
SomaticSeq Documentation
Li Tai Fang / ltfang@gmail.com

April 16, 2022

Contents
1 Introduction 2

1.1 Dependencies . 2
1.2 Docker images . 3

2 Download and install SomaticSeq 3

3 How to run SomaticSeq 3
3.1 SomaticSeq Training Mode . 4
3.2 SomaticSeq Prediction Mode . 5
3.3 SomaticSeq Consensus Mode . 5

4 SomaticSeq as a Python library 6
4.1 Module: somaticseq_parallel.py . 6
4.2 Module: somaticseq/run_somaticseq.py . 6
4.3 Module: somaticseq/somatic_vcf2tsv.py and somaticseq/single_sample_vcf2tsv.py 7
4.4 Module: somaticseq/SSeq_tsv2vcf.py . 8
4.5 Machine learning modules . 9

4.5.1 SomaticSeq Training . 9
4.5.2 Prediction with trained classifiers . 9

4.6 utilities modules . 10
4.6.1 Module: split_Bed_into_equal_regions . 10
4.6.2 Module: lociCounterWithLabels . 10

5 To run the dockerized somatic mutation callers 10
5.1 Location . 10
5.2 Requirements . 10
5.3 Example commands . 10

5.3.1 Tumor-Normal Mode . 11
5.3.2 SomaticSeq Training . 11
5.3.3 SomaticSeq Prediction . 11
5.3.4 Parameters . 12
5.3.5 What does the single-threaded command do . 13
5.3.6 What does the multi-threaded command do . 13

6 Use BAMSurgeon to create training data 14
6.1 Requirements . 15
6.2 Three scenario to simulate somatic mutations . 15

6.2.1 When you have sequencing replicates of normal samples 15
6.2.2 This example mimicks DREAM Challenge . 16
6.2.3 Merge and then split the input tumor and normal BAM files 17

6.3 Parameters and Options . 17
6.3.1 –merge-bam / –split-bam / –indel-realign . 18

1

6.4 To create SomaticSeq classifiers . 19

7 Release Notes 19

8 Contact Us 27

1 Introduction

SomaticSeq is a flexible post-somatic-mutation-calling algorithm for improved accuracy. It is compatible
with 10+ somatic mutation callers. Any combination of them can be used to obtain a combined call set
with sequencing features extracted into TSV and VCF files. In addition, SomaticSeq uses machine learn-
ing to distinguish true mutations from false positives from that call set. The mutation callers we have in-
corporated are MuTect/Indelocator/MuTect2 [1], VarScan2 [2], JointSNVMix [3], SomaticSniper [4], Var-
Dict [5], MuSE [6], LoFreq [7], Scalpel [8], Strelka2 [9], TNscope [10], and Platypus [11]. You may incorpo-
rate some or all of those callers into your own pipeline with SomaticSeq.

The manuscript, An ensemble approach to accurately detect somatic mutations using Somatic-
Seq, was published in Genome Biology 2015, 16:197 [12]. The SomaticSeq project is located at
https://github.com/bioinform/somaticseq. There have been some major improvements in SomaticSeq since
that Genome Biology publication in 2015.

The script somaticseq_parallel.py can 1) train the call set into a classifier, 2) predict high-confidence
somatic mutations from the call set based on a pre-defined classifier, or 3) default to consensus mode,
i.e., extract sequencing features and output the TSV and VCF files, and then label the calls (i.e., PASS,
LowQual, or REJECT) based on majority vote of the tools.

1.1 Dependencies

1. SomaticSeq was written in Python 3 under Linux environment. In addition, Python libraries of
numpy, scipy, and pysam are also required.

2. SomaticSeq also uses BEDTools [13] to manipulate bed file inputs, i.e., regions to include and/or ex-
clude in the workflow.

3. R, as well as ada library (if you intend to use this).

4. At its core, SomaticSeq combines and then filters the results of multiple somatic mutation detection
algorithms based on many sequencing features. At least one caller needs to be run to generate a list
of mutation candidates for SomaticSeq to evaluate. The following callers have been directly incorpo-
rated into SomaticSeq: the original MuTect/Indelocator as well as GATK4’s Mutect2 [1], VarScan2
[2], JointSNVMix2 [3], SomaticSniper [4], VarDict [5], MuSE [6], LoFreq [7], Scalpel [8], Strelka2 [9],
TNscope [10], and Platypus [11]. As v3.7.0, users are allowed to input any VCF file(s) in addition to
the ones mentioned previously.

5. Docker [http://www.docker.com] is a container technology that can be used to package softwares
and their dependencies in a portable Docker images, which can be used to execute a workflow repro-
ducibly across different platforms and environments. SomaticSeq does not require Docker per se, but
we have created Docker images of it, along with a number of compatible somatic mutation callers
to make life easier for new users. The advantage of using container technologies like Docker, is that
one does not necessarily have to create the right software environment with the correct dependencies
for every software in a workflow, e.g,. by creating a Docker image for MuTect2, the users can simply
use that Docker image for MuTect 2 tasks. Otherwise, they must make sure to have the correct Java

2

http://dx.doi.org/10.1186/s13059-015-0758-2
https://github.com/bioinform/somaticseq
http://www.docker.com

version and others dependencies to run MuTect2, and that those dependencies do not conflict with
other software that may need different Java versions.

1.2 Docker images

SomaticSeq and the somatic mutation callers that we routinely use were dockerized.

• SomaticSeq: https://hub.docker.com/r/lethalfang/somaticseq

• MuTect2: https://hub.docker.com/r/broadinstitute/gatk

• VarScan2: https://hub.docker.com/r/djordjeklisic/sbg-varscan2

• JointSNVMix2: https://hub.docker.com/r/lethalfang/jointsnvmix2

• SomaticSniper: https://hub.docker.com/r/lethalfang/somaticsniper

• VarDict: https://hub.docker.com/r/lethalfang/vardictjava

• MuSE: https://hub.docker.com/r/marghoob/muse

• LoFreq: https://hub.docker.com/r/lethalfang/lofreq

• Scalpel: https://hub.docker.com/r/lethalfang/scalpel

• Strelka2: https://hub.docker.com/r/lethalfang/strelka

2 Download and install SomaticSeq

Source code of SomaticSeq is available via Github repository in BSD 2-Clause open source license:
https://github.com/bioinform/somaticseq. The latest source code can be cloned by the git command:

1 g i t clone https :// github .com/bioinform/somaticseq . g i t

To install SomaticSeq, then the core script somaticseq_parallel.py will be in your path.
1 . / setup . py i n s t a l l

3 How to run SomaticSeq

The somaticseq_parallel.py module calls a series of programs and procedures after you have run your in-
dividual somatic mutation callers. Section 5 will teach you how to run those mutation callers that we have
been dockerized. It also includes ways to create semi-simulated training data that can be used to create
SomaticSeq classifiers. In the next section, we will describe the workflow in this wrapper script in detail.

Both paired and single modes are supported, although single mode is not as well validated scientifically as
the paired mode. To see the required and optional input files and parameters to somaticseq_parallel.py:

3

https://hub.docker.com/r/lethalfang/somaticseq
https://hub.docker.com/r/broadinstitute/gatk
https://hub.docker.com/r/djordjeklisic/sbg-varscan2
https://hub.docker.com/r/lethalfang/jointsnvmix2
https://hub.docker.com/r/lethalfang/somaticsniper
https://hub.docker.com/r/lethalfang/vardictjava
https://hub.docker.com/r/marghoob/muse
https://hub.docker.com/r/lethalfang/lofreq
https://hub.docker.com/r/lethalfang/scalpel
https://hub.docker.com/r/lethalfang/strelka
https://github.com/bioinform/somaticseq

1 # See the global input parameters
somaticseq_paral le l . py −−help

3

Parameters fo r paired−sample mode (i . e . , tumor−normal)
5 somaticseq_paral le l . py paired −−help

7 # Parameters fo r s ing le−sample mode
somaticseq_paral le l . py s i n g l e −−help

3.1 SomaticSeq Training Mode

To create SomaticSeq classifiers, you need a VCF file containing true SNVs and a VCF file containing true
INDELs, and invoke the training node with --somaticseq-train flag. There is also an option to include a
list of regions to include and/or exclude from this exercise. The exclusion or inclusion regions can be VCF
or BED files. An inclusion region may be subset of the call sets where you have validated their true/false
mutation status, so that only those regions will be used for training. An exclusion region can be regions
where the “truth” is ambigious. All the variants in the truth VCF files are assumed to be true positives
and will be labeled such. Every mutation call not in the truth VCF files is assumed to be false positives
and will be labeled as such (as long as the genomic coordiante is in inclusion region and not in exclusion
region if those regions are provided).

All the VCF files from individual callers are optional, but you need at least one or there will be nothing
to do. All VCF files can be bgzipped if they have .vcf.gz extensions. It is imperative that you will use the
same parameter for prediction as you do for training.
somaticseq_paral le l . py \

2 −−output−directory SomaticSeq_OUT \
−−genome−re f e rence GRCh38. fa \

4 −−inc lus ion−region genome . bed \
−−exclusion−region b l a c k l i s t . bed \

6 −−truth−snv truePos i t ives . snv . vcf \
−−truth−inde l t ruePos i t ives . inde l . vcf \

8 −−threads 28 \
−−somaticseq−algorithm xgboost \

10 −−somaticseq−t ra in \
paired \

12 −−tumor−bam−f i l e tumor .bam \
−−normal−bam−f i l e matched_normal .bam \

14 −−mutect2−vcf MuTect2 . vcf \
−−vardict−vcf VarDict . vcf \

16 −−muse−vcf MuSE. vcf \
−−stre lka−snv Stre lka / r e s u l t s / var iants /somatic . snvs . vcf . gz \

18 −−stre lka−inde l Stre lka / r e s u l t s / var iants /somatic . inde l s . vcf . gz \
−−arbitrary−snvs additional_snv_calls_1 . vcf . gz additional_snv_calls_2 . vcf . gz . . . \

20 −−arbitrary−i nde l s additional_indel_calls_1 . vcf . gz additional_indel_calls_2 . vcf . gz . . .

For the command’s argument placement, caller output and bam files are input “after” paired or single op-
tion. Everything else goes before, e.g., reference, ground truths, resources such as dbSNP and COSMIC,
etc.

