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ABSTRACT6

Protein backbones display complicated structures that often undergo numerous types of structural
transformations. Due to the large number of structural degrees of freedom available to a backbone,
it is often difficult to assess exactly where and how regions of a protein structure undergo structural
transformation. This large structural phase makes it hard to survey new structural data, such as molecular
dynamics trajectories or NMR-derived structural ensembles. This report discusses the Ramachandran
number R as a residue-level structural metric that could simply the life of anyone contending with large
numbers of structural data associated with protein backbones. In particular, this report 1) discusses a
much simpler closed form of R that makes it more easy to calculate, 2) shows how R dramatically reduces
the dimensionality of the protein backbone, thereby making it ideal for simultaneously interrogating large
number of protein structures. In short, R is a simple and succinct descriptor of protein backbones and
their dynamics.
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INTRODUCTION18

Proteins are a class of biomolecules unparalleled in their functionality (Berg et al., 2010). A natural19

protein may be thought of as a linear chain of amino acids, each normally sourced from a repertoire of 2020

naturally occurring amino acids. Proteins are important partially because of the structures that they access:21

the conformations (conformational ensemble) that a protein assumes determines the functions available22

to that protein. However, all proteins are dynamic: even stable proteins undergo long-range motions23

in its equilibrium state; i.e., they have substantial diversity in their conformational ensemble (Mannige,24

2014). Additionally, a number of proteins undergo conformational transitions, without which they may25

not properly function. Finally, some proteins – intrinsically disordered proteins – display massive disorder26

whose conformations dramatically change over time (Uversky, 2003; Fink, 2005; Midic et al., 2009;27

Espinoza-Fonseca, 2009; Uversky and Dunker, 2010; Tompa, 2011; Sibille and Bernado, 2012; Kosol28

et al., 2013; Dunker et al., 2013; Geist et al., 2013; Baruah et al., 2015), and whose characteristic29

structures are still not well-understood (Beck et al., 2008).30

Large-scale changes in a protein occur due to changes in protein backbone conformations. Fig. 1 is a31

cartoon representation of a peptide/protein backbone, with the backbone bonds themselves represented32

by darkly shaded bonds. Ramachandran et al. (1963) had recognized that the backbone conformational33
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Figure 1. Backbone conformational degrees of freedom dominantly depend on the dihedral angles φ

and ψ (green), and to a smaller degree depend on the third dihedral angle (ω ; red) as well as bond lengths
and angles (unmarked).
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Figure 2. While the Ramachandran plot is useful for getting a qualitative sense of peptide backbone
structure (a, c), it is not a convenient representation for exploring peptide backbone dynamics (c).

degrees of freedom available to an amino acid (residue) i is almost completely described by only two34

dihedral angles: φi and ψi (Fig. 1, green arrows). Today, protein structures described in context of the35

two-dimensional (φ ,ψ)-space are called Ramachandran plots.36

The Ramachandran plot is recognized as a powerful tool for two reasons: 1) it serves as a map37

for structural ‘correctness’ (Laskowski et al., 1993; Hooft et al., 1997; Laskowski, 2003), since many38

regions within the Ramachandran plot space are energetically not permitted (Momen et al., 2017); and39

2) it provides a qualitative snapshot of the structure of a protein (Berg et al., 2010; Alberts et al., 2002;40

Subramanian, 2001). For example, particular regions within the Ramachandran plot indicate the presence41

of particular secondary locally-ordered structures such as the α-helix and β-sheet (see Fig. 2a).42

While the Ramachandran plot has been useful as a measure of protein backbone conformation, it is43

not popularly used to assess structural dynamism and transitions (unless specific knowledge exists about44

whether a particular residue is believed to undergo a particular structural transition). This is because45

of the two-dimensionality of the plot: describing the behavior of every residue involves tracking its46

position in two-dimensional (φ ,ψ) space. For example, a naive description of positions of a peptide in a47

