
CADNA for FORTRAN source codes

Laboratoire d’Informatique de Paris 6
Sorbonne Université

Paris, France
http://cadna.lip6.fr

cadna-team@lip6.fr

2

Contents

1 Introduction 5

2 Reference guide 7

2.1 Aim of the CADNA library 7

2.2 Stochastic types . 9

2.3 Intrinsic functions . 9

2.3.1 Conversion functions 9

2.3.2 Numerical functions 10

2.3.3 Mathematical functions 11

2.4 Relational operators . 11

2.5 CADNA specific functions . 12

2.5.1 Initializing and closing the library 12

2.5.2 Obtaining a string from a result with its evaluated
accuracy . 13

2.5.3 Obtaining the number of exact significant digits of a
stochastic variable . 14

2.5.4 Testing if a variable is a computational zero 14

2.5.5 Obtaining a standard value from a stochastic variable 14

2.5.6 Enabling and disabling the detection of instabilities . 15

2.5.7 Reducing accuracy of initial data 15

3 User guide 17

3.1 Declaration of the CADNA library 18

3.2 Initialization and termination of the CADNA library 18

3.3 Declaration of variables . 18

3.3.1 Changes in the type of variables 18

3.3.2 Changes in the name of some variables 19

3.4 DATA for initializing stochastic variables 19

3.5 Changes in assignments or arithmetic operations 19

3

3.5.1 Conversions between usual types and stochastic types 19
3.5.2 Standard arithmetic operators 20
3.5.3 Vector operators and functions 20

3.6 Changes in reading statements 21
3.7 Changes in printing statements 21
3.8 Changes in intrinsic functions 22

3.8.1 Changes of non generic names 22
3.8.2 Changes in the call of min and max functions 22
3.8.3 Suppression of intrinsic functions declarations 22

3.9 Changes in statement functions 22
3.10 Constants passed as function arguments 23
3.11 An example of numerical code and its modified version 24

3.11.1 Standard Fortran source code 24
3.11.2 Source code using the CADNA library 25
3.11.3 Example of execution without CADNA 27
3.11.4 Example of execution with CADNA 27

3.12 Numerical debugging with CADNA 28

4 Installation instructions and test runs 31
4.1 Installation instructions . 31
4.2 Test runs of the examplesFortran directory 33

4.2.1 Example 1: a rational fraction function of two variables 33
4.2.2 Example 2: solving a second order equation 33
4.2.3 Example 3: computing a determinant 34
4.2.4 Example 4: computing a second order recurrent se-

quence . 35
4.2.5 Example 5: computing a root of a polynomial 37
4.2.6 Example 6: solving a linear system 38
4.2.7 Example 7: when CADNA fails 40

4

Chapter 1

Introduction

The IEEE standard floating-point arithmetic [50] only approximates exact
arithmetic. So, when a scientific code is run on a computer which respects
the IEEE standard, its results are not exact; the approximation introduces a
round-off error for each arithmetic statement, as always does the assignment
statement (because registers have more digits than memory words), when
the value cannot be exactly coded. Validation of numerical results is a
real problem for scientific computing. Too long ignored by users, it is now
recognized as an essential topic.
The CADNA environment [40, 26, 14] enables you to develop robust, high
performance, numerical applications. CADNA can help investigate unusual
behavior of numerical program written in C or FORTRAN.
CADNA is based on the CESTAC (Contrôle et Estimation Stochastique des
Arrondis de Calcul) method [47, 37, 34]. This method studies round-off er-
ror propagation from a stochastic point of view. The basic idea is to use a
random rounding to obtain several samples of each result of any arithmetic
operation. The number of common bits in these samples estimates the num-
ber of exact significant bits in the floating-point result. The deterministic
arithmetic of the computer is replaced by a so-called “Discrete Stochastic
Arithmetic” (DSA) [14].
This manual serves as a tool to enable the use of the options and flexibil-
ity provided by CADNA on numerical applications. CADNA (Control of
Accuracy and Debugging Numerical Applications) is a library devoted to
programs written in C or FORTRAN. CADNA allows, during the execution
of the code:

• the estimation of the error due to round-off error propagation,

• the detection of numerical instabilities,

5

• the checking of the sequencing of the program (tests and branchings),

• the estimation of the accuracy of all intermediate computations.

The next chapters are described below:

• Chapter 2 is a reference guide that describes types, subroutines and
functions that compose the CADNA library.

• Chapter 3 is a user’s guide that describes step by step how to (slightly)
modify a source code to use the Discrete Stochastic Arithmetic imple-
mented in the library. It also gives a complete example of numerical
code, with the original and modified versions.

• Chapter 4 gives instructions for the installation of CADNA, describes
how to test the library and comments on the results of the test pro-
grams.

6

Chapter 2

Reference guide

2.1 Aim of the CADNA library

The arithmetic commonly used on computers for scientific programming is
floating-point arithmetic. This arithmetic only approximates exact arith-
metic. Consequently each arithmetic statement generates a round-off error.

So when a correct program with regard to syntax and logical organization
is running on a computer, every produced result is unavoidably given with
a so called “computing error”. This error is due to all the round-off errors
produced along the elementary statements required to obtain the result.
Sometimes the error may be such that the final result is really wrong (and
not only inaccurate).

The aim of the CADNA library presented here is to answer the following
question:

What is the computing error due to floating-point arithmetic on
the results produced by any program running on a computer?

So, we want to estimate the round-off error on each result with a technique
which is independent on the program and hence on the algorithm used.

CADNA is a library, more precisely it is a set of data types, functions and
subroutines that may be used in any program written in Fortran. It imple-
ments the CESTAC method in a synchronous way. With a few modifications
in the source code, this library has for main purpose to estimate the effects
of round-off error propagation on every numerical computed result. It also
allows to study the effects of the initial data uncertainties upon computed
results, as described in 2.5.

7

This implementation consists in replacing the computer deterministic arith-
metic by a stochastic arithmetic and in performing N times (N = 3) each
elementary operation before executing the next statement.

Thus, it is as N identical programs were simultaneously running on N syn-
chronized computers each of them using random arithmetic. So for each
result, we obtain N samples from which we compute the mean value and
the standard deviation which characterize the corresponding stochastic num-
ber. The value of this number is defined as the mean value of the different
samples. The accuracy of this number, i.e. its number of exact significant
digits, is estimated using the mean value and the standard deviation. If
all the samples are equal to zero or if the number of exact significant dig-
its is less than one, then the number is defined as a computational zero.
This means that a computational zero is either the mathematical zero or a
number without any significance.

So round-off error propagation can be analysed step by step. Numerical
instabilities and non-significant results are detected. The branchings based
on order relations may also be controlled. Therefore, this synchronous im-
plementation of the CESTAC method allows to validate any scientific code
during its run.

With the CADNA library, one can run any scientific code using random
arithmetic, without having to rewrite or notably change the initial code.
This tool has been written in Fortran 90 which is an important language for
scientific computation. This language enables to create new numerical types
with their operators; furthermore the designating symbol of an operator can
be choosen among the primitive symbols in the language (+, ∗,...). In other
words, this language enables the so called “operator overloading”. Thanks
to these new properties, CADNA has been developed for Fortran programs.