Parallel processing is achieved by splitting the inclusion BED file into a number of sub-BED files of equal
region sizes, named 1.th.input.bed, 2.th.input.bed, ..., n.th.input.bed. Then each process will be run using
each sub-BED file as the inclusion BED file. If there is no inclusion BED file in the command argument, it
will split the reference.fa.fai file instead.

4

SomaticSeq supports any combination of the somatic mutation callers we have incorporated into the work-
flow. SomaticSeq will run based on the output VCFs you have provided. It will train for SNV and/or
INDEL if you provide the truePositives.snv.vcf and/or truePositives.indel.vcf file(s) and invoke the
--somaticseq-train option. Otherwise, it will fall back to the simple caller consensus mode.

3.2 SomaticSeq Prediction Mode

Make sure the classifiers are supplied, Without either of them, or it will fall back to the simple caller con-
sensus mode.
The ∗ . RData f i l e s are trained c l a s s i f i e r from the tra in ing mode .

2 somaticseq_paral le l . py \
−−c l a s s i f i e r −snv Ensemble .sSNV. tsv . xgb . v3 . x . x . c l a s s i f i e r \

4 −−c l a s s i f i e r −inde l Ensemble . sINDEL. tsv . xgb . v3 . x . x . c l a s s i f i e r \
−−output−directory OUTPUT_DIR \

6 −−genome−re f e rence GRCh38. fa \
−−inc lus ion−region genome . bed \

8 −−exclusion−region b l a c k l i s t . bed \
−−somaticseq−algorithm xgboost \

10 −−threads 12 \
paired \

12 −−tumor−bam−f i l e tumor .bam \
−−normal−bam−f i l e matched_normal .bam \

14 −−mutect2−vcf MuTect2/ var iants . vcf \
−−vardict−vcf VarDict/ var iants . vcf \

16 −−muse−vcf MuSE/ var iants . snp . vcf \
−−stre lka−snv Stre lka / var iants . snv . vcf \

18 −−stre lka−inde l Stre lka / var iants . inde l . vcf \
−−arbitrary−snvs MoreSNVs_1. vcf MoreSNVs_2. vcf MoreSNVs_3. vcf \

20 −−arbitrary−i nde l s MoreIndelss_1 . vcf MoreIndels_2 . vcf MoreIndels_3 . vcf

3.3 SomaticSeq Consensus Mode

Same as the commands previously, but without including the classifiers or invoking –somaticseq-train.
Without those information, SomaticSeq will forgo machine learning, and fall back into a simple majority
vote. The following is an example:
The ∗ . RData f i l e s are trained c l a s s i f i e r from the tra in ing mode .

2 somaticseq_paral le l . py \
−−output−directory OUTPUT_DIR \

4 −−genome−re f e rence GRCh38. fa \
−−inc lus ion−region genome . bed \

6 −−exclusion−region b l a c k l i s t . bed \
−−threads 12 \

8 paired \
−−tumor−bam−f i l e tumor .bam \

10 −−normal−bam−f i l e matched_normal .bam \
−−mutect2−vcf MuTect2/ var iants . vcf \

12 −−vardict−vcf VarDict/ var iants . vcf \
−−muse−vcf MuSE/ var iants . snp . vcf \

14 −−stre lka−snv Stre lka / var iants . snv . vcf \
−−stre lka−inde l Stre lka / var iants . inde l . vcf

5

4 SomaticSeq as a Python library

Section 3 described how to use SomaticSeq as a software. It is also possible to treat SomaticSeq as a
python library extension for your own software. So here we describe in detail the procedures and functions
that make up SomaticSeq.

4.1 Module: somaticseq_parallel.py

The somaticseq_parallel.py script simply calls for somaticseq/run_somaticseq.py module (Sec. 4.2), and
parallelize the runs by splitting the input BED file into a number of equal-sized (in terms of total base
pairs) regions. The BED file splitting is achieved by somaticseq/utilities/split_Bed_into_equal_regions.py
(Sec. 4.6.1).

4.2 Module: somaticseq/run_somaticseq.py

The core module for SomaticSeq is somaticseq/run_somaticseq.py. It converts individual VCF files from
somatic mutation caller(s) into SomaticSeq TSV and VCF files. There are two main functions in the mod-
ule, runPaired and runSingle. Depending on the mode, either of them can be called. For example:

1 # Module i s located somaticseq/somaticseq/run_somaticseq . py
import somaticseq . somaticseq . run_somaticseq as run_somaticseq

3

run_somaticseq . runPaired (outdir=’/PATH/TO/SomaticSeq ’ , r e f=’/PATH/TO/GRCh38. fa ’ , tbam=’/PATH/TO
/tumor .bwa.bam ’ , nbam=’/PATH/TO/normal .bwa.bam ’ , tumor_name=’TUMOR’ , normal_name=’NORMAL’ ,
truth_snv=None , truth_indel=None , c l a s s i f i e r_s n v=None , c l a s s i f i e r _ i n d e l=None , pass_threshold
=0.5 , lowqual_threshold =0.1 , hom_threshold=0.85 , het_threshold =0.01 , dbsnp=’/PATH/TO/
dbSNP_138. hg38 . vcf . vcf ’ , cosmic=’/PATH/TO/COSMIC. v85 . vcf ’ , inc lus ion=’/PATH/TO/Exon_Capture .
bed ’ , exc lus ion=’/PATH/TO/ ignore . bed ’ , mutect=None , inde locator=None , mutect2=’/PATH/TO/
MuTect2 . vcf ’ , varscan_snv=None , varscan_indel=None , jsm=None , sniper=None , vardict=’/PATH/TO/
VarDict . vcf ’ , muse=’/PATH/TO/MuSE. vcf ’ , lofreq_snv=’/PATH/TO/LoFreq . snv . vcf . gz ’ , lo f req_indel
=’/PATH/TO/LoFreq . inde l . vcf . gz ’ , s c a l p e l=None , strelka_snv=’/PATH/TO/ Stre lka / r e s u l t s / var iants
/somatic_ssnv . vcf . gz ’ , stre lka_indel=’/PATH/TO/ Stre lka / r e s u l t s / var iants /somatic_sindel . vcf . gz
’ , tnscope=None , platypus=None , min_mq=1, min_bq=5, min_caller =0.5 , somaticseq_train=False ,
ensembleOutPrefix=’ Ensemble . ’ , consensusOutPrefix=’ Consensus . ’ , c l a s s i f i edOutPre f ix=’SSeq .
C l a s s i f i e d . ’ , algo=’ada ’ , keep_intermediates=False)

The parameters of ensembleOutPrefix, consensusOutPrefix, and classifiedOutPrefix will dictate the output
file names under outdir.

We’ll briefly describe the procedures of runPaired here. First of all, the somaticseq/combine_callers.py
module (combinePaired function) will combine all the input VCF files into two minimal VCF files, one for
SNVs and one for INDELs, that include each unique variant call. These VCF files serve as input files for
the next steps, where features are extracted from each of the variant and then converted to the Somatic-
Seq TSV files by the somaticseq/somatic_vcf2tsv.py module (Sec. 4.3).

If training mode was invoked (Sec. 3.1), SomaticSeq classifiers would be built (Sec. 4.5.1). If prediction
mode was invoked, an additional TSV file with prediction scores will be created (Sec. 4.5.2).

Finally, the TSV files will be converted to SomaticSeq VCF file output by somaticseq/SSeq_tsv2vcf.py
(Sec. 4.3).

6

Likewise, the single sample mode to convert various individual VCF outputs would be something like this:
import somaticseq . somaticseq . run_somaticseq as run_somaticseq

2

run_somaticseq . runSingle (outdir=’/PATH/TO/SomaticSeq ’ , r e f=’/PATH/TO/GRCh38. fa ’ , bam=’/PATH/TO/
tumor .bwa.bam ’ , tumor_name=’TUMOR’ , truth_snv=None , truth_indel=None , c l a s s i f i e r_snv=None ,
c l a s s i f i e r _ i n d e l=None , pass_threshold =0.5 , lowqual_threshold =0.1 , hom_threshold=0.85 ,
het_threshold =0.01 , dbsnp=’/PATH/TO/dbSNP_138. hg38 . vcf . vcf ’ , cosmic=’/PATH/TO/COSMIC. v85 . vcf ’
, inc lus ion=’/PATH/TO/Exon_Capture . bed ’ , exc lus ion=’/PATH/TO/ ignore . bed ’ , mutect=None ,
mutect2=’/PATH/TO/MuTect2 . vcf ’ , varscan=None , vardict=’/PATH/TO/VarDict . vcf ’ , l o f r e q=’/PATH/
TO/LoFreq . vcf ’ , s ca l p e l=None , s t r e lka=’/PATH/TO/ Stre lka . vcf ’ , min_mq=1, min_bq=5, min_caller
=0.5 , somaticseq_train=False , ensembleOutPrefix=’ Ensemble . ’ , consensusOutPrefix=’ Consensus . ’ ,

c l a s s i f i edOutPre f ix=’SSeq . C l a s s i f i e d . ’ , algo=’ada ’ , keep_intermediates=False)

Parameters:

• truth_snv/truth_indel: if present, then the variants in these VCF files will be considered true posi-
tives, and everything else will be considered false positive. If None, then nothing with regard to true
positive or false positive will be annotated.

• classifier_snv/classifier_indel: if present, then SomaticSeq prediction will be invoked to create ma-
chine learning classified VCF files. if None, only majority-vote consensus VCF files will be created.

• inclusion: bed file so only variants in it will be considered (requires BEDTools on execution path)

• exclusion: bed file so variants in it will be tossed out (requires BEDTools on the execution path)

• mutect/mutect2/varscan/jsm/vardict/muse/lofreq/strelka/scalpel/tnscope: output VCF files from
the callers. If None, then it assumes that tool was not used.

• min_caller: only output variants if at least N number of callers have called it. Since some LowQual
calls are considered 0.5, an input of 0.5 tells the function to also return variants even if it’s only
been called as a “LowQual” by a tool. However, it will still filter out variants that’s only been “RE-
JECTED” by a caller.
somaticseq_train: if True, and also if truth_snv or truth_indel are present, then it will create So-
maticSeq classifiers. If False, then will not invoke training mode.

4.3 Module: somaticseq/somatic_vcf2tsv.py and somaticseq/sin-
gle_sample_vcf2tsv.py

Another useful module is the command to extract SomaticSeq features for variants in any VCF file, and
output the results to a TSV file. The following function requires both tumor and normal BAM files, and
the reference genome. COSMIC, dbSNP, etc. are optional. None for any null inputs. min_mq = 0 for
this purpose. This is a filter to only output variants that has been called by a minimum number of tools
(which you may specify as VCF inputs such as mutect, varscan, etc.)

