fig. 2(b), we maintain a high-resolution short-term context
window to learn fine-grained temporal consistency and a
low-resolution long-term context window, where we adopt
aggressive patchification to reduce the number of context
tokens. During training, given that the data has a maxi-
mum sequence length of m frames, we fix the short-term
context window to n frames and randomly sample the long-
term context frames from the range [0,m − n]. The atten-
tion mask with long short-term context modeling is shown
in Fig. 3(b), where the long-term context uses fewer tokens.
As demonstrated in Fig. 7, this strategy ensures that increas-
ing the vision context length maintains a manageable token
context length. To prevent interference between long-term
and short-term contexts, we adopt separate projection layers
for each context, inspired by MM-DiT [17]. This approach
results in a slightly larger parameter size during long-video
training, as shown in Tab. 1.

5. Experiment
5.1. Implementation Details
We follow the DiT’s structure [46] to implement FAR. To
compress video latents, we train a series of image DC-
AE [11] on the corresponding dataset, resulting in 64 tokens
per frame. All models are trained from scratch without im-
age pretraining. We provide detailed settings in Tab. 7.



Table 3. Quantitative Comparison on Short Video Prediction. We follow the evaluation setup of MCVD [54] and ExtDM [63], where c
denotes the number of context frames and p denotes the number of predicted frames.

Methods Params c = 4, p = 12

SSIM↑ PSNR↑ LPIPS↓ FVD↓
RaMViD [29] 235 M 0.639 21.37 0.090 396.7
LFDM [43] 108 M 0.627 20.92 0.098 698.2
MCVD-cp [54] 565 M 0.658 21.82 0.088 468.1
ExtDM-K2 [63] 119 M 0.754 23.89 0.056 394.1

FAR-B (Ours) 130 M 0.818 25.64 0.037 194.1

(a) Evaluation on UCF-101 (64×64)

Methods Params c = 2, p = 14 c = 2, p = 28

SSIM↑ PSNR↑ LPIPS↓ FVD↓ SSIM↑ PSNR↑ LPIPS↓ FVD↓
RaMViD [29] 235 M 0.758 17.55 0.085 166.5 0.691 16.51 0.109 238.7
LFDM [43] 108 M 0.770 17.45 0.084 167.6 0.730 16.68 0.106 276.8
VIDM [41] 194 M 0.763 16.97 0.080 131.7 0.728 16.20 0.096 194.6
MCVD-cp [54] 565 M 0.838 19.10 0.075 87.8 0.797 17.70 0.078 119.0
ExtDM-K4 [63] 121 M 0.845 20.04 0.053 81.6 0.814 18.74 0.069 102.8

FAR-B (Ours) 130 M 0.849 20.87 0.038 99.3 0.819 19.40 0.049 144.3

(b) Evaluation on BAIR (64×64)

Table 4. Quantitative Comparison on Long-Context Video Prediction. We follow the evaluation setup of TECO [60], where c denotes
the number of context frames and p denotes the number of predicted frames.

Methods Params c = 144, p = 156 c = 36, p = 264

SSIM↑ PSNR↑ LPIPS↓ FVD↓
FitVid [3] 165 M 0.356 12.0 0.491 176
CW-VAE [49] 111 M 0.372 12.6 0.465 125
Perceiver AR [25] 30 M 0.304 11.2 0.487 96
Latent FDM [24] 31 M 0.588 17.8 0.222 181
TECO [60] 169 M 0.703 21.9 0.157 48

FAR-B-Long (Ours) 150 M 0.687 22.3 0.104 64

(a) Evaluation on DMLab (64×64)

Methods Params c = 144, p = 156 c = 36, p = 264

SSIM↑ PSNR↑ LPIPS↓ FVD↓
FitVid [3] 176 M 0.343 13.0 0.519 956
CW-VAE [49] 140 M 0.338 13.4 0.441 397
Perceiver AR [25] 166 M 0.323 13.2 0.441 76
Latent FDM [24] 33 M 0.349 13.4 0.429 167
TECO [60] 274 M 0.381 15.4 0.340 116

FAR-M-Long (Ours) 280 M 0.448 16.9 0.251 39

(b) Evaluation on Minecraft (128×128)

5.2. Quantitative Comparison
5.2.1. Video Generation
Dataset and Evaluation Setting. We benchmark both un-
conditional and conditional video generation on the UCF-
101 dataset [50], which consists of approximately 13,000
videos. Following Latte [39], we use the entire dataset for
training. For evaluation, we randomly sample 2,048 videos
to compute FVD [52] against the ground-truth videos. For
conditional video generation, we set the guidance scale to
2.0 during inference.
Main Results. From the results listed in Tab. 2, we
achieve state-of-the-art performance in both unconditional
and conditional video generation. Specifically, Latte [39]
is based on video diffusion transformer, while OmniTok-
enizer [56] is based on Token AR. Our method significantly
outperforms both. Furthermore, compared to recent frame-
autoregressive models [30, 65], which require twice the
training cost, FAR achieves superior performance without
any additional training cost.

