
The PYCHEMKIN User Manual

Jane Huang, Kimia Mavon, Weidong Xu, Zeyu Zhao

1 Introduction

pychemkin is a Python 3 library that computes the reaction rates of species participating in
a system of elementary reactions.

1.1 Key chemical concepts and terminology

A system consisting of M elementary reactions involving N species has the general form

N

∑
i=1

ν′ijSi −→
N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (1)

for irreversible reactions (i.e., the reaction only proceeds in the forward direction) and

N

∑
i=1

ν′ijSi

N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (2)

for reversible reactions (i.e., the reaction can proceed in either the forward or backward
directions).

Si is the ith specie in the system, ν′ij is its stoichiometric coefficient (dimensionless) on
the reactants side of the jth reaction, and ν′′ij is its stoichiometric coefficient (dimensionless)
on the product side for the jth reaction.

Each specie is characterized by a concentration xi, in units of [mol/vol]. The reaction
rate of each specie is the time rate of change of its concentration, dxi

dt . The reaction rate is
usually represented by the symbol fi, such that

fi =
M

∑
j=1

(ν′′ij − ν′ij)ωj =
M

∑
j=1

νijωj, i = 1, . . . , N. (3)

The progress rate of the jth reaction is given by

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i − k(b)j

N

∏
i=1

x
ν′′ij
i , j = 1, . . . , M. (4)

1

The forward reaction rate coefficient k(f)
j is assumed to take one of three possible

forms:

1. k = constant

2. Arrhenius: k = A exp(− E
RT), where A is the pre-factor, E is the activation energy, R

is the universal gas constant, and T is the temperature.

3. Modified Arrhenius: k = ATb exp(− E
RT), where A is the pre-factor, E is the activation

energy, R is the universal gas constant, T is the temperature, and b is the temperature
scaling parameter.

The forward and backward reaction rate coefficients are related by

k(b)j =
k(f)

j

ke
j

, j = 1, . . . , M, (5)

where the equilibrium coefficient ke
j is given by

ke
j =

(p0

RT

)γj
exp

(
∆Sj

R
−

∆Hj

RT

)
, j = 1, . . . , M. (6)

The pressure p0 is fixed at 105 Pa in this package. γj = ∑N
i=1 νij. The entropy change of

reaction j is

∆Sj =
N

∑
i=1

νijSi, j = 1, . . . , M, (7)

where Si is the entropy of specie i. Likewise, the enthalpy change of reaction j is

∆Hj =
N

∑
i=1

νijHi, j = 1, . . . , M. (8)

An irreversible reaction can be thought of as the limiting case where ke
j approaches ∞,

in which case the backwards reaction rate coefficient k(b)j approaches 0. The progress rate
expression then simplifies to

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i , j = 1, . . . , M. (9)

2

1.2 Features

The package can solve for the reaction rates of a system of elementary reactions. The
number of reactions and species is arbitrary. For each system of reactions, the user sup-
plies the species participating in the reactions, the chemical equations, the stoichiometric
coefficients for the reactants and products, and the rate coefficient parameters (e.g., E and
A for Arrhenius rates). For a given system, the user can then specify a temperature and
a vector of species concentrations in order to return the reaction rates in the form of a
NumPy array. Rate coefficients and reaction progress rates can also be retrieved.

1.2.1 Calculation of thermodynamic quantities

Traditionally for combustion chemistry, the entropy and enthalpy of each species are
approximated by polynomial fits to numerical calculations from Gordon and McBride’s
1963 report, The Thermodynamic Properties of Chemical Substances to 6000 K, NASA Report
SP-3001:

Hi

RT
= ai1 +

1
2

ai2T +
1
3

ai3T2 +
1
4

ai4T3 +
1
5

ai5T4 +
ai6

T
(10)

and
Si

R
= ai1 ln (T) + ai2T +

1
2

ai3T2 +
1
3

ai4T3 +
1
4

ai5T4 + ai7. (11)

These are known as the NASA polynomials. For each specie, there are two sets of co-
efficients ai, the first of which is applicable at low temperatures and a second that is
applicable at high temperatures. pychemkin stores these coefficients (taken from http:

//burcat.technion.ac.il/dir/) in an SQL database and retrieves values for species
requested by the user.