1 import somaticseq . somaticseq . somatic_vcf2tsv as somatic_vcf2tsv

3 somatic_vcf2tsv . vcf2tsv (is_vcf=’/PATH/TO/ variants . vcf ’ , is_bed=None , is_pos=None , nbam_fn=’/
PATH/TO/normal .bam ’ , tbam_fn=’/PATH/TO/tumor .bam ’ , truth=None , cosmic=’/PATH/TO/COSMIC. v85 .
vcf ’ , dbsnp=’/PATH/TO/dbSNP_138. hg38 . vcf . vcf ’ , mutect=None , varscan=None , jsm=None , sniper=
None , vardict=None , muse=None , l o f r e q=None , s c a l p e l=None , s t r e lka=None , tnscope=None ,
platypus=None , dedup=True , min_mq=1, min_bq=5, min_caller=0, ref_fa=’/PATH/TO/GRCh38. fa ’ ,
p_scale=None , o u t f i l e=’/PATH/TO/SomaticSeq . FeaturesExtracted . tsv ’)

7

You may also extract sequencing info for any VCF file if you just have one bam file
1 import somaticseq . somaticseq . single_sample_vcf2tsv as single_sample_vcf2tsv

3 single_sample_vcf2tsv . vcf2tsv (is_vcf=’/PATH/TO/ variants . vcf ’ , is_bed=None , is_pos=None , bam_fn=
’/PATH/TO/tumor .bam ’ , truth=None , cosmic=’/PATH/TO/COSMIC. v85 . vcf ’ , dbsnp=’/PATH/TO/dbSNP_138
. hg38 . vcf . vcf ’ , mutect=None , varscan=None , vardict=None , muse=None , l o f r e q=None , s c a lp e l=None
, s t r e lka=None , dedup=True , min_mq=1, min_bq=5, min_caller=0, ref_fa=’/PATH/TO/GRCh38. fa ’ ,
p_scale=None , o u t f i l e=’/PATH/TO/SomaticSeq . FeaturesExtracted . tsv ’)

Both somaticseq/somaticseq/somatic_vcf2tsv.py and somaticseq/somaticseq/single_sample_vcf2tsv.py
may also be run as standalone scripts. Invoke the script with -h to learn their usages.

Parameters:

• is_vcf: the VCF file serves as the input file, from which every variant will have its sequencing feature
extracted from the BAM file(s).

• mutect/varscan/jsm/sniper/vardict/muse/lofreq/scalpel/strelka/tnscope: VCF files from these tools.
If present, the function will extract information from these files such as if a variant is called by the
tool. If None, everything associated with that tool will be “nan” in the TSV file.

The module can also be run independently on any VCF file to extract SomaticSeq-related features for the
variants in the VCF files. To find out how to use them, do this in the command shell:

1 somaticseq/somatic_vcf2tsv . py −h
somaticseq/single_sample_vcf2tsv . py −h

4.4 Module: somaticseq/SSeq_tsv2vcf.py

This module converts SomaticSeq’s TSV file (described in Sec. 4.3) to SomaticSeq VCF files.
import somaticseq . somaticseq . SSeq_tsv2vcf as SSeq_tsv2vcf

2

SSeq_tsv2vcf . tsv2vcf (tsv_fn=’/PATH/TO/SomaticSeq . tsv ’ , vcf_fn=’/PATH/TO/SomaticSeq . vcf ’ , t oo l s
=[’MuTect2 ’ , ’ SomaticSniper ’ , ’ Stre lka ’] , pass_score =0.5 , lowqual_score =0.1 , hom_threshold
=0.85 , het_threshold =0.01 , single_mode=False , paired_mode=True , normal_sample_name=’NORMAL’ ,
tumor_sample_name=’TUMOR’ , pr int_reject=True , phred_scaled=True)

Parameters:

• tools: A list of tools that were run, can only be selected from MuTect2, MuTect, VarScan2,
JointSNVMix2, SomaticSniper, VarDict, MuSE, LoFreq, Scalpel, Strelka, TNscope, and/or Platypus.

• print_reject: if False, will only print PASS and LowQual variants into VCF. If True, will print ev-
erything from TSV to VCF.

• phred_scaled: if True, will print Phred-scaled score in QUAL column (if the TSV was produced with
SomaticSeq prediction). If False, will print the 0-1 scale. If no SomaticSeq prediction was done, will
print 0.

8

The script can also be run independently.
1 somaticseq/SSeq_tsv2vcf . py −h

4.5 Machine learning modules

The training and prediction scripts are written in R.

4.5.1 SomaticSeq Training

ada_model_builder_ntChange.R or somatic_xgboost.py is the script that is called during SomaticSeq
pipeline to make classifiers. You can also run them indepedently with labeled Ensemble.sSNV.tsv and En-
semble.sINDEL.tsv files. The command for ada is:

1 # Training :
ada_model_builder_ntChange .R Ensemble .sSNV. tsv

For extreme gradient boosting (xgboost) algorithm, the program can be run multi-threaded. Multiple in-
put files are allowed to combine training data.
Training :

2 somatic_xgboost . py tra in −tsv Ensemble .sSNV. tsv −out somatic_snv . c l a s s i f i e r −threads 4

4.5.2 Prediction with trained classifiers

ada_model_predictor.R or somatic_xgboost.py is the prediction script. To run it independently, the com-
mand for ada is
Mutation predict ion :

2

ada_model_predictor .R Ensemble .sSNV. tsv . C l a s s i f i e r . RData Ensemble .sSNV. tsv Predicted .sSNV. tsv

If classifier was based on xgboost:
1 # Mutation predict ion :

somatic_xgboost . py predict −model Ensemble .sSNV. tsv . gz . xgb . v3 . x . x . model −tsv Ensemble .sSNV. tsv . gz
−out SSeq . Predicted .sSNV. tsv

9

4.6 utilities modules

4.6.1 Module: split_Bed_into_equal_regions

Given a .bed or a .fa.fai file, it will split the input region into N number of bed files, such that each bed
file has equal-sized regions in them.

4.6.2 Module: lociCounterWithLabels

Given a list of .bed files and a .fa.fai file, it will return a .bed file detailing which regions were contained
from which .bed inputs.

lociCounterWithLabels . py −f a i GRCh38. fa . f a i −beds 1 . bed 2 . bed 3 . bed −l a b e l s 01 02 03 −out
overlapping . bed

Parameters:

• labels: A list of labels to be written in 4th column of the output bed file. If absent, the 4th column
will be populated by the input bed file names.

5 To run the dockerized somatic mutation callers

For your convenience, we have created a couple of scripts that can generate run script for the dockerized
somatic mutation callers.

5.1 Location

• somaticseq/utilities/dockered_pipelines/

5.2 Requirements

• Have internet connection, and able to pull and run docker images from docker.io

5.3 Example commands

You may run the following command to see all the available options for this command, in either paired
(tumor-normal) or single (tumor-only) mode.

1 makeSomaticScripts . py [paired | s i n g l e] −h

10

5.3.1 Tumor-Normal Mode

1 # Example command to submit the run s c r i p t s fo r each of the fo l lowing somatic mutation c a l l e r s
makeSomaticScripts . py paired \

3 −−normal−bam /ABSOLUTE/PATH/TO/normal_sample .bam \
−−tumor−bam /ABSOLUTE/PATH/TO/tumor_sample .bam \

5 −−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa \
−−output−directory /ABSOLUTE/PATH/TO/RESULTS \

7 −−dbsnp−vcf /ABSOLUTE/PATH/TO/dbSNP.GRCh38. vcf \
−−threads 12 \

9 −−run−mutect2 −−run−somaticsniper −−run−vardict −−run−muse −−run−l o f r e q −−run−s c a l pe l −−run−
s t re lka2 −−run−somaticseq −−run−workflow

The command shown above will create scripts for MuTect2, SomaticSniper, VarDict, MuSE, LoFreq,
Scalpel, and Strelka. Then, it will create the SomaticSeq script that merges those 7 callers. This command
defaults to majority-vote consensus.

Since it’s --aciton echo, it will echo the mutation caller scripts locations, but these scripts will not be
run. If you do --action qsub instead, then those mutation caller scripts will be qsub’ed. You’ll still need
to mantually run/submit the SomaticSeq script after all the caller jobs are done.

The --threads 12 will create 12 equal-size regions in 12 bed files, and parallelize the jobs into 12 regions.
However, you’ll need to combine those 12 seperate results together.

5.3.2 SomaticSeq Training

As things are currently set up, training mode is best run seperately after you’ve run the workflows above,
because we don’t have a workflow engine to manage and then merge the result of each thread. You may
invoke “‘–train-somaticseq“‘ here, but SomaticSeq will train on each thread. Now if you use just a single
thread (e.g., “‘–threads 1“‘ is the default), you may train it just fine. In this case, two classifiers will be
created (*.RData files), one for SNV and one for INDEL.

1 makeSomaticScripts . py paired \
−−normal−bam /ABSOLUTE/PATH/TO/normal_sample .bam \

3 −−tumor−bam /ABSOLUTE/PATH/TO/tumor_sample .bam \
−−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa \

5 −−output−directory /ABSOLUTE/PATH/TO/RESULTS \
−−dbsnp−vcf /ABSOLUTE/PATH/TO/dbSNP.GRCh38. vcf \

7 −−truth−snv /ABSOLUTE/PATH/TO/truth . snv . vcf \
−−truth−inde l /ABSOLUTE/PATH/TO/truth . inde l . vcf \

9 −−somaticseq−algorithm xgboost \
−−train−somaticseq \

11 −−run−mutect2 −−run−somaticsniper −−run−vardict −−run−muse −−run−l o f r e q −−run−s c a l pe l −−run−
s t re lka2 −−run−somaticseq

Notice the command includes –truth-snv and –truth-indel, and invokes somaticseq-train. By default ada
will be used for –somaticseq-algorithm, but you may invoke xgboost as well.

For multi-threaded job, you should not invoke somaticseq-train. Instead, you should combine all the En-
semble.sSNV.tsv and Ensemble.sINDEL.tsv files (separately), and then train on the combined files.