Thus a new numerical type has been created, the stochastic number; it
is nothing else that a N-set (N = 3) containing perturbed floating-point
values. All the arithmetic operators (+, −, ∗, /) have been overloaded, also
for arrays of rank 1, in such a manner that when an operator is used, the
operands are N-sets and the returned result is a randomly perturbed N-set.
The relational operators (>, ≥, <, ≤, ==) are overloaded satisfying the
properties described in [14, 26]. All standard functions defined in Fortran
(SIN, COS, EXP, ...) have also been overloaded. Likewise, in/out statements
have been modified, mainly the printing statement which gives as a result
the mean value of the N-set written with only its exact significant digits.

Furthermore, in order to enable the evaluation of the weight of uncertainties

8

on initial data on the results, a function called data st may be used to perturb
data as illustrated in 2.5.7.

During the run of a program, as soon as a numerical anomaly (for example
the product of non-significant numbers, or a relational test involving a non-
significant result) is produced, some special counters are updated. At the
end of the run, all information about numerical anomalies is printed on the
standard output.

If no anomaly has been detected, it means that the program runs without
any numerical problem. Results are then given with their accuracy (number
of exact significant digits).

If some numerical anomalies have been detected, they must be analysed.
Helped by the debugger associated with the compiler, the user may retrieve
the statements that produced the anomalies and determine if changes in the
code are required.

The stochastic types and the overloaded or newly defined functions of the
library are presented in the next sections.

2.2 Stochastic types

In this version, CADNA provides two new numerical types, the stochastic
types:

type (single st) for stochastic variables in single precision
stochastic type associated with real

type (double st) for stochastic variables in double precision
stochastic type associated with double precision

2.3 Intrinsic functions

We present here how the intrinsic functions defined in Fortran have been
extended for stochastic types.

2.3.1 Conversion functions

The int and nint functions:
They take a parameter of stochastic type and return an integer. The knowl-
edge of the accuracy is lost.

If X is a stochastic variable consisting in N samples Xi,

9

• int(X) is computed as int(
∑N

i=1 Xi

N)

• nint(X) is computed as nint(
∑N

i=1 Xi

N).

The aint and anint functions:
They take a parameter of stochastic type. The output value has the same
type as the input parameter. The control of the accuracy is preserved.

If X (respectively Y) is a stochastic variable consisting in N samples Xi

(respectively Yi),

• the statement Y=aint(X) is equivalent to Yi = aint(Xi), i = 1, ..., N

• the statement Y=anint(X) is equivalent to Yi = anint(Xi), i = 1, ..., N .

The real function:
It takes a parameter of stochastic type and returns a value of type single st.

The dble function:
It takes a parameter of stochastic type and returns a value of type double st.

2.3.2 Numerical functions

The aimag and conjg functions:
These functions are not overloaded, since this version of CADNA has no
stochastic type corresponding to the standard complex type.

The abs function:
Given a single st argument, this function returns a positive single st value.
Given a double st argument, it returns a positive double st value. It accepts
an array of stochastic numbers of rank 1 as an argument.

The min and max functions:
The min and max functions have been extended in a more restricted way
than the previous functions: if they contain a stochastic argument, they
must only have two arguments and these two arguments must have the same
precision (single or double). So if there is a stochastic argument, the only
(unordered) possible type couples are (real, single st), (single st, single st),
(double precision, double st), (double st, double st).

The following table gives some examples of correct and wrong calls.

10

min(S,D) S of single st type incorrect
D of double st type

min(S,XD) S of single st type incorrect
XD of double precision or double st type

min(S1,S2) S1 and S2 of single st type correct

min(S,XS) S of single st type correct
XS of real type

min(D1,D2) D1 and D2 of double st type correct

min(D,XD) D of double st type correct
XD of double precision type

The min and max functions accept arrays of stochastic numbers of rank 1 as
arguments with the same rules as for scalar arguments.

The sign, mod and dim functions:
These functions accept stochastic arguments. The rules are the same as for
the min and max functions. No stochastic array is accepted.

2.3.3 Mathematical functions

These are the following functions:
**, sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh.
They accept parameters of single st or double st stochastic type. The output
value has the same type as the input parameter.

For the ** operator, the rules for arguments are the same as for the min and
max functions. No stochastic array is accepted.

The sqrt function accepts a stochastic array of rank 1 as an argument.

Mathematical functions are defined, for stochastic types, by their generic
name only (for instance there is no stochastic version of dsin).

2.4 Relational operators

Comparison operators are overloaded and accept stochastic types and a
mixture of standard real or integer types with different precisions. They
take into account the accuracy of the operands.

Thus when the expression a .EQ. 0. is true, it means that a is a computational
zero, i.e.

• a is a mathematical zero

11

or

• a has no exact significant digit.

Similarly, when the expression a .GT. b is true, it means that

• a-b is NOT a computational zero, i.e. has at least one exact significant
digit

and

•
∑N

i=1 ai
N >

∑N
i=1 bi
N .

2.5 CADNA specific functions

The previous part described how some standard Fortran statements are
slightly affected when using the CADNA tool. Now we present functions that
are specific to the library. Note that the subroutines cadna init, cadna end
and str have to appear, respectively to initialize the library, to close the
library and to print the results with their accuracy. The other functions
nb significant digit, computed zero, old type, cadna enable, cadna disable and
data st will appear in some applications.

2.5.1 Initializing and closing the library

The cadna init subroutine has to be called once, early in the main program.

This subroutine has four integer arguments:

cadna init(numb instability, cadna instability, cancel level, init random).

With the first argument which must always be present, the user chooses the
maximum number of numerical instabilities that will be detected.

• if numb instability = −1, all the instabilities will be detected

• if numb instability = 0, no instability will be detected

• if numb instability = M (strictly positive M), the M first instabilities
will be detected.

The other arguments are optional.

The second argument allows the user to determine what kind of instabilities
will be enabled or disabled.

12

There are 8 integer parameters in the library:
cadna branching,
cadna mathematic,
cadna intrinsic,
cadna cancellation,
cadna division,
cadna power,
cadna multiplication,
cadna all.

By default, the detection of all types of instability is enabled. The
user has only to specify what kind of instability is to be disabled by passing,
as the second argument, the addition of the chosen parameters. cadna all
disables all the detections of instabilities.

The third argument corresponds to the following. An unstable cancellation
is pointed out when the difference between the number of exact significant
digits (i.e. digits which are not affected by round-off errors) of the result
of an addition or a subtraction and the minimimum of the number of exact
significant digits of the two operands is greater than the cancel level argu-
ment. The default value of this argument is 4. In other words, when one
loses more than cancel level significant digits in one addition or subtraction,
CADNA considers that a catastrophic cancellation has been detected (if the
detection of this kind of instability is enabled).

The last argument is an integer which is used to initialize some internal
variables for random arithmetic. The default value for this argument is 51.

The cadna end subroutine ”closes” the library and prints to the standard
output the result of the detection of numerical instabilities.

2.5.2 Obtaining a string from a result with its evaluated ac-
curacy

The str function has a stochastic argument and returns a string containing
the scientific notation of this argument; only the exact significant digits
appear in the string. Thus accuracy is easy to read. Note that there is no
guarantee on the last digit provided by the str function. When the argument
has no significant digit, the string that is returned is @.0.