Ramachandran plot (Fig. 2b) needs more annotations for a per-residue analysis of the peptide backbone’s48

structure. Given enough residues, it would be impractical to track the position of each residue within a49

plot. This is compounded with time, as each point in (b) becomes a curve (c), further confounding the50

situation. The possibility of picking out previously unseen conformational transitions and dynamism51

becomes a logistical impracticality. As indicated above, this impracticality arises primarily from the fact52

that the Ramachandran plot is a two-dimensional map.53

Consequently, there has been no single compact descriptor of protein structure. This impedes that54

naïve or hypothesis-free exploration of new trajectories/ensembles. For example, tracking changes in55

protein trajectory is either overly detailed or overly holistic: an example of an overly detailed study is the56

tracking on exactly one or a few atoms over time (this already poses a problem, since we would need to57

know exactly which atoms are expected to partake in a transition); an example of a holistic metric is the58

radius of gyration (this also poses a problem, since we will never know which residues contribute to a59

change in radius of gyration without additional interoogation). With protein dynamics undergoing a new60

rennissance – especially due to intrinsically disordered proteins and allostery – having hypothesis-agnostic61

yet detailed (residue-level) metrics of protein structure has become even more relevant.62

It has recently been shown that the two Ramachandran backbone parameters (φ ,ψ) may be conve-63

niently combined into a single number – the Ramachandran number [R(φ ,ψ) or simplyR] – with little64

loss of information (Mannige et al., 2016). In a previous report, detailed discussions were provided65

regarding the reasons behind and derivation ofR (Mannige et al., 2016). This report provides a simpler66

version of the equation previously published (Mannige et al., 2016), and further discusses howR may be67

used to provide information about protein ensembles and trajectories. Finally, we introduce a software68

package – BACKMAP– that can be used by to produce MAPs that describe the behavior of a protein69

backbone within user-inputted conformations, structural ensembles and trajectories. This package is70

presently available on GitHub (https://github.com/ranjanmannige/BackMap).71
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Figure 3. The distribution of dominant regular secondary sctuctures are shown in [φ ,ψ]-space (a) and in
R-space (b). Both Ramachandran plots (a) and Ramachandran ‘lines’ (b) show equivalent resolution of
secondary structure , allowing for a more compact representation of Ramachandran plots Mannige et al.
(2016).

INTRODUCING THE SIMPLIFIED RAMACHANDRAN NUMBER (R)72

The Ramachandran number is both an idea and an equation. Conceptually, the Ramachandran number (R)73

is any closed form that collapses the dihedral angles φ and ψ into one structurally meaningful number74

(Mannige et al., 2016). Mannige et al. (2016) presented a version of the Ramachandran number that75

was complicated in closed form, threby reducing its utility. Here, a much more simplified version of the76

Ramachandran number is introduced. Section 1.1 shows how this simplified form was derived from the77

original closed form (Eqns. 3 and 4).78

Given arbitrary limits of φ ∈ [φmin,φmax) and ψ ∈ [ψmin,ψmax), where the minimum and maximum
values differ by 360◦, the most general and accurate equation for the Ramachandran number is

R(φ ,ψ)≡ φ +ψ− (φmin +ψmin)

(φmax +ψmax)− (φmin +ψmin)
. (1)

For consistency, we maintain throughout this paper that φmin = ψmin =−180◦ or −π radians, which
makes

R(φ ,ψ) =
φ +ψ +2π

4π
. (2)

As evident in Fig. 3, the distributions within the Ramachandran plot are faithfully reflected in corre-79

sponding distributions within Ramachandran number space. This paper shows how the Ramachandran80

number is both compact enough and informative enough to generate immediately useful graphs (map) of81

a dynamic protein backbone.82
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Figure 4. Two types ofR-codes. Digesting protein structures (a) usingR numbers either as histograms
(b) or per-residue codes (c) allow for compact representations of salient structural features. For example,
a single glance at the histograms indicate that protein 1mba is likely all α-helical, while 2acy is likely a
mix of α-helices and β-sheets. Additionally, residue-specific codes (c) not only indicate secondary
structure content, but also exact seconday structure stretches (compare to d), which gives a more
complete picture of how the protein is linearly arranged.

REASON TO USE THE RAMACHANDRAN NUMBER83

Ramachandran numbers are more compact than one might realize84

An important aspect of the Ramachandran number (R) lies in its compactness compared to the traditional85

Ramachandran pair (φ ,ψ). Say we have an N-residue peptide. Then, switching from (φ ,ψ) toR appears86

to only reduce the number of variables from 2N to N, and hense by half. However, (φ ,ψ) values are87

coupled, i.e., for any N-length peptide, any ordering of [φ1,φ2, . . . ,φN ,ψ1,ψ2, . . . ,ψN ] can not describe88

the structure, it is only pairs – [(φ1,ψ1),(φ2,ψ2), . . . ,(φN ,ψN)] – that can. Therefore, we must think of89

switching from (φ ,ψ)-space to R-space as a switch in structure space per residue from N two-tuples90