5.3.3 SomaticSeq Prediction

11

1 makeSomaticScripts . py paired \
−−normal−bam /ABSOLUTE/PATH/TO/normal_sample .bam \

3 −−tumor−bam /ABSOLUTE/PATH/TO/tumor_sample .bam \
−−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa \

5 −−output−directory /ABSOLUTE/PATH/TO/RESULTS \
−−dbsnp−vcf /ABSOLUTE/PATH/TO/dbSNP.GRCh38. vcf \

7 −−snv−c l a s s i f i e r /ABSOLUTE/PATH/TO/ Snv_Classi f ier . RData \
−−indel−c l a s s i f i e r /ABSOLUTE/PATH/TO/ Inde l_Class i f i e r . RData \

9 −−somaticseq−algorithm xgboost \
−−threads 12 \

11 −−run−mutect2 −−run−somaticsniper −−run−vardict −−run−muse −−run−l o f r e q −−run−s c a l pe l −−run−
s t re lka2 −−run−somaticseq −−run−workflow

Notice the command includes –classifier-snv and –classifier-indel. Make sure the classifier and the –
somaticseq-algorithm argument matches.

5.3.4 Parameters

1 paired Invokes tumor−normal modes . Placed immediately a f t e r
makeSomaticScripts . py .

s i n g l e Invokes tumor−only modes . Placed immediately a f t e r
makeSomaticScripts . py

3 −−normal−bam /ABSOLUTE/PATH/TO/normal_sample .bam (Required for paired)
−−tumor−bam /ABSOLUTE/PATH/TO/tumor_sample .bam (Required for paired)

5 −−bam /ABSOLUTE/PATH/TO/tumor_sample .bam (Required for s i n g l e)
−−genome−re f e rence /ABSOLUTE/PATH/TO/human_reference . fa (Required)

7 −−dbsnp−vcf /ABSOLUTE/PATH/TO/dbsnp . vcf (Required : fo r MuSE and LoFreq)
−−cosmic−vcf /ABSOLUTE/PATH/TO/cosmic . vcf (Optional)

9 −−inc lus ion−region /ABSOLUTE/PATH/TO/Capture_region . bed (Optional . Will assume whole
genome from the . f a i f i l e without i t .)

−−exclusion−region /ABSOLUTE/PATH/TO/ Blackl ist_region . bed (Optional)
11 −−minimum−VAF (Optional . The minimum VAF cuto f f fo r VarDict and VarScan2 .

Defaults are 0.10 fo r VarScan2 and 0.05 for VarDict) .
−−action qsub (Optional : the command preceding the .cmd s c r i p t s . Default i s

echo)
13 −−threads 36 (Optional fo r multiThreads and inva l id fo r singleThread : evenly

s p l i t the genome into 36 BED f i l e s . Default = 1) .
−−run−mutect2 (Optional f l a g to invoke MuTect2)

15 −−run−varscan2 (Optional f l a g to invoke VarScan2)
−−run−jointsnvmix2 (Optional f l a g to invoke JointSNVMix2 . Not for s i n g l e .)

17 −−run−somaticsniper (Optional f l a g to invoke SomaticSniper . Not for s i n g l e .)
−−run−vardict (Optional f l a g to invoke VarDict)

19 −−run−muse (Optional f l a g to invoke MuSE. Not for s i n g l e .)
−−run−l o f r e q (Optional f l a g to invoke LoFreq)

21 −−run−s c a lp e l (Optional f l a g to invoke Scalpe l)
−−run−s t r e lka (Optional f l a g to invoke Stre lka)

23 −−run−somaticseq (Optional f l a g to invoke SomaticSeq . This s c r i p t always be echo ’ ed ,
as i t should not be submitted unt i l a l l the c a l l e r s above complete) .

−−output−directory /ABSOLUTE/PATH/TO/OUTPUT_DIRECTORY (Required)
25 −−somaticseq−directory SomaticSeq_Output_Directory (Optional . The directory name of the

SomaticSeq output . Default = SomaticSeq) .
−−train−somaticseq (Optional f l a g to invoke SomaticSeq to produce c l a s s i f i e r s i f

ground truth VCF f i l e s are provided . Only recommended in singleThread mode , because otherwise
i t ’ s better to combine the output TSV f i l e s f i r s t , and then tra in c l a s s i f i e r s .)

27 −−somaticseq−action (Optional . What to do with the somaticseq .cmd. Default i s echo .
Only do ”qsub” i f you have already completed a l l the mutation c a l l e r s , but want to run
SomaticSeq at a d i f f e r e n t se t t ing .)

−−snv−c l a s s i f i e r Trained_sSNV_Classifier . RData (Optional i f there i s a c l a s s i f e r you
want to use)

29 −−indel−c l a s s i f i e r Trained_sINDEL_Classifier . RData (Optional i f there i s a c l a s s i f e r
you want to use)

12

−−truth−snv sSNV_ground_truth . vcf (Optional i f there i s a ground truth , and
everything e l s e w i l l be labe led f a l s e pos i t i ve)

31 −−truth−inde l sINDEL_ground_truth . vcf (Optional i f there i s a ground truth , and
everything e l s e w i l l be labe led f a l s e pos i t i ve)

−−exome (Optional f l a g fo r Stre lka)
33 −−sca lpe l−two−pass (Optional parameter fo r Scalpe l . Default = f a l s e .)

−−mutect2−arguments (Extra parameters to pass onto Mutect2 , e . g . , −−mutect2−arguments ’
−−initial_tumor_lod 3.0 −−log_somatic_prior −5.0 −−min_base_quality_score 20 ’)

35 −−mutect2−f i l t e r −arguments (Extra parameters to pass onto FilterMutectCal ls)
−−varscan−arguments (Extra parameters to pass onto VarScan2)

37 −−varscan−pileup−arguments (Extra parameters to pass onto samtools mpileup that creates pi leup
f i l e s fo r VarScan)

−−jsm−train−arguments (Extra parameters to pass onto JointSNVMix2 ’ s t ra in command)
39 −−jsm−c l a s s i f y−arguments (Extra parameters to pass onto JointSNVMix2 ’ s c l a s s i f y command)

−−somaticsniper−arguments (Extra parameters to pass onto SomaticSniper)
41 −−vardict−arguments (Extra parameters to pass onto VarDict)

−−muse−arguments (Extra parameters to pass onto MuSE)
43 −−l o f req−arguments (Extra parameters to pass onto LoFreq)

−−sca lpe l−discovery−arguments (Extra parameters to pass onto Scalpe l ’ s discovery command)
45 −−sca lpe l−export−arguments (Extra parameters to pass onto Scalpe l ’ s export command)

−−stre lka−config−arguments (Extra parameters to pass onto Stre lka ’ s conf ig command)
47 −−stre lka−run−arguments (Extra parameters to pass onto Strekla ’ s run command)

−−somaticseq−arguments (Extra parameters to pass onto SomaticSeq . Wrapper . sh)
49 −−somaticseq−algorithm Default i s ada , but you may also use xgboost .

5.3.5 What does the single-threaded command do

• For each flag such as --mutect2, --jointsnvmix2,, --strelka, a run script ending with .cmd will
be created in /ABSOLUTE/PATH/TO/RESULTS/logs. By default, these .cmd scripts will only be
created, and their file path will be printed on screen. However, if you do “--action qsub”, then these
scripts will be submitted via the qsub command. The default action is “echo.”

– Each of these .cmd script correspond to a mutation caller you specified. They all use docker
images.

– We may improve their functionalities in the future to allow more tunable parameters. For the
initial releases, POC and reproducibility take precedence.

• If you do “--somaticseq,” the somaticseq script will be created in /ABSOLUTE/PATH/TO/RE-
SULTS/SomaticSeq/logs. However, it will not be submitted until you manually do so after each of
these mutation callers is finished running.

– In the future, we may create more sophisticated solution that will automatically solves these
dependencies. For the initial release, we’ll focus on stability and reproducibility.

• Due to the way those run scripts are written, the Sun Grid Engine’s standard error log will record
the time the task completes (i.e., Done at 2017/10/30 29:03:02), and it will only do so when the task
is completed with an exit code of 0. It can be a quick way to check if a task is done, by looking at
the final line of the standard error log file.

5.3.6 What does the multi-threaded command do

It’s very similar to the single-threaded WES solution, except the job will be split evenly based on genomic
lengths.

13

• If you specified “--threads 36,” then 36 BED files will be created. Each BED file represents 1/36 of
the total base pairs in the human genome (obtained from the .fa.fai file, but only including 1, 2, 3,
..., MT, or chr1, chr2, ..., chrM contigs). They are named 1.bed, 2.bed, ..., 36.bed, and will be cre-
ated into /ABSOLUTE/PATH/TO/RESULTS/1, /ABSOLUTE/PATH/TO/RESULTS/2, ..., /AB-
SOLUTE/PATH/TO/RESULTS/36. You may, of course, specify any number. The default is 12.

• For each mutation callers you specify (with the exception of SomaticSniper), a script will be created
into /ABSOLUTE/PATH/TO/RESULTS/1/logs, /ABSOLUTE/PATH/TO/RESULTS/2/logs, etc.,
with partial BAM input. Again, they will be automatically submitted if you do “--action qsub.”

• Because SomaticSniper does not support partial BAM input (one would have to manually split the
BAMs in order to parallelize SomaticSniper this way), the above mentioned procedure is not applied
to SomaticSniper. Instead, a single-threaded script will be created (and potentially qsub’ed) into
/ABSOLUTE/PATH/TO/RESULTS/logs.

– However, because SomaticSniper is by far the fastest tool there, single-thread is doable even for
WGS. Even single-threaded SomaticSniper will likely finish before parallelized Scalpel. When
I benchmarked the DREAM Challenge Stage 3 by splitting it into 120 regions, Scalpel took 10
hours and 10 minutes to complete 1/120 of the data. SomaticSniper took a little under 5 hours
for the whole thing.

– After SomaticSniper finishes, the result VCF files will be split into each of the /ABSOLUTE/-
PATH/TO/RESULTS/1, /ABSOLUTE/PATH/TO/RESULTS/2, etc.

• JointSNVMix2 also does not support partial BAM input. Unlike SomaticSniper, it’s slow and takes
massive amount of memory. It’s not a good idea to run JointSNVMix2 on a WGS data. The only
way to do so is to manually split the BAM files and run each separately. We may do so in the fu-
ture, but JointSNVMix2 is a 5-year old that’s no longer being supported, so we probably won’t
bother.

• Like the single-threaded case, a SomaticSeq run script will also be created for each partition like
/ABSOLUTE/PATH/TO/RESULTS/1/SomaticSeq/logs, but will not be submitted until you do
so manually.