The number of characters in the output string is:

14 for a single st variable ;
23 for a double st variable ;

13

Example:

type (single st) :: X,Y,Z
...
write(*,*) ’X = ’,str(X)
write(*,*) ’Y = ’,str(Y)
write(*,*) ’Z = ’,str(Z)

may yield for instance:

X = 0.123456E+00 (6 exact significant digits)
Y = 0.123E+00 (3 exact significant digits)
Z = @.0 (no exact significant digit, computational zero)

2.5.3 Obtaining the number of exact significant digits of a
stochastic variable

The nb significant digit function has a stochastic argument and returns an
integer giving the number of exact significant decimal digits of this argument
when the function is called.

At some point nb significant digit(x) may return 7; later during the run it
may return 5. If x becomes non-significant then nb significant digit(x) re-
turns 0.

2.5.4 Testing if a variable is a computational zero

The computed zero function has one stochastic argument and returns a log-
ical value. The computed zero function returns TRUE if its argument is a
computational zero, i.e. its argument is a mathematical zero or has no exact
significant digit.

2.5.5 Obtaining a standard value from a stochastic variable

The old type function has a stochastic (single st or double st) argument and
returns a value of the associated standard type (real or double precision).
The output value is the mean value of the N samples. Obviously, for the
statement
y = old type(x)
where y is real and x is single st any information on the accuracy of x is lost
when using y.

14

2.5.6 Enabling and disabling the detection of instabilities

The cadna enable and cadna disable subroutines are used respectively to en-
able and disable the detection of one kind of instability. Each of these
subroutines has one integer argument, which may be one of the seven fol-
lowing integer parameters defined in the CADNA library:
cadna branching,
cadna mathematic,
cadna intrinsic,
cadna cancellation,
cadna division,
cadna power,
cadna multiplication.

2.5.7 Reducing accuracy of initial data

The generic function read is adapted to standard floating-point variables
which must be transformed into stochastic variables (cf 3.6). These stochas-
tic variables have the maximal accuracy represented by N equal samples.
However these data are often known with less significant digits than pro-
vided by their internal representation. The data st function allows the user
to introduce some effective uncertainties on these data, reducing their initial
accuracy. So the accuracy of results depends in some way on the accuracy
of initial data.
The data st subroutine has three arguments: call data st(X,ERX, IER).
The first argument is stochastic and must be present.
The second one is an optional real argument that contains the relative or
absolute uncertainty of the first one. The last argument determines the kind
of the uncertainty: relative or absolute.
If X is a stochastic variable and ERX is a real value strictly less than 1, the
call data st(X,ERX, IER) statement modifies the values of the N samples in
X according to the following formula:

Xi = Xi ∗ (1 + ERX ∗ALEA) for i = 1 to N if IER = 0

Xi = Xi + ERX ∗ALEA for i = 1 to N if IER = 1

ALEA is a random variable uniformly distributed between -1 and 1.
If ERX is 0, no perturbation takes place as if the statement was suppressed.
If ERX is absent, perturbation will concern only the last bit of the mantissa.
If IER is absent, it is like IER = 0. The data st subroutine without ERX

15

must be used when data are considered as exact but cannot be exactly coded
in the memory.

16

Chapter 3

User guide

The use of the CADNA library involves seven steps:

• declaration of the CADNA library for the compiler,

• initialization of the CADNA library,

• substitution of the type REAL or DOUBLE PRECISION by stochastic
types in variable declarations,

• possible changes in the input data if perturbation is desired, to take
into account uncertainty in initial values,

• change of output statements to print stochastic results with their ac-
curacy,

• possible use of CADNA functions to evaluate the number of exact
significant digits or access the current ordinary value (losing knowledge
of current accuracy)

• termination of the CADNA library.

The reader may refer to the sample program given in 3.11 with two versions,
i.e. the initial Fortran code and the code modified to be compiled with the
CADNA library.

The last paragraph of this chapter deals with the dynamical nu-
merical debugging that CADNA allows.

17

3.1 Declaration of the CADNA library

The
use CADNA
pseudo-statement must be placed before any declaration of stochastic vari-
ables, in order for stochastic types and overloaded or new functions or sub-
routines to be found by the compiler.
As usual in a Fortran 90 source code this statement must be added:

• after one among the following lines

– PROGRAM that begins an application

– MODULE that begins a module

– SUBROUTINE if it begins an “isolated subroutine”, i.e. a subrou-
tine that is not declared into the scope of a program or a module
declaration

– FUNCTION if it begins an “isolated function”, i.e. a function that
is not declared into the scope of a program or a module declaration

• before any declaration

3.2 Initialization and termination of the CADNA
library

The call to the cadna init subroutine must be inserted immediately after the
main program declaration statements to initialize the random arith-
metic. For more information about the arguments of the cadna init subrou-
tine, see 2.5.1.
The call to the cadna end subroutine must be the last executed program
statement.

3.3 Declaration of variables

3.3.1 Changes in the type of variables

To control the numerical quality of a variable, just replace its standard type
by the associated stochastic type.

18

Example:

standard declaration CADNA declaration

real :: a,b type (single st) :: a,b
double :: c type (double st) :: c
real, dimension(6) :: d,e,f type (single st), dimension(6) :: d,e,f

When the real declaration is implicit, add this line as a general declaration:
implicit type (single st) (A-H,O-Z)

3.3.2 Changes in the name of some variables

In a Fortran program, the name of a variable can be the name of an intrinsic
function. For instance in a Fortran source code, such a declaration is valid:
integer :: nint, dim, max
Intrinsic functions are overloaded in the CADNA library. Therefore it is
not allowed anymore and, if the name of a variable is also the name of an
intrinsic function, it must be changed in the entire source code.

3.4 DATA for initializing stochastic variables

As previously described, each stochastic variable is represented by N differ-
ent variables of the standard associated type.
So initializing stochastic variables in DATA sections is possible by writing N
occurrences of the standard initial value.

Example :

standard declaration CADNA declaration

real :: don type (single st) :: don
data don/3.245/ data don%x, don%y, don%z /3*3.245/

3.5 Changes in assignments or arithmetic opera-
tions

3.5.1 Conversions between usual types and stochastic types

In assignment statements, conversions are implicit from Fortran real, integer
or double precision types to and from stochastic types (because the = oper-
ator has been overloaded), but for conversions from stochastic types
to standard types, the knowledge of accuracy is lost.

19

An immediate conversion from a stochastic type to the corresponding stan-
dard type may also be performed using the old type function, which also
loses all knowledge of accuracy.

When a variable is set to a value which cannot be coded exactly on computer,
the data st function must be used.

Example:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: x,y type (single st) :: x,y

call cadna init(-1)
x=1.234 x=1.234

call data st(x)
y=-3. y=-3.

3.5.2 Standard arithmetic operators

As previously described, all arithmetic operators on floating-point variables
are overloaded and arithmetic expressions without functions do not have
to be modified. Expressions may contain a mixture of stochastic types,
standard types and integer types.

With the following declarations:

type (single st) :: a,b
type (double st) :: c
the statement c = a * a + b * 3 needs no change.

The result of expressions containing stochastic terms will be of stochastic
type. As for standard types, double st prevails over single st.
So with the previous declarations, c = a * c + b * 3 needs no change.

3.5.3 Vector operators and functions

In Fortran 90, some arithmetic operators and intrinsic functions are general-
ized to act on arrays. In this version of CADNA, only arithmetic operators
and the abs, min, max, sqrt functions are overloaded for stochastic arrays.
Standard or stochastic scalar types may be mixed with stochastic arrays if
they have the same precision.

