cupid_matching version 2
A Python package to solve, simulate and estimate separable matching models
Installation
| pip install [-U] cupid_matching
|
Importing the functions
For instance:
| from cupid_matching.min_distance import estimate_semilinear_mde
|
An example
We create a Choo-Siow market; we solve for the stable matching
in an infinite ppulation using IPFP; we simulate a sample drawn
from the stable matching and we estimate the coefficients
of the basis functions using both minimum distance
and Poisson GLM estimators.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 | import numpy as np
from cupid_matching.model_classes import ChooSiowPrimitives
from cupid_matching.choo_siow import entropy_choo_siow
from cupid_matching.min_distance import estimate_semilinear_mde
from cupid_matching.poisson_glm import choo_siow_poisson_glm
X, Y, K = 10, 20, 2
# we simulate a Choo and Siow population
# with 10 types of men and 20 types of women
# with equal numbers of men and women of each type
# and two random basis functions
lambda_true = np.random.randn(K)
phi_bases = np.random.randn(X, Y, K)
n = np.ones(X)
m = np.ones(Y)
Phi = phi_bases @ lambda_true
choo_siow_instance = ChooSiowPrimitives(Phi, n, m)
matching_popu = choo_siow_instance.ipfp_solve()
muxy_popu, mux0_popu, mu0y_popu, n_popu, m_popu \
= matching_popu.unpack()
# we simulate the market on a finite population
n_households = int(1e6)
mus_sim = choo_siow_instance.simulate(n_households)
choo_siow_instance.describe()
# We estimate the parameters using minimum distance
mde_results = estimate_semilinear_mde(
mus_sim, phi_bases, entropy_choo_siow
)
# we print and check the results
mde_discrepancy = mde_results.print_results(
true_coeffs=lambda_true, n_alpha=0
)
# we also estimate using Poisson GLM
poisson_results = choo_siow_poisson_glm(mus_sim, phi_bases)
muxy_sim, mux0_sim, mu0y_sim, n_sim, m_sim \
= mus_sim.unpack()
poisson_discrepancy = poisson_results.print_results(
lambda_true,
u_true=-np.log(mux0_sim/ n_sim),
v_true=-np.log(mu0y_sim / m_sim)
)
|