5.2.2. Short-Video Prediction
Dataset and Evaluation Settings. We evaluate FAR on
the UCF-101 [50] and BAIR [15] datasets, following the
evaluation settings in MCVD [54] and ExtDM [63]. We
randomly sample 256 videos based on provided context
frames, each with 100 different trajectories, and select the
best trajectory to compute pixel-wise metrics. For FVD, we
report the average over all trajectories.
Main Results. We summarize the results in Tab. 3. Unlike
previous works such as MCVD [54] and ExtDM [63], which
introduce complex multi-scale fusion strategies and optical
flow, FAR achieves superior results on both datasets without
requiring additional design.

5.2.3. Long-Video Prediction

Dataset and Evaluation Settings. We benchmark long-
context video modeling results on action-conditioned video
prediction using the Minecraft and DMLab datasets [60].
The Minecraft dataset contains approximately 200K videos,
while the DMLab dataset contains about 40K videos. Each
video consists of 300 frames with action annotations. We
follow the evaluation setup in TECO [60], which uses 144
observed context frames to predict 156 future frames and
compute pixel metrics. Additionally, we compute FVD on
264 generated frames based on 36 context frames.
Main Results. We summarize the results in Tab. 4. The
previous work, TECO [60], adopts aggressive downscaling
for all frames to reduce tokens for temporal modeling, cre-
ating a trade-off between training efficiency and prediction
accuracy. In contrast, FAR employs long short-term context
modeling, effectively achieving the lowest prediction error
(i.e., LPIPS) without prohibitive computation cost.

5.3. Qualitative Comparison

We present a qualitative comparison of long-video predic-
tion in Fig. 8. Compared to previous methods, FAR effec-
tively utilizes the observed context and generates predic-
tions that most closely resemble the ground truth, demon-
strating its ability to leverage long-range context.

5.4. Ablation Study

Stochastic Clean Context. We have visualized the effec-
tiveness of stochastic clean context in Fig. 4. Based on
the quantitative evaluation of video prediction in Tab. 5,
FAR with stochastic clean context achieves significantly im-
proved performance.



Figure 8. Qualitative Comparison of Long-Context Video Prediction on DMLab. FAR fully utilizes the long-range context (144
frames), resulting in more consistent prediction (156 frames) compared to previous methods.

Table 5. Ablation Study of Stochastic Clean Context on UCF-
101. Stochastic clean context mitigates the training-inference dis-
crepancy in observed context, leading to improved performance.

Methods c = 1, p = 15

SSIM↑ PSNR↑ LPIPS↓ FVD↓
FAR w/o. Stochastic Clean Context 0.540 16.42 0.211 399
FAR w/. Stochastic Clean Context 0.596 18.46 0.187 347

Table 6. Ablation Study on the Resolution of Long-Term Con-
text. The speed is averaged over the generation of 300 frames.

Context Resolution SSIM↑ PSNR↑ LPIPS↓ FVD↓ Speed (fps)

1× 1 0.411 15.25 0.312 40 2.94
2× 2 0.423 15.84 0.291 40 2.88
4× 4 0.433 16.26 0.276 37 1.42

Long-Term Context Resolution. We investigate the im-
pact of long-term context resolution on prediction accu-
racy and inference speed. As the context resolution in-
creases, pixel-level metrics improve; however, the overall
video quality remains similar. Nonetheless, inference speed
significantly degrades at higher context resolutions due to
the increased number of tokens involved in computation.
Therefore, we select a 2×2 resolution for the long-term
context as a balance between computational efficiency and
long-term context performance.
Short-Term Context Window Size. We evaluate the im-
pact of the short-term context window size on performance.
As shown in Fig. 9, video quality (FVD) quickly satu-
rates as the short-term context window size increases, while
pixel-level metrics continue to improve but also approach
saturation at a window size of 16. Therefore, we set the
short-term context window size to 16 by default.

Figure 9. Ablation Study of the Short-Term Context Window
Size. Performance saturates as the window size increases.

6. Conclusion

In this paper, we introduce FAR for autoregressive video
modeling. FAR enables learning causal dependency of con-
tinuous frames and demonstrates better convergence than
video diffusion transformers. Building upon FAR, we ex-
plore its application in long-context video modeling. We
identify visual redundancy as a key challenge, leading to
poor temporal extrapolation performance at test time and
inefficient long-video training. To address these issues,
we propose balancing locality and long-range dependency.
Specifically, we introduce FlexRoPE to enable 16× tempo-
ral extrapolation at test time and incorporate long short-term
context modeling for efficient long-video training. FAR
achieves state-of-the-art performance on both short- and
long-video modeling, highlighting its potential as a new
foundation model for video generation.
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7. Appendix

7.1. Experimental Settings
As shown in Tab. 7, we list the detailed training and evalu-
ation configurations of FAR. For the ablation study in this
paper, we halve the training iterations while keeping other
settings the same.