– For simplicity, you may wait until all the mutation calling is done, then run a command like
1 f ind /ABSOLUTE/PATH/TO/RESULTS −name ’ somaticseq∗ .cmd ’ −exec qsub {} \ ;

6 Use BAMSurgeon to create training data

For your convenience, we have created a couple of wrapper scripts that can generate the run script to cre-
ate training data using BAMSurgon at somaticseq/utilities/dockered_pipelines/bamSimulator. Descrip-
tions and example commands can be found in the README there.

This pipeline is used to spike in in silico somatic mutations into existing BAM files in order to create a
training set for somatic mutations.

After the in silico data are generated, you can use the somatic mutation pipeline on the training data to
generate the SomaticSeq classifiers.

Classifiers built on training data work if the training data is similar to the data you want to predict. Ide-
ally, the training data are sequenced on the same platform, same sample prep, and similar depth of cover-
age as the data of interest.

14

https://github.com/bioinform/somaticseq/tree/master/somaticseq/utilities/dockered_pipelines/bamSimulator
https://github.com/bioinform/somaticseq/blob/master/somaticseq/utilities/dockered_pipelines

This method is based on BAMSurgeon, slightly modified into our own fork for some speedups.

The proper citation for BAMSurgeon is Ewing AD, Houlahan KE, Hu Y, et al. Combining tumor genome
simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat Methods.
2015;12(7):623-30.

6.1 Requirements

• Have internet connection, and able to pull and run docker images from docker.io

• Have cluster management system such as Sun Grid Engine, so that the ”qsub” command is valid

6.2 Three scenario to simulate somatic mutations

Which scenario to use depend on the data sets available to you.

6.2.1 When you have sequencing replicates of normal samples

This is our approach to define the high-confidence somatic mutations “truth set” for SEQC2 Consortium’s
cancer reference samples [14].

In this case, in silico mutations will be spiked into Replicate_002.bam. Since Replicate_002.bam and
Replicate_001.bam are otherwise the same sample, any mutations detected that you did not spike in are
false positives. The following command is a single-thread example.

1 $PATH/TO/somaticseq/ u t i l i t i e s /dockered_pipelines/bamSimulator/BamSimulator_singleThread . sh \
−−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa \

3 −−tumor−bam−in /ABSOLUTE/PATH/TO/Replicate_001 .bam \
−−normal−bam−in /ABSOLUTE/PATH/TO/Replicate_002 .bam \

5 −−tumor−bam−out syntheticTumor .bam \
−−normal−bam−out syntheticNormal .bam \

7 −−s p l i t−proportion 0.5 \
−−num−snvs 20000 \

9 −−num−i nde l s 8000 \
−−min−vaf 0.0 \

11 −−max−vaf 1.0 \
−−l e f t−beta 2 \

13 −−r ight−beta 5 \
−−min−variant−reads 2 \

15 −−output−dir /ABSOLUTE/PATH/TO/ tra in ingSet \
−−action qsub

BamSimulator_*.sh creates semi-simulated tumor-normal pairs out of your input tumor-normal pairs. The
”ground truth” of the somatic mutations will be synthetic_snvs.vcf, synthetic_indels.vcf in the output
directory.

For multi-thread job (WGS), use BamSimulator_multiThreads.sh instead. See below for additional op-
tions and parameters.

A schematic of the BAMSurgeon simulation procedure

15

https://github.com/adamewing/bamsurgeon
https://github.com/ltfang-bina/bamsurgeon

6.2.2 This example mimicks DREAM Challenge

DREAM Somatic Mutation Calling Challenge was an international competition to find algorithms that
gave the most accurate performances.

In that case, a high-coverage BAM file is randomly split into two. One of which is designated normal, and
the other one is designated tumor where mutations will be spiked in. Like the previous example, any mu-
tations found between the designated tumor and designated normal are false positive, since not only are
they from the same sample, but also from the same sequencing run. This example will not capture false
positives as a result of run-to-run biases if they exist in your sequencing data. It will, however, still cap-
ture artefacts related to sequencing errors, sampling errors, mapping errors, etc.
$PATH/TO/somaticseq/ u t i l i t i e s /dockered_pipelines/bamSimulator/BamSimulator_multiThreads . sh \

2 −−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa −−tumor−bam−in /ABSOLUTE/PATH/TO/
highCoverageGenome .bam −−tumor−bam−out syntheticTumor .bam −−normal−bam−out syntheticNormal .
bam −−s p l i t−proportion 0.5 −−num−snvs 10000 −−num−i nde l s 8000 −−num−svs 1500 −−min−vaf 0.0
−−max−vaf 1.0 −−l e f t−beta 2 −−r ight−beta 5 −−min−variant−reads 2 −−output−dir /ABSOLUTE/PATH/
TO/ tra in ingSet −−threads 24 −−action qsub −−s p l i t−bam −−indel−r ea l i gn −−merge−output−bams

The –split-bem will randomly split the high coverage BAM file into two BAM files, one of which is desig-
nated normal and the other one designated tumor for mutation spike in. The –indel-realign is an option
that will perform GATK Joint Indel Realignment on the two BAM files. You may or may not invoke it de-
pending on your real data sets. The –merge-output-bams creates another script that will merge the BAM
and VCF files region-by-region. It will need to be run manually after all the spike in is done.

A schematic of the DREAM Challenge simulation procedure

16

https://www.synapse.org/#!Synapse:syn312572/wiki/70726

6.2.3 Merge and then split the input tumor and normal BAM files

$PATH/TO/somaticseq/ u t i l i t i e s /dockered_pipelines/bamSimulator/BamSimulator_multiThreads . sh \
2 −−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa −−tumor−bam−in /ABSOLUTE/PATH/TO/Tumor_Sample .bam

−−normal−bam−in /ABSOLUTE/PATH/TO/Normal_Sample .bam −−tumor−bam−out syntheticTumor .bam −−
normal−bam−out syntheticNormal .bam −−s p l i t−proportion 0.5 −−num−snvs 30000 −−num−i nde l s
10000 −−num−svs 1500 −−min−vaf 0.0 −−max−vaf 1.0 −−l e f t−beta 2 −−r ight−beta 5 −−min−variant−
reads 2 −−output−dir /ABSOLUTE/PATH/TO/ tra in ingSet −−threads 24 −−action qsub −−merge−bam −−
s p l i t−bam −−indel−r ea l i gn −−merge−output−bams

The --merge-bam will merge the normal and tumor BAM files into a single BAM file. Then, --split-bem
will randomly split the merged BAM file into two BAM files. One of which is designated normal, and one
of which is designated tumor. Synthetic mutations will then be spiked into the designated tumor to create
”real” mutations. This is the approach described in our 2017 AACR Abstract.

A schematic of the simulation procedure

6.3 Parameters and Options

−−genome−re f e rence /ABSOLUTE/PATH/TO/human_reference . fa (Required)
2 −−s e l e c t o r /ABSOLUTE/PATH/TO/capture_region . bed (BED f i l e to l imi t where mutation spike

in w i l l be attempted)
−−tumor−bam−in Input BAM f i l e (Required)

4 −−normal−bam−in Input BAM f i l e (Optional , but required i f you want to merge i t with the tumor
input)

−−tumor−bam−out Output BAM f i l e fo r the designated tumor a f t e r BAMSurgeon mutation spike in
6 −−normal−bam−out Output BAM f i l e fo r the designated normal i f −−s p l i t−bam i s chosen
−−s p l i t−proportion The fact ion of to ta l reads desginated to the normal . (Defaut = 0.5)

8 −−num−snvs Number of SNVs to spike into the designated tumor
−−num−i nde l s Number of INDELs to spike into the designated tumor

10 −−num−svs Number of SVs to spike into the designated tumor (Default = 0)
−−min−depth Minimum depth where spike in can take place

12 −−max−depth Maximum depth where spike in can take place
−−min−vaf Minimum VAF to simulate

14 −−max−vaf Maximum VAF to simulate
−−l e f t−beta Left beta of beta d i s t r ibut ion for VAF

16 −−r ight−beta Right beta of beta d i s t r ibut ion for VAF
−−min−variant−reads Minimum number of variant−supporting reads fo r a succe s s fu l spike in

17

http://dx.doi.org/10.1158/1538-7445.AM2017-386

18 −−output−dir Output directory
−−merge−bam Flag to merge the tumor and normal bam f i l e input

20 −−s p l i t−bam Flag to s p l i t BAM f i l e fo r tumor and normal
−−clean−bam Flag to go through the BAM f i l e and remove reads where more than 2 i d e n t i c a l

read names are present , or reads where i t s read length and CIGAR str ing do not match . This
was necessary for some BAM f i l e s downloaded from TCGA. However , a proper pair−end BAM f i l e
should not have the same read name appearing more than twice . Use th i s only when necessary as

i t f i r s t so r t s BAM f i l e by qname , goes through the cleaning procedure , then re−sort by
coordinates .

22 −−indel−r ea l i gn Conduct GATK Joint Indel Realignment on the two output BAM f i l e s . Instead of
syntheticNormal .bam and syntheticTumor .bam, the f i n a l BAM f i l e s w i l l be syntheticNormal .
JointRealigned .bam and syntheticTumor . JointRealigned .bam.

−−seed Random seed . Pick any integer fo r r eproduc ib i l i ty purposes .
24 −−threads Sp l i t the BAM f i l e s evenly in N regions , then process each (pair) of sub−BAM

f i l e s in p a r a l l e l .
−−action The command preceding the run s c r i p t created into /ABSOLUTE/PATH/TO/

BamSurgeoned_SAMPLES/ logs . ”qsub” i s to submit the s c r i p t in SGE system . Default = echo

6.3.1 –merge-bam / –split-bam / –indel-realign

If you have sequenced replicate normal, that’s the best data set for training. You can use one of the nor-
mal as normal, and designate the other normal (of the same sample) as tumor. Use --indel-realign to in-
voke GATK IndelRealign.

When you have a normal that’s roughly 2X the coverage as your data of choice, you can split that into
two halves. One designated as normal, and the other one designated as tumor. That DREAM Challenge’s
approach. Use --split-bam --indel-realign options.

Another approach is to merge the tumor and normal data, and then randomly split them as described
above. When you merge the tumor and normal, the real tumor mutations are relegated as germline or
noise, so they are considered false positives, because they are supposed to be evenly split into the desig-
nated normal. To take this approach, use --merge-bam --split-bam --indel-realign options.