(φi,ψi) that reside in φ ×ψ space to N single-dimensional numbers (Ri).91

The value of this conversion is that the structure of a protein can be described in various one-92

dimensional arrays (per-structure “Ramachandran codes” or “R-codes”), which, when arranged vertical-93

ly/columnarly, consititue easy to digest codes. See, e.g., Fig. 4.94

Ramachandran codes are stackable95

In addition to assuming a small form factor, R-codes may then be stacked side-by-side for visual and96

computational analysis. There lies its true power.97

For example, the one-R-to-one-residue mapping means that the entire residue-by-residue structure98

of a protein can be shown using a string ofRis (which would show regions of secondary structure and99

disorder, for starters). Additionally, an entire protein’s backbone makeup can be shown as a histogram in100

R-space (which may reveal a protein’s topology). The power of this format lies not only in the capacity101

to distill complex structure into compact spaces, but in its capacity to display many complex structures in102

this format, side-by-side (stacking).103

Peptoid nanosheets (Mannige et al., 2015) will be used here as an example of how multiple structures,104

in the form ofR-codes, may be stacked to provide immediately useful pictograms. Peptoid nanosheets105

are a recently discovered peptide-mimic that were shown to display a novel secondary structure (Mannige106

et al., 2015). In particular, each peptoid within the nanosheet displays backbone conformations that107

alternate in chirality, causing the backbone to look like a meandering snake that nonetheless maintains an108
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Figure 5. StackedR-codes provide useful information at a glance.

overall linear direction. This secondary structure was discovered by first setting up a nanosheet where all109

peptoid backbones are restrained in the extended format (Fig. 5a, left), after which the restraints were110

energetically softened (a, middle) and completely reseased (a, right). As evident in Fig. 5b and Fig. 5c, the111

two types ofR-code stacks display salient information at first glance: 1) Fig. 5b shows that the extended112

backbone first undergoes some rearrangement with softer restraints, and then becomes much more binary113

in arrangement as we look down the backbone (excepting the low-order region in the middle, unshown in114

Fig. 5a); and 2) Fig. 5c shows that lifting restraints on the backbone causes a dramatic change in backbone115

topology, namely a birth of a bimodal distribution evident in the two parallel bands.116

By utilizing R, maps such as those in Fig. 5 provide information about every φ and ψ within the117

backbone. As such, these maps are dubbed MAPs, for Multi Angle Pictures. A Python package called118

BACKMAP created Fig. 5a and b, which is provided as a GitHub repository at https://github.com/119

ranjanmannige/BackMap. BACKMAP takes in a PDB structure file containing a single structure, or120

multiple structures separated by the code ‘MODEL’.121

Other uses for R: picking out subtle differences from high volume of data122

This section expands on the notion thatR-numbers – due to their compactness/stackability – can be used123

to pick out backbone structural trends that would be hard to decipher using any other metric. For example,124

it is well known that prolines (P) display unusual backbone behavior: in particular, proline backbones125

occupy structures that are close to but distinct from α-helical regions. Due to the two-dimensionality126

of Ramachandran plots (Fig. 6a), such distinctions are hard to visually pick out from Ramachandran127

plots. However, stacking per-amino-acidR-codes side by side make such differences patent (Fig. 6b; see128

arrow).129

It is also known that amino acids preceeding prolines display unusual shift in chirality. For example,130

Fig. 7 shows that amino acids appearing before prolines and glycines behave much more differently than131
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Figure 6. Ramachandran lines are stackable – Part I. Panel (a) shows the per-amino acid backbone
behavior of an average protein found in the protein databank (PDB). While these plots are useful, it is
difficult to compare such plots. For example, it is hard to pick out the change in the α-helial region of the
proline plot (P). However, when we convert Ramachandran plots to Ramachanran lines [by converting
(φi,ψi)→Ri], we are able to conveniently “stack” Ramachandran lines calculated for each residue.
Then, even visually, it is obvious that proline does not occupy the canonical α-helix region, which is not
evident to an untrained eye in (a).
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(c) Motif studied: XY
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Figure 7. Ramachandran lines are stackable – Part II. Similar to Fig. 6b, Panel (a) represents the
behavior of an amino acid ‘Y’ situated before a leucine (assuming that we are reading a sequence from
the N terminal to the C terminal). Panel (b) similarly represents the behavior of specific amino acids
situated before a proline. While residues preceeding a leucine behave similarly to their average behavior
(Fig. 6a), most residues preceeding prolines appear to be enriched in structures that change ‘direction’ or
backbone chirality (R > 0.5). Panel (c) shows the behavior of individual amino acids when situated
before each of the 20 amino acids. This graph shows a major benefit of side-by-side Ramachandran line
“stacking”: general trends become much more obvious. For example, it is evident that glycines and
prolines dramatically modify the structure of an amino acid preceeding it (compared to average behavior
of amino acids in Fig. 6b). This trend is not as strong when considering amino acids that follow glycines
or prolines (c). Such trends, while previously discovered [e.g., Gunasekaran et al. (1998); Ho and
Brasseur (2005)], would not be accessible when naïvely considering Ramachandran plots because one
would require 400 (20×20) distinct Ramachandran plots to compare.
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they would otherwise. While these results have been discussed previously (Gunasekaran et al., 1998; Ho132