The assignment statement has been overloaded for stochastic arrays with
the same rules as above.

20

3.6 Changes in reading statements

The generic function read is adapted to standard floating-point variables,
which must be transformed into stochastic variables.

Example:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: x real :: xaux

type (single st) :: x
call cadna init(-1)

.....
read (5,*) x read (5,*) xaux

x=xaux

3.7 Changes in printing statements

Before printing each stochastic variable, it must be transformed in a string
by the str function. The required length is 14 for a single st variable and 23
for a double st variable. Therefore formats should be modified.

For example, if a real variable x becomes a single st variable, the printing
instruction can be modified as follows:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: x type (single st) :: x

call cadna init(-1)
... ...
write(6,100) x write(6,100) str(x)
100 format(1x,’x = ’,f8.3) 100 format(1x,’x = ’,a14)

If standard formats (write(*,*)...) are used, the only change is the use of the
str function.

21

3.8 Changes in intrinsic functions

3.8.1 Changes of non generic names

For each intrinsic function, only its generic version has been overloaded in
the CADNA library. So each intrinsic function that is not generic must be
replaced by its generic name.
For instance, any call to the alog function must be replaced by a call to the
log function.

3.8.2 Changes in the call of min and max functions

With CADNA, the min and max functions must have two arguments (for
more details, see 2.3). Consequently a call to the min or max function with
more than two arguments must be changed.

Example:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: a,b,c,d type (single st) :: a,b,c,d

call cadna init(-1)
... ...
d=max(a,b,c) d=max(max(a,b),c)

3.8.3 Suppression of intrinsic functions declarations

Intrinsic functions are sometimes declared as in the following example:
intrinsic max, abs
As intrinsic functions are overloaded in the CADNA library, they are no
longer intrinsic. Therefore such declarations must be removed from the
original source code.

3.9 Changes in statement functions

Statement functions are defined with the “=” operator. With CADNA such
functions must be written in a standard way, because the “=” operator has
not been overloaded for the definition of statement functions.

22

Example:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: f,x,y,a type (single st) :: f
f(x,y) = x + a*y call cadna init(-1)
a=2./3.
.....

function f(x,y)
use cadna
type (single st) :: f,x,y,a
a=2./3.
call data st(a)
f = x + a*y
return
end function f

3.10 Constants passed as function arguments

Function definitions and function calls must sometimes be adapted because
stochastic parameters of functions must not be passed by value.

Example:

Initial Fortran Modified statements
statements for CADNA

use cadna
real :: f, a type (single st) :: aux, f, a

call cadna init(-1)
aux=2.

a=3.14*f(2.) a=3.14*f(aux)
... ...

function f(x) function f(x)
use cadna

real :: f, x type (single st) :: f, x
... ...
end function f end function f

23

3.11 An example of numerical code and its modi-
fied version

The following source codes use the Gauss-Jordan method to invert a matrix.

3.11.1 Standard Fortran source code

program Inversion
implicit none
integer n
parameter (n=4)
real M(n,n)
write(*,*)’Initial matrix:’
call InitMat(M,n)
call InvertMat(M,n)
write(*,*)
write(*,*)’Inverted matrix:’
call DisplayMat(M,n)
end program Inversion

! Initialization:
subroutine InitMat(M,n)
implicit none
integer i,j,n
real M(n,n)
do i=1,n

read(*,*)(M(i,j),j=1,n)
enddo
return
end subroutine InitMat

! Inversion using the Gauss-Jordan method:

subroutine InvertMat(M,n)
implicit none
integer n,i,j,k
real M(n,n),temp
do k=1,n

temp=M(k,k)
M(k,k)=1.
do j=1,n

24

M(k,j)=M(k,j)/temp
end do
do i=1,n

if (i.ne.k) then
temp=M(i,k)
M(k,k)=0.
do j=1,n

M(i,j)=M(i,j)-temp*M(k,j)
end do

endif
end do

enddo
return
end subroutine InvertMat

! Display of a matrix:
subroutine DisplayMat(M,n)
implicit none
integer n,i,j
real M(n,n)
10 format(10E15.7)
do i=1,n

write(*,10)(M(i,j),j=1,n)
enddo
return
end subroutine DisplayMat

3.11.2 Source code using the CADNA library

program Inversion
use cadna
implicit none
integer n
parameter (n=4)
type (single st) M(n,n)
call cadna init(-1)
write(*,*)’Initial matrix:’
call InitMat(M,n)
call InvertMat(M,n)
write(*,*)

25

write(*,*)’Inverted matrix:’
call DisplayMat(M,n)
call cadna end()
end program Inversion

! Initialization:
subroutine InitMat(M,n)
use cadna
implicit none
integer i,j,n
type (single st) M(n,n)
real aux(n)
do i=1,n

read(*,*)(aux(j),j=1,n)
do j=1,n

M(i,j)=aux(j)
enddo

enddo
return
end subroutine InitMat

! Inversion using the Gauss-Jordan method:
subroutine InvertMat(M,n)
use cadna
implicit none
integer n,i,j,k
type (single st) M(n,n),temp
do k=1,n

temp=M(k,k)
M(k,k)=1.
do j=1,n

M(k,j)=M(k,j)/temp
end do
do i=1,n

if (i.ne.k) then
temp=M(i,k)
M(k,k)=0.
do j=1,n

M(i,j)=M(i,j)-temp*M(k,j)
end do

26

endif

end do

enddo

return

end subroutine InvertMat

! Display of a matrix:
subroutine DisplayMat(M,n)

use cadna
implicit none

integer n,i,j

type (single st) M(n,n)

10 format(10a15)

do i=1,n

write(*,10)(str(M(i,j)),j=1,n)

enddo

return

end subroutine DisplayMat

3.11.3 Example of execution without CADNA

Initial matrix:

1. 2.E3 0.5 4.

3.E-5 1. 2. 8.

4. 0.5 3.E-8 2.

2. 3. 0.5 5.E9

Inverted matrix:

0.1000063E+01 -0.1177399E-03 -0.4254787E+04 0.4998230E+00

-0.5000938E-03 0.1000118E+01 0.2127644E+01 0.7497645E-03

0.2500460E-03 -0.4700588E+00 -0.6802303E-05 0.3999618E+01

0.2499951E-12 0.4699354E-10 0.1700738E-05 0.0000000E+00

3.11.4 Example of execution with CADNA

Initial matrix:

1. 2.E3 0.5 4.

3.E-5 1. 2. 8.

4. 0.5 3.E-8 2.

2. 3. 0.5 5.E9

27

Inverted matrix:

0.1000062E+01 @.0 -0.4254788E+04 0.50E+00

-0.500093E-03 0.1000117E+01 0.2127643E+01 0.75E-03

0.250045E-03 -0.4700587E+00 -0.6802302E-05 0.3999617E+01

0.250E-12 0.468E-10 0.1700738E-05 0.0000000E+00

3.12 Numerical debugging with CADNA

One can enable the detection of the following instabilities:
UNSTABLE DIVISION(S),
UNSTABLE POWER FUNCTION(S),
UNSTABLE MULTIPLICATION(S),
UNSTABLE BRANCHING(S),
UNSTABLE MATHEMATICAL FUNCTION(S),
UNSTABLE INTRINSIC FUNCTION(S),
UNSTABLE CANCELLATION(S).