Don’t use --indel-realign if you do not use indel realignment in your alignment pipeline.

In some BAM files, there are reads where read lengths and CIGAR strings don’t match. Spike in will fail
in these cases, and you’ll need to invoke --clean-bam to get rid of these problematic reads.

You can control and visualize the shape of target VAF distribution with python command:
1 import scipy . s ta t s as s ta t s

import numpy as np
3 import matplotl ib . pyplot as p l t

5 le ftBeta , rigthBeta = 2 ,5
minAF, maxAF = 0 ,1

7 x = np . l inspace (0 ,1 ,101)
y = stat s . beta . pdf (x , le ftBeta , rigthBeta , loc = minAF, sca l e = minAF + maxAF)

9 _ = plt . plot (x , y)

18

6.4 To create SomaticSeq classifiers

After the mutation simulation jobs are completed, you may create classifiers with the training data with
the following command:

See our somatic mutation pipeline for more details.
1 makeSomaticScripts . py paired \
−−normal−bam /ABSOLUTE/PATH/TO/ tra in ingSet /syntheticNormal .bam \

3 −−tumor−bam /ABSOLUTE/PATH/TO/ tra in ingSet /syntheticTumor .bam \
−−genome−re f e rence /ABSOLUTE/PATH/TO/GRCh38. fa \

5 −−output−directory /ABSOLUTE/PATH/TO/ tra in ingSet /somaticMutationPipeline \
−−dbsnp−vcf /ABSOLUTE/PATH/TO/dbSNP.GRCh38. vcf \

7 −−truth−snv /ABSOLUTE/PATH/TO/ tra in ingSet /synthetic_snvs . vcf \
−−truth−inde l /ABSOLUTE/PATH/TO/ tra in ingSet / synthetic_indels . l e f tA l i gn . vcf \

9 −−threads 16 \
−−somaticseq−algorithm xgboost \

11 −−train−somaticseq \
−−run−mutect2 −−run−vardict −−run−muse −−run−l o f r e q −−run−s t re lka2 −−run−somaticseq

7 Release Notes

Make sure training and prediction use the same SomaticSeq version, or at least make sure the different
minor version changes do not change the results significantly.

1. Version 1.0 Version used to generate data in the manuscript and Stage 5 of the ICGC-TCGA
DREAM Somatic Mutation Challenge, where SomaticSeq’s results were #1 for INDEL and #2 for
SNV.
In the original manuscript, VarDict’s var2vcf_somatic.pl script was used to generate VarDict VCFs,
and subsequently “-filter somatic” was used for SSeq_merged.vcf2tsv.py. Since then (including
DREAM Challenge Stage 5), VarDict recommends var2vcf_paired.pl over var2vcf_somatic.pl, and
subsequently “-filter paired” was used for SSeq_merged.vcf2tsv.py. The difference in SomaticSeq re-
sults, however, is pretty much negligible.

2. Version 1.1 Automated the SomaticSeq.Wrapper.sh script for both training and prediction mode. No
change to any algorithm.

3. Version 1.2 Have implemented the following improvement, mostly for indels:

• SSeq_merged.vcf2tsv.py can now accept pileup files to extract read depth and DP4 (reference
forward, reference reverse, alternate forward, and alternate reverse) information (mainly for in-
dels). Previously, that information can only be extracted from SAMtools VCF. Since the SAM-
tools or HaplotypeCaller generated VCFs hardly contain any indel information, this option im-
proves the indel model. The SomaticSeq.Wrapper.sh script is modified accordingly.

• Extract mapping quality (MQ) from VarDict output if this information cannot be found in
SAMtools VCF (also mostly benefits the indel model).

• Indel length now positive for insertions and negative for deletions, instead of using the absolute
value previously.

4. Version 2.0

19

https://github.com/bioinform/somaticseq/blob/master/somaticseq/utilities/dockered_pipelines
https://www.synapse.org/#!Synapse:syn312572/wiki/72943
https://www.synapse.org/#!Synapse:syn312572/wiki/72943

• Removed dependencies for SAMtools and HaplotypeCaller during feature extraction.
SSeq_merged.vcf2tsv.py extracts those information (plus more) directly from BAM files.

• Allow not only VCF file, but also BED file or a list of chromosome coordinate as input format
for SSeq_merged.vcf2tsv.py, i.e., use -mybed or -mypos instead of -myvcf.

• Instead of a separate step to annotate ground truth, that can be done directly by
SSeq_merged.vcf2tsv.py by supplying the ground truth VCF via -truth.

• SSeq_merged.vcf2tsv.py can annotate dbSNP and COSMIC information directly if BED file or
a list of chromosome coordinates are used as input in lieu of an annotated VCF file.

• Consolidated feature sets, e.g., removed some redundant features
• Fixed a bug: if JointSNVMix2 is not included, the values should be “NaN” instead of 0’s. This

is to keep consistency with how we handle all other caller decision.

5. Version 2.0.2

• Incorporated LoFreq.
• Used getopt to replace getopts in the SomaticSeq.Wrapper.sh script to allow long options.

6. Version 2.1.2

• Properly handle cases when multiple ALT’s are calls in the same position. The VCF files can
either contain multiple calls in the ALT column (i.e., A,G), or have multiple lines correspond-
ing to the same position (one line for each variant call). Some functions were significantly re-
written to allow this.

• Incorporated Scalpel.
• Deprecated HaplotypeCaller and SAMTools dependencies completely as far as feature genera-

tion is concerned.
• The Wrapper script removed SnpSift/SnpEff dependencies. Those information can be directly

obtained during the SSeq_merged.vcf2tsv.py step. Also removed some additional legacy steps
that has become useless since v2 (i.e., score_Somatic.Variants.py). Added a step to check the
correctness of the input. The v2.1 and 2.1.1 had some typos in the wrapper script, so only de-
scribing v2.1.2 here.

7. Version 2.2

• Added MuTect2 support.

8. Version 2.2.1

• InDel_3bp now stands for indel counts within 3 bps of the variant site, instead of exactly 3 bps
from the variant site as it was previously (likewise for InDel_2bp).

• Collapse MQ0 (mapping quality of 0) reads supporting reference/variant reads into a single
metric of MQ0 reads (i.e., tBAM_MQ0 and nBAM_MQ0). From experience, the number of
MQ0 reads is at least equally predictive of false positive calls, rather than distinguishing if
those MQ0 reads support reference or variant.

• Obtain SOR (Somatic Odds Ratio) from BAM files instead of VarDict’s VCF file.
• Fixed a typo in the SomaticSeq.Wrapper.sh script that did not handle inclusion region cor-

rectly.

9. Version 2.2.2

• Got around an occasional unexplained issue in then ada package were the SOR is sometimes
categorized as type, by forcing it to be numeric.

20

• Defaults PASS score from 0.7 to 0.5, and make them tunable in the SomaticSeq.Wrapper.sh
script (--pass-threshold and --lowqual-threshold).

10. Version 2.2.3

• Incorporated Strelka2 since it’s now GPLv3.
• Added another R script (ada_model_builder_ntChange.R) that uses nucleotide substitution

pattern as a feature. Limited experiences have shown us that it improves the accuracy, but it’s
not heavily tested yet.

• If a COSMIC site is labeled SNP in the COSMIC VCF file, if_cosmic and CNT will be labeled
as 0. The COSMIC ID will still appear in the ID column. This will not change any results be-
cause both of those features are turned off in the training R script.

• Fixed a bug: if JointSNVMix2 is not included, the values should be “NaN” instead of 0’s. This
is to keep consistency with how we handle all other callers.

11. Version 2.2.4

• Resolved a bug in v2.2.3 where the VCF files of Strelka INDEL and Scalpel clash on GATK
CombineVariants, by outputting a temporary VCF file for Strelka INDEL without the sample
columns.

• Caller classification: consider if_Scalpel = 1 only if there is a SOMATIC flag in its INFO.

12. Version 2.2.5

• Added a dockerfile. Docker repo at https://hub.docker.com/r/lethalfang/somaticseq/.
• Ability to use vcfsort.pl instead of GATK CombineVariants to merge VCF files.

13. Version 2.3.0

• Moved some scripts to the utilities directory to clean up the clutter.
• Added the split_Bed_into_equal_regions.py to utilities, which will split a input BED file into

multiple BED files of equal size. This is to be used to parallelize large WGS jobs.
• Made compatible with MuTect2 from GATK4.
• Removed long options for the SomaticSeq.Wrapper.sh script because it’s more readable this

way.
• Added a script to add “GT” field to Strelka’s VCF output before merging it with other VCF

files. That was what caused GATK CombineVariants errors mentioned in v2.2.4’s release notes.
• Added a bunch of scripts at utilities/dockered_pipelines that can be used to submit (requiring

Sun Grid Engine or equivalent) dockerized pipeline to a computing cluster.

14. Version 2.3.1

• Improve the automated run script generator at utilities/dockered_pipelines.
• No change to SomaticSeq algorithm

15. Version 2.3.2

• Added run script generators for dockerized BAMSurgeon pipelines at utilities/dock-
ered_pipelines/bamSurgeon

• Added an error message to r_scripts/ada_model_builder_ntChange.R when TrueVari-
ants_or_False don’t have both 0’s and 1’s. Other than this warning message change, no other
change to SomaticSeq algorithm.

21

16. Version 2.4.0

• Restructured the utilities scripts.
• Added the utilities/filter_SomaticSeq_VCF.py script that “demotes” PASS calls to LowQual

based on a set of tunable hard filters.
• BamSurgeon scripts invokes modified BamSurgeon script that splits a BAM file without the

need to sort by read name. This works if the BAM files have proper read names, i.e., 2 and
only 2 identical read names for each paired-end reads.

• No change to SomaticSeq algorithm

17. Version 2.4.1

• Updated some docker job scripts.
• Added a script that converts some items in the VCF’s INFO field into the sample field, to pre-

cipitate the need to merge multiple VCF files into a single multi-sample VCF, i.e., utilities/re-
format_VCF2SEQC2.py.

• No change to SomaticSeq algorithm

18. Version 2.5.0

• In modify_VJSD.py, get rid of VarDict’s END tag (in single sample mode) because it causes
problem with GATK CombineVariants.

• Added limited single-sample support, i.e., ssSomaticSeq.Wrapper.sh is the wrapper script. sin-
gleSample_callers_singleThread.sh is the wrapper script to submit single-sample mutation
caller scripts.