and Brasseur, 2005), they were reported more than 30 years after the first structures were published; they133

would have been relatively easy to find ifR-codes were to be used regularly.134

The relationships in Figs. 6 and 7 show how subtle changes in structure can be easily picked out when135

structures are stacked side-by-side in the form ofR-codes. Such subtle changes are often witnessed when136

protein backbones transition from one state to another.137

USING THE BACKMAP PYTHON MODULE138

Installation139

BACKMAP may either be downloaded from the github repository, or installed directly by running the140

following line in the command prompt (assuming that pip exists): > pip install backmap141

First smple test142

The simplest test would be to generate Ramachandran numbers from (φ ,ψ) pairs:143

144
1# I mp or t module145

2import backmap146

3# Conve r t ( phi , p s i ) t o R147

4print backmap . R( p h i =0 , p h i =0) # Expec ted o u t p u t : 0 . 5148

5print backmap . R( −180 , −180) # Expec ted o u t p u t : 0 . 0149

6print backmap . R( 180 , 180) # Expec ted o u t p u t : 1 . 0 ( e q u i v a l e n t i n meaning t o 0 )150151

Basic usage for creating Multi-Angle Pictures (MAPs)152

As seen above, the generation of Ramachandran numbers from (φ ,ψ) pairs is simple. However, greating153

MAPs – Multi-Angle Pictures of protein backbones – requires a few more steps (present as a test in the154

downloadable module):155

1. Select and read a protein PDB structure156

Each trajectory frame must be a set of legitimate protein databank "ATOM" records separated by157

"MODEL" keywords.158

159
1import backmap160

2pdbfn = ' . / pdbs / n a n o s h e e t _ b i r t h _ U 7 . pdb ' # S e t pdb name161

3d a t a = backmap . read_pdb ( pdbfn ) # READ PDB i n t h e form of a m a t r i x wi th columns162163

Here, ‘data’ is a 2d array with four columns [‘model’, ‘chain’, ‘resid’,‘R’]. The first row of164

‘data’ is the header (i.e., the name of the column, e.g., ‘model’), with values that follow.165

2. Select color scheme (color map)166

In addition to custom colormaps listed in the next section, one can also use standardly available at167

matplotlib.org (e.g., ‘Reds’ or ‘Reds_r’).168

169
4# s e t t i n g t h e name of t h e co lormap170

5cmap = " S e c o n d a r y S t r u c t u r e "171172

3. Draw per-chain MAPs173

174
6# Grouping by c h a i n175

7g r o u p e d _ d a t a = backmap . group_by ( da t a , group_by= ' c h a i n ' ,176

8c o l u m n s _ t o _ r e t u r n =[ ' model ' , ' r e s i d ' , 'R ' ] )177

9for c h a i n in g r o u p e d _ d a t a . keys ( ) : # Going t h r o u g h each c h a i n178

10# G e t t i n g t h e X, Y, Z v a l u e s f o r each e n t r y179

11models , r e s i d u e s , Rs = g r o u p e d _ d a t a [ c h a i n ]180

12# F i n a l l y , c r e a t i n g ( b u t n o t showing ) t h e g raph181

13backmap . draw_xyz (X = models , Y = r e s i d u e s , Z = Rs182

14, x l a b e l = ' Frame # ' , y l a b e l =" Res idue # " , z l a b e l = ' $ \ m a t h c a l {R}$ '183

15, cmap = cmap , t i t l e = " Chain : ' "+ c h a i n +" ' "184

16, vmin =0 , vmax =1)185

17# Now, we d i s p l a y t h e graph :186

18p l t . show ( ) # . . . one can a l s o use p l t . s a v e f i g ( ) t o save t o f i l e187188