2 Installation

2.1 Where to find and download the code

2.1.1 Using pip

pychemkin v. 0.1.1 is hosted on PyPi at https://pypi.python.org/pypi/pychemkin. To
download and install the package, simply type pip install pychemkin into your termi-
nal.

2.1.2 Installing from source

To get the most up-to-date version, you can go to https://github.com/cs207group4/

cs207-FinalProject. If you have a GitHub account, you can simply open your termi-
nal and type git clone git@github.com:cs207group4/cs207-FinalProject.git. Oth-
erwise, you can download the package by clicking on the green button in the upper right

3

http://burcat.technion.ac.il/dir/
http://burcat.technion.ac.il/dir/
https://pypi.python.org/pypi/pychemkin
https://github.com/cs207group4/cs207-FinalProject
https://github.com/cs207group4/cs207-FinalProject

corner of the page that says ”Clone or download,” then click ”Download ZIP” to download
the entire repository as a ZIP file. Once you download the contents of the repository from
GitHub, enter the directory and type python setup.py install In order to run the test
suite, you need to have pytest v. 3.00+ and pytest-cov v. 2.5+ installed. When you’re in
the top level of the package directory, type pytest into the terminal. The results of the test
code will be printed out to the terminal.

2.2 Dependencies

This package has dependencies that usually come standard with the Anaconda distribution,
but will otherwise automatically be installed for you if you use pip.

• NumPy v. 1.11+

• sqlite3 v. 3.13.0+

Earlier versions of these packages may work, but the code has only been validated on
the listed versions.

3 Basic Usage and Examples

As an example of basic code usage, we consider the following system of elementary,
irreversible reactions:

1. H + O2
k1→ OH + O

2. H2 + O
k2→OH + H

3. H2 + OH
k3→ H2O + H

Reaction 1 has an Arrhenius rate coefficient with A = 3.52× 1010 and E = 7.14× 104.
Reaction 2 has a modified Arrhenius rate coefficient with A = 5.06× 10−2, b = 2.7, and
E = 2.63× 104. Finally, reaction 3 has a constant rate coefficient of k3 = 103.

3.1 User-required input

In an xml input file, the user provides the species participating in the reactions, the chemical
equations, the stoichiometric coefficients, and the rate coefficient parameters. See rxns.xml
in the tests/test xml folder for an example of how to format the input file.

The xml file will be processed and stored in a chemkin object as follows:

4

https://docs.pytest.org/en/latest/
https://pypi.python.org/pypi/pytest-cov
http://www.numpy.org/
https://www.sqlite.org/

>>>from pychemkin import chemkin

>>>rxn_system = chemkin.from_xml(’rxns.xml’)

Finished reading xml input file

We can print out information about the reaction system as follows:

>>>print(rxn_system)

chemical equations:

[

H + O2 =] OH + O

H2 + O =] OH + H

H2 + OH =] H2O + H

]

species: [‘H’, ‘O’, ‘OH’, ‘H2’, ‘H2O’, ‘O2’]

nu_react:

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]

[0. 1. 1.]

[0. 0. 0.]

[1. 0. 0.]]

nu_prod:

[[0. 1. 1.]

[1. 0. 0.]

[1. 1. 0.]

[0. 0. 0.]

[0. 0. 1.]

[0. 0. 0.]]

reaction coefficients:

[

Arrhenius Reaction Coeffs: {‘A’: 35200000000.0, ‘E’: 71400.0, ‘R’: 8.314}

modifiedArrhenius Reaction Coeffs: {‘A’: 0.0506, ‘b’: 2.7, ‘E’: 26300.0, ‘R’: 8.314}

Constant Reaction Coeffs: {‘k’: 1000.0, ‘R’: 8.314}

]

reaction types: [‘Elementary’, ‘Elementary’, ‘Elementary’]

reversible: [‘no’, ‘no’, ‘no’]

3.2 Computing reaction rates

Given the reaction data from a user-provided input file, the reaction rates can be computed
for an arbitrary temperature and set of species concentrations.

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

5

>>> rxn_system.reaction_rate_T(x,T)

array([-6.28889929e+06, 6.28989929e+06, 6.82761528e+06,

-2.70357993e+05, 1.00000000e+03, -6.55925729e+06])

3.3 Obtaining intermediate calculations

Rate coefficients and progress rates are calculated in the course of computing the reaction
rates. While these methods do not have to be called by the user to obtain the reaction rates,
they are accessible if the user wishes to obtain these values.