• Added run scripts for read alignments and post-alignment processing, i.e,. FASTQ → BAM, at
utilities/dockered_pipelines/alignments.

• Fixed a bug where the last two CD4 numbers were both alternate concordant reads in the out-
put VCF file, when the last number should’ve been alternate discordant reads.

• Changed the output file names from Trained.s(SNV|INDEL).vcf and
Untrained.s(SNV|INDEL).vcf to SSeq.Classified.s(SNV|INDE).vcf and
Consensus.s(SNV|INDEL).vcf. No change to the actual tumor-normal SomaticSeq algorithm.

• Added utilities/modify_VarDict.py to VarDict’s “complex” variant calls (e.g., GCA>TAC) into
SNVs when possible.

• Modified r_scripts/ada_model_builder_ntChange.R to allow you to ignore certain fea-
tures, e.g., r_scripts/ada_model_builder_ntChange.R Training_Data.tsv nBAM_REF_BQ
tBAM_REF_BQ SiteHomopolymer_Length ...
Everything after the input file are features to be ignored during training.
Also added r_scripts/ada_cross_validation.R.

19. Version 2.5.1

• Additional passable parameters options to pass extra parameters to somatic mutation callers.
Fixed a bug where the “two-pass” parameter is not passed onto Scalpel in multiThreads scripts.

• Ignore Strelka_QSS and Strelka_TQSS for indel training in the SomaticSeq.Wrapper.sh script.

20. Version 2.5.2

• Ported some pipeline scripts to singularities at utilities/singularities.

21. Version 2.6.0

22

• VarScan2_Score is no longer extracted from VarScan’s output. Rather, it’s now calculated di-
rectly using Fisher’s Exact Test, which reproduces VarScan’s output, but will have a real value
when VarScan2 does not output a particular variant.

• Incorporate TNscope’s output VCF into SomaticSeq, but did not incorporate TNscope caller
into the dockerized workflow because we don’t have distribution license.

22. Version 2.6.1

• Optimized memory for singularity scripts.
• Updated utilities/bamQC.py and added utilities/trimSoftClippedReads.py (removed soft-

clipped bases on soft-clipped reads)
• Added some docker scripts at utilities/dockered_pipelines/QC

23. Version 2.7.0

• Added another feature: consistent/inconsistent calls for paired reads if the position is covered
by both forward and reverse reads. However, they’re excluded as training features in Somatic-
Seq.Wrapper.sh script for the time being.

• Change non-GCTA characters to N in VarDict.vcf file to make it conform to VCF file specifica-
tions.

24. Version 2.7.1

• Without –gatk $PATH/TO/GenomeAnalysisTK.jar in the SomaticSeq.Wrapper.sh script, it
will use utilities/getUniqueVcfPositions.py and utilities/vcfsorter.pl to (in lieu of GATK3 Com-
bineVariants) to combine all the VCF files.

• Fixed bugs in the docker/singularities scripts where extra arguments for the callers are not cor-
rectly passed onto the callers.

25. Version 2.7.2

• Make compatible with .cram format
• Fixed a bug where Strelka-only calls are not considered by SomaticSeq.

26. Version 2.8.0

• The program is now designed to crash if the VCF file(s) are not sorted according to the .fasta
reference file.

27. Version 2.8.1

• Fixed a bug in the ssSomaticSeq.Wrapper.sh script (single-sample mode), where the SNV algo-
rithm weren’t looking for SNV VCF files during merging when using utilities/getUniqueVcfPo-
sitions.py, causing empty SNV files. For previous commands (invoking –gatk for CombineVari-
ants), the results have never changed.

28. Version 3.0.0
Refactored the codes.

• The wrapper scripts written in bash script (i.e., SomaticSeq.Wrapper.sh and ssSomatic-
Seq.Wrapper.sh) are replaced by somaticseq/run_somaticseq.py, though they’re still kept for
backward-compatibility.

• Allow parallel processing using somaticseq_parallel.py

29. Version 3.0.1

23

• Fixed a bug that didn’t handle Strelka/LoFreq indel calls correctly in somaticseq/com-
bine_callers.py module.

30. Version 3.1.0

• When splitting MuTect2 files into SNV and INDEL, make sure either the ref base or the alt
base (but not both) consists of a single base, i.e., discarding stuff like GCAA>GCT.

• Fixed a bug introduced in v3.0.1 that caused the program to handle .vcf.gz files incorrectly.
• Incorporated Platypus into paired mode.

31. Version 3.1.1

• Fixed some bash scripts involved with single-sample multi-thread callers.
• vcfModifier/splitVcf.py to handle multi-allelic calls better for indels.

32. Version 3.2.0

• Re-wrote in Python some somatic caller run script generators that were once written in bash, at
utilities/dockered_pipelines/makeSomaticScripts.py. See Section 5 for details.

• Fixed setup.py, even though running ./setup.py install is optional. You can still run scripts
from where you downloaded SomaticSeq.

33. Version 3.2.1

• Fixed the TA2CG feature in ada_model_builder_ntChange.R.

34. Version 3.3.0

• Added support for xgboost (extreme gradient boosting) as an optional substitute for ada (adap-
tive boosting).

• Also fixed the TA2CG feature in ada_model_predictor.R
• Changed tree depth to 16 in ada model training because internal benchmarking found this to be

optimal.
• Modified utilities/dockered_pipelines/create_tumor_normal_run_scripts.py and utilities/dock-

ered_pipelines/create_tumor_only_run_scripts.py to pre-process bed file for VarDict (i.e.,
limit each line of bed file to 5000 bp) no matter what. Originally the process is triggered if av-
erage bp per line was greater than 50,000 bp. That assumption broke down in multi-threaded
tasks, when the final sub bed file contained many decoy or non-human contigs that drove the
average bp/line in a bed file below 50,000 bp, and the resulting job caused VarDict to run out
of memory. This is to rectify that issue.

• Occasionally in bamSurgeon workflow, the synthetic_indels.vcf file will contain non-GCTAN
characters in the REF column, causing subsequent GATK LeftAlign to fail. Created the utili-
ties/dockered_pipelines/bamSimulator/bamSurgeon/convert_nonStandardBasesInVcfs.py script
to take care of that.

35. Version 3.4.0

• Added linguistic sequence complexity (LC) described by Troyanskaya OG et. al. as an addi-
tional genomic feature [15]. Thus, models trained on this version are not compatible with tsv
files created previously becuase it will include a feature not found in previous versions. How-
ever, models created from previous version can still be used here. LC is calculated over a 80-bp
window spanning the variant site. In addition, LC is also calculated for 80-bp windows on the
left and on the right of the variant position, and we record the lower number. The value is con-
verted to Phred in the output.

• Fixed a bug in xgboost mode where training and testing used different feature sets.

24

• Change ada classifier’s file name from *.ntChange.Classifier.RData to *.ada.Classifier.RData to
better distinguish them from xgboost.

36. Version 3.4.1

• Fixed a bug where indels within 3 bps of a position double-counted indels within 1 bp of the
position.

37. Version 3.4.2

• Modified the linguistic sequence complexity calculation to limit the substring to 20-bp. It in-
creases runtime with no sacrifice of accuracy.

• Fixed a bug where the indels nearest to a position was not calculated correctly when there are
soft-clipped bases in a read.

38. Version 3.5.0

• Replaced z-scores from scipy’s ranksums with p-values from scipy’s mannwhitneyu, mostly be-
cause the mannwhitneyu corrects for discrete values. Thus, models built prior to this version is
no longer compatible with it due to different features.

39. Version 3.5.1

• Fixed a minor bug when num_caller in somaticseq/somatic_vcf2tsv.py and somaticseq/sin-
gle_sample_vcf2tsv.py was not reset when there are multiple variant calls in the same genomic
position. So, some variant calls that should not be output into the .tsv because num_caller did
not meet the threshold will be output into the .tsv file. However, the features are still reported
correctly, so the classifications will still be correct.

40. Version 3.5.2

• Got around VarDict’s latest output VCF file that are incompatible with bedtools by removing
the offending lines. Extra steps (may remove later if it becomes unnecessary) were added to
somaticseq/combine_callers.py.

• Noticed that the xgboost script in R is not compatible with version 1.0+ xgboost library in R.

41. Version 3.6.0

• Re-wrote the XGBoost routine to use the xgboost library in python (somaticseq/so-
matic_xgboost.py), and made it the default algorithm for SomaticSeq because xgboost in
python is orders of magnitudes faster than AdaBoost in R. Added dependencies for python’s
pandas and xgboost libraries. Thus, if you do not intend to use the AdaBoost package in
R (it does not support multi-threaded learning and requires large amount of memory), R
is not required. To keep using AdaBoost, make sure to invoke -algo ada. As a script, so-
matic_xgboost.py can also be run on its own, with the ability to take in multiple SomaticSeq
TSV files. It will combine the TSV files before training (for prediction mode there can only be
one input TSV file). Some parametes are also tunable. Run somatic_xgboost.py train -h or so-
matic_xgboost.py predict -h to see full options.

• Remove obsolete SomaticSeq.Wrapper.sh and ssSomaticSeq.Wrapper.sh scripts. They were obso-
lete since v3.0.0.

42. Version 3.6.1

• Re-wrote the makeSomaticScripts.py module. It now allows the scripts to be executed in paral-
lel where it was created by invoking --run-workflow.

• Added makeAlignmentScripts.py module for alignment workflow.

25

43. Version 3.6.2

• Fixed a bug where linguistic sequence complexity could not be calculated for variant positions
at the edge of a chromosome.

• Added --by-caller option for makeSomaticScripts.py, such that time-consuming tools will be
executed first to optimize run time. Be careful about memory usages.

44. Version 3.6.3

• Change xgboost’s default max_depth to 8, because after going through some parameters 8 is
better than 12 most of the times, though xgboost parameters are all tunable. See options by
running in command line: (somatic_xgboost.py train -h).

• Fixed the --somaticseq-algorithm option in makeSomaticScripts.py. The default is xgboost but
you can use ada.

• Used shell=True option in many subprocess.call instances, to allow more complicated arguments
to be passed into, e.g., --action ’qsub -l walltime=100:00:00’.

• Moved utilities, genomicFileHandler, and vcfModifier directories into somaticseq/somaticseq to
prevent potential package conflicts.

• Modified somaticseq/annotate_caller.py to handle cases where Strelka’s VCF file does not have
the SomaticEVS field.