The library counts the number of detections for each instability. The global
information for these detections is printed out with the cadna end subrou-
tine, see 2.5.1.
The accuracy estimated by CADNA is valid if there is no deep numerical
anomaly during the computation, i.e. no UNSTABLE DIVISION, UNSTABLE
POWER FUNCTION and UNSTABLE MULTIPLICATION, see [40, 26, 14].

The meaning of the message is:

• unstable division: the divisor is non-significant

• unstable power function: one operand of the ** operator is non-
significant

• unstable multiplication: both operands are non-significant

• unstable branching: the difference between the two operands is
non-significant (a computational zero).

The chosen branching statement is associated with the equality

• unstable mathematical function:

in the LOG, SQRT, EXP or LOG10 function, the argument is
non-significant.

28

• unstable intrinsic function:

1. in the INT or NINT function: the function INT (or NINT)
returns different values for each component of the stochastic ar-
gument.

2. in the ABS function: the argument is non-significant.

3. in the SIGN or MOD function: the second argument is non-
significant.

• unstable cancellation: as explained in 2.5.1, an unstable cancella-
tion is pointed out when the difference between the number of exact
significant digits (i.e. digits which are not affected by round-off errors)
of the result of an addition or a subtraction and the minimimum of
the number of exact significant digits of the two operands is greater
than the cancel level argument. The default value of this argument
is 4. In other words, when one loses more than cancel level significant
digits in one addition or subtraction, CADNA considers that a catas-
trophic cancellation has been detected (if the detection of this kind of
instability is enabled).

To perform actual numerical debugging, it is necessary, for each instability,
to identify the statement in the code that generates this instability. This
can be performed directly using a symbolic debugger like gdb with Linux
or as a background task using special input and output files.
In both cases, one has to put a breakpoint at the entry of the instability
internal function of the CADNA library. This function is called each time a
numerical instability is detected. To get the right label for this system and
compiler dependent function, one can use the following statement:

nm name of the binary code | grep instability
For instance, using gdb with Linux, the general statement which enables
the detection of all the instabilities in a single run is

nohup gdb name of the binary code < gdb.in >! gdb.out &
The gdb.in file may contain

break instability_

run

while 1

where

cont

end

29

where prints out the complete trace of the instability which has stopped
the run and cont makes the execution going on.
P.S.: nohup allows to keep the process alive even when logging off.
The gdb.out file will contain all the traces of instabilities.

30

Chapter 4

Installation instructions and
test runs

4.1 Installation instructions

All installation instructions can be found in the README file of the pack-
age. The package generates libraries that enable one to use CADNA in a
numerical code. The following libraries can be created.

• libcadnaC.a: optimized version of CADNA for C/C++ codes

• libcadnaCdebug.a: version of CADNA for debugging in C/C++ codes

• libcadnaOpenmpC.a: optimized version of CADNA for C/C++ codes
that use OpenMP

• libcadnaOpenmpCdebug.a: version of CADNA for debugging in C/C++
codes that use OpenMP

• libcadnaMPIC.a: MPI extension for CADNA C/C++ codes

• libcadnaMPICdebug.a: MPI extension for debugging in CADNA C/C++
codes

• libcadnaMPICforOpenMP.a: MPI extension for CADNA C/C++ codes
that use OpenMP

• libcadnaMPICdebugforOpenMP.a: MPI extension for debugging in
CADNA C/C++ codes that use OpenMP

31

• libcadna interf.a, libcadnaF.a: libraries to enable the use of CADNA
in Fortran codes

Examples are provided for each case in the following directories.

• examplesC

• examplesC mpi

• examplesC mpiomp

• examplesC omp

• examplesFortran

The configure script automatically detects if CADNA versions compatible
with OpenMP and MPI can be generated. To generate the Fortran version
of CADNA, the

--enable-fortran

option must be used when executing the configure script. You may use
options, such as prefix to specify (with an absolute path) which directory
will contain the compiled library. Examples of calls to the configure script
are given below.

./configure CXX=YourC++Compiler

./configure --prefix=TheInstallationDirectory

./configure CXX=YourC++Compiler --prefix=TheInstallationDirectory

To compile the library, type

make

Then to install the CADNA library in the directory specified with the prefix
option, type

make install

Then, to compile and execute some test examples, go to any example direc-
tory, and just type

make clean

make

Restriction: this CADNA package cannot be used in Fortran codes with
MPI or OpenMP.

32

4.2 Test runs of the examplesFortran directory

We present, with the seven examples included in the distribution, an illustra-
tion of the use of the CADNA library and the benefits of the DSA. For each
example, we describe the results obtained using the standard floating-point
arithmetic and then the results provided by the CADNA library.

The results reported in this section have been obtained using the gfortran
compiler based on gcc version 5.4.0 on an Intel i7-6600U CPU. Different re-
sults may be obtained with another processor or another compiler, especially
when the digits printed out using the standard floating-point arithmetic are
affected by round-off errors. With CADNA, as results are printed out using
the str function, only their exact significant digits appear. We recall that
there is no guarantee of the last digit provided by the str function.

4.2.1 Example 1: a rational fraction function of two variables

In the following example [42], the rational fraction

F (x, y) = 333.75y6 + x2(11x2y2 − y6 − 121y4 − 2) + 5.5y8 +
x

2y

is computed with x = 77617, y = 33096. The 15 first digits of the exact
result are -0.827396059946821.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains: res = 5.764607523034235E+17 and using CADNA in double preci-
sion, one obtains:

Polynomial function of two variables with CADNA:

res = @.0

CADNA software

There is 1 numerical instability

1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

CADNA points out the complete loss of accuracy of the result.

4.2.2 Example 2: solving a second order equation

The roots of the following second order equation are computed:

0.3x2 − 2.1x + 3.675 = 0.

33

The exact values are: Discriminant d=0, x1=x2=3.5.
Using IEEE single precision arithmetic with rounding to the nearest, one
obtains:

d = -0.0000028610227

There are two complex solutions.

z1 = 0.3500000E+01 + i * 0.8457279E-03

z2 = 0.3500000E+01 + i * -.8457279E-03

and using CADNA in single precision, one obtains:

d = @.0

Discriminant is zero.

The double solution is 0.3499999E+01

CADNA software

There is 1 numerical instability

1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

The standard floating-point arithmetic cannot detect that d=0. The wrong
branching is performed and the result is false.
The CADNA software takes the accuracy of operands into account in the or-
der relations or in the equality relation and, therefore, the correct branching
is performed and the exact result is obtained.