7/12
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As one would expect, this is the business end of the code. By changing how one assigns values189

to ‘X’ and ‘Y’, one can easily construct and draw other types of graphs such as time-resolved190

histograms, root mean squared fluctuations, root mean squared deviation, etc. Running the module191

as a standalone script would produce all these graphs automatically. ‘plt.show()’ would result192

in the following image being rendered:193
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Creating custom graphs195

Other types of grpahs can be easily created by modifying part three of the code above. For example, the196

following code creates histograms of R, one for each model (starting from line 10 above).197

198
10for c h a i n in g r o u p e d _ d a t a . keys ( ) :199

11models , r e s i d u e s , Rs = g r o u p e d _ d a t a [ c h a i n ]200

12201

13' Begin custom code '202

14X = [ ] ; Y= [ ] ; Z = [ ] ; # Wi l l s e t X=model , Y=R , Z=P (R)203

15# Bund l ing t h e t h r e e l i s t s i n t o one 2d a r r a y204

16new_data = np . a r r a y (zip ( models , r e s i d u e s , Rs ) )205

17# G e t t i n g a l l R v a l u e s , model by model206

18for m in sorted (set ( new_data [ : , 0 ] ) ) : # column 0 i s t h e model column207

19# G e t t i n g a l l Rs f o r t h a t model #208

20c u r r e n t _ r s = new_data [ np . where ( new_data [ : , 0 ] = =m) ] [ : , 2 ] # column 2 c o n t a i n s R209

21# G e t t i n g t h e h i s t o g r a m210

22a , b = np . h i s t o g r a m ( c u r r e n t _ r s , b i n s =np . a r a n g e ( 0 , 1 . 0 1 , 0 . 0 1 ) )211

23max_count = float ( np . max ( a ) )212

24for i in range (len ( a ) ) :213

25X. append (m) ; Y. append ( ( b [ i ]+ b [ i + 1 ] ) / 2 . 0 ) ; Z . append ( a [ i ] / float ( np . sum ( a ) ) ) ;214

26' End custom code '215

27216

28# F i n a l l y , c r e a t i n g ( b u t n o t showing ) t h e g raph217

29draw_xyz (X = X , Y = Y , Z = Z218

30, x l a b e l = ' Frame # ' , y l a b e l =" $ \ m a t h c a l {R}$ " , z l a b e l =" $P ' ( \ m a t h c a l {R} ) $ "219

31, cmap = ' Greys ' , y l im = [ 0 , 1 ] )220

32p l t . y t i c k s ( np . a r a n g e ( 0 , 1 . 0 0 0 0 1 , 0 . 2 ) )221

33# Now, we d i s p l a y t h e graph :222

34p l t . show ( ) # . . . one can a l s o use p l t . s a v e f i g ( ) t o save t o f i l e223224

The code above results in the following graph:225
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Available color schemes (CMAPs)227

Aside from the general color maps (cmaps) that exist in matplotlib (e.g., ‘Greys’, ‘Reds’, or, god forbid,228

‘jet’), BACKMAP provides two new colormaps: ‘Chirality’, ‘SecondaryStructure’. Fig. 8229

shows how a single protein ensemble may be described using these schematics. As illustrated in Fig. 8b,230
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cmaps available within the standard matplotlib package do not distinguish between major secondary231

structures well, to a great extent, while those provided by BACKMAP do.
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Figure 8. A protein ensemble (a) along with some MAPs colored with different themes (b-d). Panels (c)
and (d) are provided by the BACKMAP module. In Panel (a), β-sheets are shown in blue and all helices
are shown in red.

232

CONCLUSION233

A simpler Ramachandran number is reported –R= (φ +ψ +2π)/(4π) – which, while a single number,234

provides much information. For example, as discussed in Mannige et al. (2016),R values above 0.5 are235

left-handed, while those below 0.5 are right handed,R values close to 0, 0.5 and 1 are extended, β-sheets236

occuppyR values at around 0.52, right-handed α-helices hover around 0.34. Given the Ramachandran237

number’s ‘stackability’, single graphs can hold a detailed information of the progression/evolution of238

molecular trajectories. Indeed, Fig. 7 shows how 400 distinct Ramachandran plots can easily be fit into239

one graph when using R. Finally, a python script/module (BACKMAP) has been pvoided in an online240

GitHub repository.241
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1 APPENDIX248

1.1 Simplifying the Ramachandran number (R)249

This section will derive the simplified Ramachandran number presented in this paper from the more250

complicated looking Ramachandran number introduced previously Mannige et al. (2016).251