45. Version 3.7.0

• Allow input of any arbitrary VCF files in addition to the callers we have already incorporated
(listed in Introduction), e.g., --arbitrary-snvs callerX_snv.vcf callerY_snv.vcf --arbitrary-
indels callerA_indel.vcf callerB_indel.vcf. Must seperate the SNVs and indels into separate
VCF files before using them as input to SomaticSeq. If you have a VCF file that has com-
bined SNV and indels, you may use this script included in our repo: somaticseq/somaticse-
q/vcfModifier/splitVcf.py -infile combined_variants.vcf -snv snvs.vcf -indel indels.vcf. Input can
be both .vcf or .vcf.gz. Output will be .vcf. For the “arbitrary input VCF files,” calls labeled
as REJECT in the FILTER field will not be counted and will be assigned a value of 0 in the
if_Caller_X field. Calls labeled as LowQual will be assigned a value of 0.1. Calls without any
filter label will be counted as a bona fide call for that particular VCF file and assigned a value
of 1, i.e., as though it is a PASS call. So modify your VCF files accordigly if needed.

• Changed intersectBed to bedtools intersect in some of the shell commands.
• In dockerized somatic mutation workflow, updated broadinstitute/gatk:4.0.5.2 to broadinsti-

tute/gatk:4.2.4.1.

46. Version 3.7.1

• Fix dbsnp, cosmic, and exclusion-region input parameter dictionary for makeSomaticScripts.py.

47. Version 3.7.2

• Change -u $UID to -u $(id -u):$(id -g) for docker command in somaticseq/utilities/dock-
ered_pipelines/container_option.py.

• Most robustly check sorting order when VCF files are being read. Raise Exception when they
are not sorted according to the reference (implemented in the catchup_multilines function in
somaticseq/genomicFileHandler/genomic_file_handlers.py).

48. Version 3.7.3

26

• Allow xgboost hyperparameters be passed into somaticseq_parallel.py, e.g., somatic-
seq_parallel.py --somaticseq-train --extra-hyperparameters scale_pos_weight:0.1 seed:100. Pre-
viously, they could only be passed into somatic_xgboost.py. Beware, however, multi-argument
options like --extra-hyperparameters and --features-excluded cannot be placed immediately be-
fore paired or single, because otherwise it’ll try to include paired/single as an argument instead
of invoking paired/single mode.

8 Contact Us

For suggestions, bug reports, feature requests, or technical support, please go ahead and post them as is-
sues in https://github.com/bioinform/somaticseq/issues. The developers will be alerted when issues are
created there.

References
[1] Kristian Cibulskis, Michael S Lawrence, Scott L Carter, Andrey Sivachenko, David Jaffe, Carrie

Sougnez, Stacey Gabriel, Matthew Meyerson, Eric S Lander, and Gad Getz. Sensitive detection of
somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol, 31(3):213–219,
2013.

[2] Daniel C Koboldt, Qunyuan Zhang, David E Larson, Dong Shen, Michael D McLellan, Ling Lin,
Christopher A Miller, Elaine R Mardis, Li Ding, and Richard K Wilson. VarScan 2: somatic mutation
and copy number alteration discovery in cancer by exome sequencing. Genome Res., 22(3):568–76,
2012.

[3] Andrew Roth, Jiarui Ding, Ryan Morin, Anamaria Crisan, Gavin Ha, Ryan Giuliany, Ali Bashashati,
Martin Hirst, Gulisa Turashvili, Arusha Oloumi, Marco A Marra, Samuel Aparicio, and Sohrab P
Shah. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/-
tumour paired next-generation sequencing data. Bioinformatics, 28(7):907–13, 2012.

[4] David E Larson, Christopher C Harris, Ken Chen, Daniel C Koboldt, Travis E Abbott, David J Dool-
ing, Timothy J Ley, Elaine R Mardis, Richard K Wilson, and Li Ding. SomaticSniper: identification
of somatic point mutations in whole genome sequencing data. Bioinformatics, 28(3):311–7, 2012.

[5] Zhongwu Lai, Aleksandra Markovets, Miika Ahdesmaki, Brad Chapman, Oliver Hofmann, Robert
McEwen, Justin Johnson, Brian Dougherty, J Carl Barrett, and Jonathan R Dry. VarDict: a novel
and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res.,
44(11):e108, 2016.

[6] Yu Fan, Liu Xi, Daniel S T Hughes, Jianjun Zhang, Jianhua Zhang, P Andrew Futreal, David A
Wheeler, and Wenyi Wang. MuSE: accounting for tumor heterogeneity using a sample-specific error
model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol.,
17(1):178, 2016.

[7] Andreas Wilm, Pauline Poh Kim Aw, Denis Bertrand, Grace Hui Ting Yeo, Swee Hoe Ong,
Chang Hua Wong, Chiea Chuen Khor, Rosemary Petric, Martin Lloyd Hibberd, and Niranjan Na-
garajan. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population
heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res., 40(22):11189–201, 2012.

[8] Giuseppe Narzisi, Jason A O’Rawe, Ivan Iossifov, Han Fang, Yoon-Ha Lee, Zihua Wang, Yiyang Wu,
Gholson J Lyon, Michael Wigler, and Michael C Schatz. Accurate de novo and transmitted indel de-
tection in exome-capture data using microassembly. Nat. Methods, 11(10):1033–6, 2014.

27

https://github.com/bioinform/somaticseq/issues

[9] Sangtae Kim, Konrad Scheffler, Aaron L Halpern, Mitchell A Bekritsky, Eunho Noh, Morten Käll-
berg, Xiaoyu Chen, Yeonbin Kim, Doruk Beyter, Peter Krusche, and Christopher T Saunders.
Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods, 15(8):591–594,
2018.

[10] Donald Freed, Renke Pan, and Rafael Aldana. Tnscope: Accurate detection of somatic mutations
with haplotype-based variant candidate detection and machine learning filtering. bioRxiv, 2018.

[11] Helga Thorvaldsdottir, James T. Robinson, and Jill P. Mesirov. Integrative Genomics Viewer (IGV):
high-performance genomics data visualization and exploration. Brief Bioinform, 14(2):178–192, 2013.

[12] Li Tai Fang, Pegah Tootoonchi Afshar, Aparna Chhibber, Marghoob Mohiyuddin, Yu Fan, John C.
Mu, Greg Gibeling, Sharon Barr, Narges Bani Asadi, Mark B. Gerstein, and et al. An ensemble ap-
proach to accurately detect somatic mutations using somaticseq. Genome Biology, 16(1), 2015.

[13] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for comparing genomic fea-
tures. Bioinformatics, 26(6):841–842, 2010.

[14] Li Tai Fang, Bin Zhu, Yongmei Zhao, Wanqiu Chen, Zhaowei Yang, Liz Kerrigan, Kurt J. Langen-
bach, Maryellen de Mars, Charles Lu, Kenneth B. Idler, Howard Jacob, Yuanting Zheng, Luyao Ren,
Ying Yu, Erich B Jaeger, Gary P. Schroth, Ogan Demir Abaan, Keyur Talsania, Justin Lack, Tsai-
Wei Shen, Zhong Chen, Seta Stanbouly, Bao Tran, Jyoti Shetty, Yuliya Kriga, Daoud M. Meerzaman,
Cu Nguyen, Virginie Petitjean, Marc Sultan, Margaret C. Cam, Monika Mehta, Tiffany Hung, Eric
Peters, Rasika Kalamegham, Sayed Mohammad Ebrahim Sahraeian, Marghoob Mohiyuddin, Yun-
fei Guo, Lijing Yao, Lei Song, Hugo Y. K. Lam, Jiri Drabek, Petr Vojta, Roberta Maestro, Daniela
Gasparotto, Sulev Kõks, Ene Reimann, Andreas Scherer, Jessica Nordlund, Ulrika Liljedahl, Roder-
ick V Jensen, Mehdi Pirooznia, Zhipan Li, Chunlin Xiao, Stephen T. Sherry, Rebecca Kusko, Mal-
colm Moos, Eric Donaldson, Zivana Tezak, Baitang Ning, Weida Tong, Jing Li, Penelope Duerken-
Hughes, Claudia Catalanotti, Shamoni Maheshwari, Joe Shuga, Winnie S Liang, Jonathan J. Keats,
Jonathan Adkins, Erica E. Tassone, Victoria L. Zismann, T. K. McDaniel, Jeff Trent, Jonathan Foox,
Daniel J. Butler, Christopher E. Mason, Huixiao Hong, Leming Shi, Charles Wang, Wenming Xiao,
and Somatic Mutation Working Group of Sequencing Quality Control Phase II Consortium. Estab-
lishing community reference samples, data and call sets for benchmarking cancer mutation detection
using whole-genome sequencing. Nature Biotechnology, 39(9):1151–1160, 2021.

[15] Olga G Troyanskaya, Ora Arbell, Yair Koren, Gad M Landau, and Alexander Bolshoy. Sequence com-
plexity profiles of prokaryotic genomic sequences: A fast algorithm for calculating linguistic complex-
ity. Bioinformatics, 18(5):679–688, 2002.

28

	Introduction
	Dependencies
	Docker images

	Download and install SomaticSeq
	How to run SomaticSeq
	SomaticSeq Training Mode
	SomaticSeq Prediction Mode
	SomaticSeq Consensus Mode

	SomaticSeq as a Python library
	Module: somaticseq_parallel.py
	Module: somaticseq/run_somaticseq.py
	Module: somaticseq/somatic_vcf2tsv.py and somaticseq/single_sample_vcf2tsv.py
	Module: somaticseq/SSeq_tsv2vcf.py
	Machine learning modules
	SomaticSeq Training
	Prediction with trained classifiers

	utilities modules
	Module: split_Bed_into_equal_regions
	Module: lociCounterWithLabels

	To run the dockerized somatic mutation callers
	Location
	Requirements
	Example commands
	Tumor-Normal Mode
	SomaticSeq Training
	SomaticSeq Prediction
	Parameters
	What does the single-threaded command do
	What does the multi-threaded command do

	Use BAMSurgeon to create training data
	Requirements
	Three scenario to simulate somatic mutations
	When you have sequencing replicates of normal samples
	This example mimicks DREAM Challenge
	Merge and then split the input tumor and normal BAM files

	Parameters and Options
	–merge-bam / –split-bam / –indel-realign

	To create SomaticSeq classifiers

	Release Notes
	Contact Us