4.2.3 Example 3: computing a determinant

The determinant of Hilbert’s matrix of size 11 is computed using Gaussian
elimination without pivoting strategy. The determinant is the product of
the different pivots. Hilbert’s matrix is defined by: a(i, j) = 1/(i + j − 1).
All the pivots and the determinant are printed out.
The exact value of the determinant is 3.0190953344493 10−65.
Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

Pivot number 1 = 0.1000000000000000D+01

Pivot number 2 = 0.8333333333333331D-01

Pivot number 3 = 0.5555555555555526D-02

Pivot number 4 = 0.3571428571428830D-03

Pivot number 5 = 0.2267573696145566D-04

Pivot number 6 = 0.1431549050529594D-05

Pivot number 7 = 0.9009749264103679D-07

34

Pivot number 8 = 0.5659971084095516D-08

Pivot number 9 = 0.3551369635569034D-09

Pivot number 10 = 0.2226762517485834D-10

Pivot number 11 = 0.1399228241996033D-11

Determinant = 0.3028594438809703D-64

and using CADNA in double precision, one obtains:

Pivot number 1 = 0.100000000000000E+001

Pivot number 2 = 0.833333333333333E-001

Pivot number 3 = 0.55555555555555E-002

Pivot number 4 = 0.3571428571428E-003

Pivot number 5 = 0.22675736961E-004

Pivot number 6 = 0.1431549051E-005

Pivot number 7 = 0.90097493E-007

Pivot number 8 = 0.5659970E-008

Pivot number 9 = 0.35513E-009

Pivot number 10 = 0.2226E-010

Pivot number 11 = 0.14E-011

Determinant = 0.30E-064

CADNA software

No instability detected

The gradual loss of accuracy is pointed out by CADNA. One can see that
the value of the determinant is significant even if it is very ”small”. This
shows how difficult it is to judge the numerical quality of a computed result
by its magnitude.

4.2.4 Example 4: computing a second order recurrent se-
quence

This example was proposed by J.-M. Muller [39]. The 30 first iterations of
the following recurrent sequence are computed:

Un+1 = 111− 1130

Un
+

3000

UnUn−1

with U0 = 5.5 and U1 =
61

11
. The exact value of the limit is 6.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

35

U(3) = 0.5590163934426237D+01

U(4) = 0.5633431085044127D+01

U(5) = 0.5674648620512615D+01

U(6) = 0.5713329052423919D+01

U(7) = 0.5749120920462043D+01

U(8) = 0.5781810933690098D+01

U(9) = 0.5811314466602178D+01

U(10) = 0.5837660476543959D+01

U(11) = 0.5861018785996283D+01

U(12) = 0.5882524608269310D+01

U(13) = 0.5918655323805488D+01

U(14) = 0.6243961815306110D+01

U(15) = 0.1120308737284091D+02

U(16) = 0.5302171264499677D+02

U(17) = 0.9473842279276452D+02

U(18) = 0.9966965087355071D+02

U(19) = 0.9998025776093678D+02

U(20) = 0.9999882245337588D+02

U(21) = 0.9999992970745579D+02

U(22) = 0.9999999580049865D+02

U(23) = 0.9999999974893262D+02

U(24) = 0.9999999998498109D+02

U(25) = 0.9999999999910112D+02

U(26) = 0.1000000000010746D+03

U(27) = 0.1000000000000644D+03

U(28) = 0.1000000000000039D+03

U(29) = 0.1000000000000002D+03

U(30) = 0.1000000000000000D+03

The exact limit is 6.

and using CADNA in double precision, one obtains:

U(3) = 0.55901639344262E+001

U(4) = 0.5633431085044E+001

U(5) = 0.56746486205E+001

U(6) = 0.5713329052E+001

U(7) = 0.574912092E+001

U(8) = 0.57818109E+001

U(9) = 0.581131E+001

U(10) = 0.58377E+001

U(11) = 0.5861E+001

36

U(12) = 0.588E+001

U(13) = 0.6E+001

U(14) =@.0

U(15) =@.0

U(16) =@.0

U(17) = 0.9E+002

U(18) = 0.999E+002

U(19) = 0.9999E+002

U(20) = 0.99999E+002

U(21) = 0.999999E+002

U(22) = 0.9999999E+002

U(23) = 0.999999999E+002

U(24) = 0.9999999999E+002

U(25) = 0.99999999999E+002

U(26) = 0.99999999999E+002

U(27) = 0.999999999999E+002

U(28) = 0.9999999999999E+002

U(29) = 0.999999999999999E+002

U(30) = 0.100000000000000E+003

The exact limit is 6.

CADNA software

CRITICAL WARNING: the self-validation detects major problem(s).

The results are NOT guaranteed

There are 9 numerical instabilities

7 UNSTABLE DIVISION(S)

2 UNSTABLE MULTIPLICATION(S)

The “UNSTABLE DIVISION(S)” instabilities are generated by divisions
where the denominator is a computational zero. Such operations make the
computed trajectory turn off the exact trajectory and then, the estimation
of accuracy is not possible any more. Even using the double precision, the
computer cannot give any significant result after the iteration number 15.

4.2.5 Example 5: computing a root of a polynomial

This example deals with the improvement and optimization of an iterative
algorithm by using new tools which are contained in CADNA. This program
computes a root of the polynomial

f(x) = 1.47x3 + 1.19x2 − 1.83x + 0.45

37

by Newton’s method. The sequence is initialized with x = 0.5.

The iterative algorithm xn+1 = xn −
f(xn)

f ′(xn)
is stopped with the criterion

|xn − xn−1| ≤ 10−12.

Using IEEE double precision arithmetic with rounding to the nearest, one
obtains:

x(24) = 0.42857143323528130

x(25) = 0.42857143323528130

and using CADNA in double precision, one obtains:

x(23) = 0.428571437E+000

x(24) = 0.42857143E+000

--

CADNA software

There are 47 numerical instabilities

1 UNSTABLE BRANCHING(S)

46 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

With CADNA, one can see that 7 significant digits have been lost (despite
the apparent stability). By using a symbolic debugger, one can see that the
last answer to the stopping criterion is not reliable. CADNA allows to stop
the algorithm when the subtraction xn−xn−1 is non-significant (there is no
more information to compute at the next iteration). Because of the instabil-
ities detected by CADNA, a double root is suspected. One can simplify the
fraction. When these two transformations are done, the code is stabilized
and the results are obtained with the best accuracy of the computer. The
exact value of the root is xsol = 3/7 = 0.428571428571428571... Now, we
obtain:

x(47) = 0.428571428571429E+000

x(48) = 0.428571428571428E+000

CADNA software

No instability detected

4.2.6 Example 6: solving a linear system

In this example, CADNA is able to provide correct results which were im-
possible to be obtained with the standard floating-point arithmetic. The

38

following linear system is solved using Gaussian elimination with partial
pivoting. The system is

21 130 0 2.1
13 80 4.74 108 752
0 −0.4 3.9816 108 4.2
0 0 1.7 9 10−9

 . X =


153.1
849.74
7.7816

2.6 10−8


The exact solution is xtsol =

(
1, 1, 10−8, 1

)
. Using IEEE single precision

arithmetic with rounding to the nearest, one obtains:

x_sol(1) = 0.6261988E+02 (exact solution: 0.1000000E+01)

x_sol(2) = -0.8953979E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.0000000E+00 (exact solution: 0.1000000E-07)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

and using CADNA in single precision, one obtains:

x_sol(1) = 0.999E+00 (exact solution: 0.1000000E+01)

x_sol(2) = 0.1000E+01 (exact solution: 0.1000000E+01)

x_sol(3) = 0.999999E-08 (exact solution: 0.9999999E-08)

x_sol(4) = 0.1000000E+01 (exact solution: 0.1000000E+01)

CADNA software

There are 2 numerical instabilities

1 UNSTABLE BRANCHING(S)

1 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

During the reduction of the third column, the matrix element a(3,3) is equal
to 4864. But the exact value of a(3,3) is zero. The standard floating-
point arithmetic cannot detect that a(3,3) is non-significant. This value is
chosen as pivot. That leads to erroneous results. CADNA detects the non-
significant value of a(3,3). This value is eliminated as pivot. That leads to
satisfactory results.
The first instability is due to the gt relational operator used with two single
precision stochastic arguments.
The second instability is caused by the following instruction.

a(k,j)=a(k,j) - aux*a(i,j)

The instability is due to the subtraction of two single precision stochastic
variables affected by round-off errors.
An additional tool which, for each type of instability, lists all the instructions
responsible for it is currently under development.