7.2. Qualitative Comparison
We provide additional visualization of long-video predic-
tion results on DMLab and Minecraft in Fig. 10 and Fig. 11.
From the results, FAR better exploits the provided con-
text and provides more consistent results in later predictions
compared to previous works.

7.3. Ablation Study of FlexRoPE
We compare different position embeddings on 16× tempo-
ral extrapolation. We focus on two settings: The first is
unique in video generation, where we directly unroll a 16×
longer sequence from 1 context frame. Second, we fol-
low the long-context language model [48], gradually adding
more context frames and comparing the last 16-frame pre-
dictions.
16× Extrapolation: c = 1, p = 255. In this evaluation,
we directly generate videos that are 16× longer than the
training sequence length (i.e., 16 frames), using only the
first frame as a condition. As shown in Fig. 12, while RoPE
extrapolation can adapt to periodic motion extrapolation,
our proposed FlexRoPE achieves superior results in both
periodic and non-periodic extrapolation.
16× Extrapolation: c = 240, p = 16. Following the
common practice to evaluate long-context ability in lan-
guage models, we collect 256 frames, use different con-
text frames [0, 240], and allow the model to infer the last
16 frames to test performance. The quantitative results are
demonstrated in Fig. 6 in the main paper. In Fig. 13, we
visualize the 16× temporal extrapolation inference results.
We can see that RoPE [51] (PE, position extrapolation) at
test time results in the worst performance, accumulating
redundant context and failing to extrapolate. Meanwhile,
RoPE (PI, positional interpolation) breaks the learned video
speed, resulting in poor motion. Although ALiBi [48] per-
forms better than RoPE (PI and PE), it still influences the
learned motion distribution and falls far from the GT. Com-
pared to these methods, FlexRoPE achieves the best tempo-
ral extrapolation results.

7.4. Limitations and Future Work
7.4.1. Limitations
The primary limitation lies in the lack of scaled-up exper-
iments. Although FAR demonstrates great potential, we
still lack large-scale training on million-level text-to-video

generation datasets. Additionally, restricted by the avail-
able datasets, we only experiment with FAR on up to 300
frames (about 20 seconds), not fully investigating its ability
on minute-level videos.

7.4.2. Future Work
One future direction is to scale up FAR to benchmark it
against video diffusion transformers on large-scale text-to-
video generation tasks. Additionally, we plan to simulate a
longer video dataset (minute-level) for better evaluating the
model’s long-context ability. Finally, it would be interest-
ing to explore whether FAR can adapt to sequential vision
modeling beyond videos, for example, the image sequences
as demonstrated in LVM [4].



Table 7. Experimental Configurations of FAR. We follow the evaluation settings from Latte [39], MCVD [63], and TECO [60].

Hyperparameters Short-Video Generation Short-Video Prediction Long-Video Prediction
Cond. UCF-101 Uncond. UCF-101 BAIR UCF-101 Minecraft DMLab

Dataset Configuration

Resolution 256/128 256/128 64 64 128 64
Total Training Samples 13,320 13,320 43,264 9,624 194,051 39,375

Training Configuration

Batch Size 32 32 32 32 32 32
Latent Size 8×8 (DC-AE [11]) 8×8 (DC-AE [11]) 8×8 (DC-AE [11]) 8×8 (DC-AE [11]) 8×8 (DC-AE [11]) 8×8 (DC-AE [11])
Training Sequence Length 16 16 32 16 300 300
LR 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4 1× 10−4

LR Schedule constant constant constant constant constant constant
Warmup Steps - - - - 10K 10K
Total Training Steps 400K 400K 200K 200K 1M 1M
Stochastic Clean Context 0.1 0.1 0.1 0.1 0.1 0.1
Short-Term Context Window 16 16 32 16 16 16
Long-Term Context Resolution - - - - 2×2 2×2

Evaluation Configuration

Samples 4×2048 4×2048 100×256 100×256 4×256 4×256
Guidance Scale 2.0 - - - 1.5 1.5
Reference Work Latte [39] Latte [39] MCVD [63] MCVD [63] TECO [60] TECO [60]

Figure 10. Qualitative Comparison of Long-Context Video Prediction on DMLab. FAR fully utilizes the long-range context (144
frames), resulting in more consistent prediction (156 frames) compared to previous methods.



Figure 11. Qualitative Comparison of Long-Context Video Prediction on Minecraft. FAR fully utilizes the long-range context (144
frames), resulting in more consistent prediction (156 frames) compared to previous methods.

Figure 12. Comparison of Position Embeddings for 16× Temporal Extrapolation. We leverage the model (trained on 16 frames) to
infer 255 future frames based on the provided 1 context frames. PE denotes position extrapolation. We encourage readers to click and play
the video clips in this figure using Adobe Acrobat.



Figure 13. Comparison of Position Embeddings for 16× Temporal Extrapolation. We leverage the model (trained on 16 frames) to
infer 16 future frames based on the provided 240 context frames. PI denotes position interpolation, and PE denotes position extrapolation.
We encourage readers to click and play the video clips in this figure using Adobe Acrobat.
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