Assuming the bounds φ ,ψ ∈ [−180◦,180◦), and the range λ equals 360◦, the previously described
Ramachandran number takes the form

R(φ ,ψ)≡ RZ(φ ,ψ)−RZ(φmin,φmin)

RZ(φmax,φmax)−RZ(φmin,φmin)
, (3)
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Figure 9. The increase in the acccuracy measure (σ ) for the original Ramachandran number (Eqn. 4)
results in values that tend towards the new Ramachandran number proposed in this paper (Eqn. 2).

where,R(φ ,ψ) is the Ramachanran number with range [0,1), and RZ(φ ,ψ) is the unnormalized integer-
spaced Ramachandran number whose closed form is

RZ(φ ,ψ) =
⌊
(φ −ψ +λ )σ/

√
2
⌉

+
⌊√

2λσ

⌉⌊
(φ +ψ +λ )σ/

√
2
⌉
. (4)

Here, bxe rounds x to the closest integer value, σ is a scaling factor, discussed below, and λ is the252

range of an angle in degrees (i.e., λ = φmax−φmin). Effectively, this equation does the following. 1) It253

divides up the Ramachandran plot into (360◦σ1/◦)2 squares, where σ is a user-selected scaling factor254

that is measured in reciprocal degrees [see Fig. 8b in Mannige et al. (2016)]. 2) It then assigns integer255

values to each square by setting the lowest integer value to the bottom left of the Ramachandran plot256

(φ = −180◦,ψ = −180◦; green arrow in Fig. 1b) and proceeding from the bottom left to the top right257

by iteratively slicing down -1/2 sloped lines and assigning increasing integer values to each square that258

one encounters. 3) Finally, the equation assigns any (φ ,ψ) pair within φ ,ψ ∈ [−φmin,φmax) to the integer259

value (RZ) assigned to the divvied-up square that they it exists in.260

However useful Eqn. 3 is, the complexity of the equation may be a deterrent towards utilizing it. This
paper reports a simpler equation that is derived by taking the limit of Eqn. 3 as σ tends towards ∞. In
particular, when σ → ∞, Eqn. 3 becomes

R(φ ,ψ) = lim
σ→∞
R(φ ,ψ) =

φ +ψ +λ

2λ
=

φ +ψ +2π

4π
. (5)

Conformation of this limit is shown numerically in Fig. 9. Since larger σs indicate higher accuracy,261

lim
σ→∞
R(φ ,ψ) represents an exact representation of the Ramachandran number. Using this closed form,262

this report shows how both static structural features and complex structural transitions may be identified263

with the help of Ramachandran number-derived plots.264

1.2 Other frames of reference265

The Ramachandran number shown in Eqn. 5 expects φ ,ψ ∈ [−λ/2,λ/2). Given arbitrary limits of
φ ∈ [φmax,φmin) and ψ ∈ [ψmax,ψmin), the most general equation for the Ramachandran number is

R(φ ,ψ)≡ φ +ψ− (ψmin +ψmin)

(ψmax +ψmax)− (ψmin +ψmin)
. (6)

For example, assuming that φ ,ψ ∈ [0,2π), the Ramachandran number in that frame of reference will be

R(φ ,ψ)φ ,ψ∈[0,2π) =
φ +ψ

4π
. (7)

However, in doing so, the meaning of the Ramachandran number will change. The rest of this manuscript266

will always assume that all angles range between −π (−180◦) and π (180◦)267
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2 A SIGNED RAMACHANDRAN NUMBER268

An additional Ramachandran number – the signed Ramachandran numberRS – is introduced here for
backbones that are achiral. RS is identical to the original number in magnitude, but which changes sign
from + to − as you approachR numbers that are to the right (or below) the positively sloped diagonal.
I.e.,

RS =

{
R , if ψ ≥ φ

R×−1 , if ψ < φ
(8)

This metric is important for those glycine-rich peptides (and peptide-mimics such as peptoids) that both269

left and right regions of the Ramachandran plot; this is because, for such backbones, each −1/2-sloping270

slide of the Ramachandran plot may intersect more than one relevant region of the Ramachandran plot,271

which would put two structurally disparate regions within the Ramachandran plot close inR-space. The272

signed Ramachandran plotRS minimizes the probablity of this happening. However, very few residues273

within structural databases occupy the right side of the Rmachandran plot (3.5% ), which means that274

signed Ramachandran plots would only be useful in special cases (and possibly for IDPs). For this reason,275

we will proceed below with a focus on the more relevant Ramachandran numberR.276
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