39

4.2.7 Example 7: when CADNA fails

CADNA is based on a probabilistic model. It should never be forgotten that
all the estimations computed by CADNA are probabilistic, even if the prob-
ability is close to 1. Moreover, the theoretical model shows that CADNA
is able to estimate the round-off errors of the first order. If they represent
the global round-off errors, CADNA works well but, if they are dominated
by terms of greater order, CADNA may fail. That is what happened in
example 4. However because of an unstable division, the problem has been
detected. In the present example, we have the same behaviour but only with
additions and subtractions. Let us perform the following computation:

x=6.83561d+05

y=6.83560d+05

z=1.00000000007d0

r = z - x

r1 = z - y

r = r + y

r1 = r1 + x

r1 = r1 - 2

r = r + r1

! r = ((z-x)+y) + ((z-y)+x-2)

The exact result is 1.4 10−10. The result obtained using IEEE double preci-
sion arithmetic with rounding to the nearest is 2.3283064365386963E-10

With CADNA, because we essentially performed the same computation,
((z − x) + y) and ((z − y) + x− 2), we find that if the same rounding mode
is chosen for both parts, the final result appears as exact but it is wrong. It
happens in one case out of four and the result provided by CADNA is then
0.116415321826935E-009 with 15 exact significant digits. If computations
are performed 100,000 times using CADNA, one may obtain:

Example created on purpose to make CADNA fail

The same result r is computed for a number of iterations

chosen by the user.

The exact result is 1.4E-10.

But, in 1 case out of 4, CADNA estimates an incorrect accuracy.

Enter the number of iterations

100000

Last value of r: @.0

Number of iterations when CADNA estimates an incorrect accuracy: 26283

40

--

CADNA software

There are 300000 numerical instabilities

300000 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

The last value of r is printed out, and also ierr the number of times when
CADNA estimates an incorrect accuracy. The corresponding source code is:

program ex7_cad

use cadna

implicit none

type(double_st) :: r,r1,x,y,z

integer :: i, nloop, ierr

call cadna_init(-1)

print *,’Example created on purpose to make CADNA fail’

print *,’The same result r is computed for a number of iterations’

print *,’chosen by the user.’

print *,’The exact result is 1.4E-10.’

print *,’But, in 1 case out of 4, CADNA estimates an incorrect accuracy.’

print *,’Enter the number of iterations’

read *,nloop

ierr = 0

do i=1,nloop

x=6.83561d+05

y=6.83560d+05

z=1.00000000007d0

r = z - x

r1 = z - y

r = r + y

r1 = r1 + x

r1 = r1 - 2

r = r + r1

! r = ((z-x)+y) + ((z-y)+x-2)

if(r.ne.1.4d-10) then

ierr = ierr + 1

endif

enddo

print *, ’Last value of r: ’, str(r)

print *, ’Number of iterations when CADNA estimates an incorrect accuracy: ’,ierr

call cadna_end()

end program ex7_cad

41

Acknowledgement

Thanks to Baptiste Mary for the CADNA logo.

42

Bibliography

[1] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel, Estimation of
round-off errors in OpenMP codes, 12th International Workshop on
OpenMP (IWOMP), Nara, Japan, October 2016. LNCS 9903, pages
3-16.

[2] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel, High Performance
Numerical Validation using Stochastic Arithmetic, Reliable Computing,
21, pages 35-52, 2015.

[3] J.-M. Chesneaux, F. Jézéquel, J.-L. Lamotte, Stochastic arithmetic and
verification of mathematical models In Uncertainties in environmental
modelling and consequences for policy making, P. Baveye, J. Mysiak,
M. Laba Eds., NATO Science for Peace and Security Series - C: Envi-
ronmental Security, Springer, pages 101-125, 2009.

[4] J.-M. Chesneaux, S. Graillat, F. Jézéquel, Numerical validation and
assessment of numerical accuracy, Oxford e-Research Centre, overview
article, 44 pages, 2009.

[5] J.-M. Chesneaux, S. Graillat, F. Jézéquel, Rounding errors, invited
paper, In Wiley Encyclopedia of Computer Science and Engineering
(Benjamin Wah, ed.) Hoboken: John Wiley & Sons, vol. 4, pages 2480-
2494, 2009.

[6] F. Jézéquel, J.-M. Chesneaux, CADNA: a library for estimating round-
off error propagation, Computer Physics Communications, 178(12),
pages 933-955, 2008.

[7] N. S. Scott, V. Faro-Maza, M. P. Scott, T. Harmer, J.-M. Chesneaux,
C. Denis, F. Jézéquel, E-Collisions using e-Science, Physics of Particles
and Nuclei Letters, 5(3), pages 150-156, 2008.

43

[8] N.S. Scott, F. Jézéquel, C. Denis, J.-M. Chesneaux, Numerical ’health
check’ for scientific codes: the CADNA approach, Computer Physics
Communications, 176(8), pages 507-521, 2007.

[9] N.S. Scott, L. Gr. Ixaru, C. Denis, F. Jézéquel, J.-M. Chesneaux,
M.P. Scott, High performance computation and numerical validation
of e-collision software, ”Trends and Perspectives in Modern Compu-
tational Science”, Invited lectures, ICCMSE 2006 conference, Interna-
tional Conference of Computational Methods in Sciences and Engineer-
ing, G. Maroulis and T. Simos (Eds), Lecture Series on Computer and
Computational Sciences, vol. 6, pages 561-570, 2006.

[10] F. Jézéquel, A dynamical strategy for approximation methods, C. R.
Acad. Sci. Paris - Mecanique, 334, pages 362-367, 2006.

[11] F. Jézéquel, F. Rico, J.-M. Chesneaux, M. Charikhi, Reliable compu-
tation of a multiple integral involved in the neutron star theory, Math-
ematics and Computers in Simulation, 71(1), pages 44-61, 2006.

[12] F. Jézéquel, Dynamical control of approximation methods, Habilitation
à diriger des recherches, Université Pierre et Marie Curie, Paris, 2005.

[13] J.-L. Lamotte, Vers une châıne de validation des logiciels numériques à
l’aide de méthodes probabilistes, Habilitation à diriger des recherches,
Université Pierre et Marie Curie, Paris, 2004.

[14] J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Nu-
merical Software, Special Issue of Numerical Algorithms, 2004, 37, pp.
377-390

[15] F. Jézéquel, J.-M. Chesneaux, Computation of an infinite integral using
Romberg’s method, Numerical Algorithms, 36 (3): 265-283, July 2004.

[16] F. Jézéquel, Dynamical control of converging sequences computation,
Applied Numerical Mathematics, 50(2): 147-164, 2004.

[17] F. Jézéquel, J.-M. Chesneaux, For reliable and powerful scientific com-
putations, Sc. Comp. Val. Num., Krämer and Wolff von Gudenberg ed.,
Kluwer Academic/Plenum publishers (2001) 367-378,

[18] M. Montagnac, J.-M. Chesneaux, Dynamic control of a BICGStab al-
gorithm, Applied Numerical Mathematics, vol. 32 (2000), 103-117.

44

[19] N. C. Albertsen, J.-M. Chesneaux, S. Christiansen, A. Wirgin, Com-
parison of four software packages applied to a scattering problem. Math.
Comput. Simul., 48(3): 307-317 (1999).

[20] J.-M. Chesneaux, F. Jézéquel, Dynamical control of computations using
the Trapezoidal and Simpson’s rules Journal of Universal Computer
Science, Vol. 4 (1), 2-10, 1998.

[21] R. Alt, J. Vignes, Validation of results of collocation methods for ODEs
with the CADNA library, Appl. Num. Maths, 20, 1996, pp 1-21.

[22] J.-M. Chesneaux, B. Troff, Computational stability study using the
CADNA software applied to the navier-stokes solver PEGASE Scien-
tific Computing and Validated Numerics, 1996, pp 84-90.

[23] J.M. Chesneaux, A. Matos, Breakdown and near-breakdown control in
the CGS algorithm using stochastic arithmetic Numerical Algorithms,
11, 1996, pp 99-116.

[24] M. Pichat, J. Vignes, Validité des résultats numériques dans les pro-
cessus à comportement chaotique. Un outil d’évaluation : le logiciel
CADNA. CRAS, Paris, Tome 322, Série 2b, 1996, pp. 681-688.

[25] N.C. Albertsen, J.-M. Chesneaux, S. Christensen, A. Wirgin, Evalua-
tion of Round-off Error by Interval and Stochastic Arithmetic Methods
in a Application of the Rayleigh Theory to the Study of Scattering from
an Uneven Boundary. Math. and Num. Aspect of Waves Propagation.
Proc. 3rd Inter.Conf. G. Cohen Ed. SIAM Proc Philadelphia, 1995, pp.
338-346.

[26] J.-M. Chesneaux, L’arithmétique stochastique et le logiciel CADNA,
Habilitation à diriger des recherches, Université Pierre et Marie Curie,
Paris, 1995.

[27] J.-M. Chesneaux, The equality relations in scientific computing, Num.
Algo 7, 1994, pp. 129-143.

[28] J.-M. Chesneaux, A. Wirgin, Reflection from a corrugated surface re-
visited. J. Acoust. Soc. Am 96.(1), 1994, pp. 1-16.

[29] S. Guilain, J. Vignes, Validation of numerical software results. Appli-
cation to the computation of apparent heat release in direct-injection
diesel engines. Math and Comp. in Sim. 37, 1994, pp. 73-92.

45

[30] M. Pichat, Chaotic evolution and stochastic arithmetic. Proc. 14th,
IMACS World Congress, Atlanta, 1994.

[31] J.-M. Chesneaux, J. Vignes, L’algorithme de Gauss en Arithmétique
Stochastique, C.R Acad. Sci., Paris, Sér.II, 316, 1993, pp. 171-176.

[32] S. Guilain, J. Vignes, Qualification des logiciels numériques. Applica-
tion à un logiciel d’analyse de la combustion dans les moteurs à allumage
commandé. Revue de l’Institut du Pétrole. Vol. 48, 5, 1993, pp. 545-575.

[33] M. Pichat, J. Vignes, Ingéniérie du contrôle de la précision des calculs
sur ordinateur. Ed. Technip, Paris 1993.

[34] J. Vignes, A stochastic arithmetic for reliable scientific computation,
Math. and Comp. in Sim. 35, 1993, pp. 233-261.

[35] J.-M. Chesneaux, J. Vignes, Les fondements de l’arithmétique stochas-
tique, C.R Acad. Sci., Paris, Sér.I, 315, 1992, pp. 1435-1440.

[36] J. Vignes, Optimization software validation. Times XXXX Sobrapo
XXIII. Joint Inter. Meeting Rio de Janeiro, 1991.

[37] J.-M. Chesneaux, Study of the computing accuracy by using proba-
bilistic approach, Contribution to comp. arithmetic and Self-Validating
Numerical Methods, C. Ullrich ed., IMACS, New Brunswick, NJ, 1990,
pp. 19-30.

[38] J. Vignes, Estimation de la précision des résultats de logiciels
numériques. La Vie des Sciences, Comptes Rendus, série générale, 7,
1990, pp. 93-143.

[39] J.-M. Muller, Arithmétique des ordinateurs, Masson, 1989.

[40] J.-M. Chesneaux, Étude théorique et implémentation en ADA de la
méthode CESTAC, Thèse de l’université P. et M. Curie, Paris, 1988.

[41] J.-M. Chesneaux, J. Vignes, Sur la robustesse de la méthode CESTAC,
C.R. Acad. Sc. Paris, Sér. I Math. 307, 1988, pp. 855-860.

[42] S.M. Rump, Algorithms for Verified Inclusions - Theory and Practice. In
R.E. Moore, editor, Reliability in Computing, volume 19 of Perspectives
in Computing, pages 109-126. Academic Press, 1988.

[43] J. Vignes, Zéro mathématique et zéro informatique. La Vie des Sci-
ences, C.R. Acad. Sci., Paris, 4, 1, janvier 1987, pp. 1-13.

46

[44] J. Vignes, Implémentation des méthodes d’optimisation : test d’arrêt
optimal, contrôle et précision de la solution (I) R.A.I.R.O., 18, 1, février
1984, pp. 1-18; (II), R.A.I.R.O.18, 2, mai 1984, pp. 103-129.

[45] R. Alt, Minimizing the error propagation in the numerical solution
of ODEs Scientific Computing, IMACS Transactions, Vol.1, 1983, pp.
231-235.

[46] A. Feldstein, R. Goodman, Convergence estimates for the distribution
of trailing digits, Journal of A.C.M., vol. 23, 1976, pp.287-297.

[47] J. Vignes, M. La Porte, Error analysis in computing, Information Pro-
cessing 74, North-Holland, 1974.

[48] R.W. Hamming, On the distribution of numbers, The Bell System Tech-
nical Journal, 1970, pp. 1609-1625.

[49] D.E. Knuth, The art of computer programming, 2. Addison-Wesley
series, 1969.

[50] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985, Institute of Electrical and Electronics Engineers,
August, 1985, reprinted in SIGPLAN 22, 2, pp. 9-25.

47

Index

** function, 11
abs function, 10
acos function, 11
aimag function, 10
aint function, 10
anint function, 10
asin function, 11
atan2 function, 11
atan function, 11
cadna end subroutine, 13, 18, 28
cadna init subroutine, 12, 18
conjg function, 10
cosh function, 11
cos function, 11
data st function, 9, 15, 20
data sections, 19
dble function, 10
dim function, 11
double st, 9
exp function, 11
int function, 9
log10 function, 11
log function, 11
max function, 10, 22
min function, 10, 22
mod function, 11
nb significant digit function, 14
nint function, 9
old type function, 14, 20
real function, 10
sign function, 11
single st, 9

sinh function, 11
sin function, 11
sqrt function, 11
str function, 13, 21
tanh function, 11
tan function, 11
use CADNA, 18

CESTAC method, 5
computational zero, 8

discrete stochastic arithmetic, 5

numerical debugging, 28

printing statements, 21

random arithmetic, 8
reading statements, 21
relational operators, 11

statement functions, 22

vector operators, 20

48