3.3.1 Obtaining forward rate coefficients

While the xml file provides the parameters for the functional form of the rate coefficient
expression, a temperature (usually) has to be specified to compute the rate coefficient. Our
package does this in the following manner:

>>> from pychemkin import ReactionCoeffs

>>> rc = ReactionCoeffs(‘Arrhenius’, A = 1e7, E=1e3)

>>> rc.set_params(T=1e2)

>>> rc.k_forward()

3003549.0889639612

3.3.2 Obtaining progress rates

The progress rate values wi can be computed in the following manner:

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

>>> rxn_system.progress_rate(x,T)

array([6.55925729e+06, 2.69357993e+05, 1.00000000e+03])

3.4 Future features

3.4.1 Motivation

We will design a package to allow for simulations of complex chemical processes (i.e., those
that cannot be solved by hand/analytically) and to facilitate understanding of the key
processes. Chemical kinetics simulations typically involve a series of coupled differential
equations. Our package will solve these ODEs to obtain species concentrations as a
function of time, and then visualize the results to enable the user to identify key reactions
and species at different times.

6

3.4.2 How features will fit into the code base

Currently, the package computes reaction rates for an arbitrary number of species and
elementary reactions for a single time step. These ODEs will be input into an ODE solver
to yield progress rates, reaction rates, and concentrations for multiple time steps. The
solutions will be written to an output file (csv or HDF5), which can then be read by a
visualization module.

3.4.3 Modules to realize the features

Module 1: ChemSolver

ChemSolver is a module built to wrap around SciPy’s ODE solver to obtain reaction
concentrations. The user can choose one of the five algorithms available in SciPy, specify
the time range over which to solve the ODEs, and select the output format (csv or HDF5).
The user also has the option of exploring parameter space by running a grid of simulations
with a single function call.

The scipy.integrate library has a powerful routine, ode, for numerically solving
systems of coupled first order ordinary differential equations. ChemSolver allows the user
to choose from the 5 algorithms incorporated in scipy.integrate.ode, depending on their
needs and preferences.

The user may specify the output of ChemSolver to be csv or HDF5.

Module2: ChemVis

This module offers a visualization library for the output of ODE solver. It would read in
the data from HDF5 or csv using Pandas. For the first type of visualization, users will be
able to plot progress rates, reaction rates, or concentrations as a function of time. The user
will be able to select a subset of species or a subset of the time range. For the second type
of visualization, the relationship between species will be plotted in a social network style
visual. This will provide the user an alternate view of major pathways and key species in
the system. The output will be an image made with Matplotlib.

3.4.4 Methods to be implemented

Chemsolver methods:
The differential equation we want to solve is

f = chemkin.reaction rate(X, T)

where X is the concentration vector and T is the temperature. The method we plan to write
will be structured as:

>>> ChemSolver.solve(chemkin_object, X_initial,T, timesteps, odemethod =

odemethod, outputmethod = outputmethod, *args)

7

where *args are the extra arguments we have to pass through to SciPy.
chemkin is the chemkin object that will be used to compute reaction rates.
X can either be a one-dimensional array of length N (corresponding to N species for a

single reaction system) or a two-dimensional array of length NxP, where P is the number
of different starting concentration combinations that the user may wish to try. T is either a
float or a float array of length P, depending on whether the user wants to run multiple
simulations.

timesteps is an array specifying the points in time for which the user wishes for the
concentrations to be output.

The odemethod corresponds to one of the five SciPy ODE solver algorithms: This
method will solve the ODE. The user will be able to chose from 5 ODE solvers:

• RK45 (Explicit Runge-Kutta method of order 5(4))

• RK23 (Explicit Runge-Kutta method of order 3(2))

• Radau (Implicit Runge-Kutta method of Radau IIA family of order 5.)

• BDF (Implicit method based on Backward Differentiation Formulas.)

• LSODA (Adams/BDF method with automatic stiffness detection and switching)

The output method allows the user to select either csv or HDF5 as an output option.
The function will output a single file consisting of columns corresponding to time, reaction
rates, species progress rates, species concentrations. There will also be a header storing the
chemical equations.

ChemVis Methods

>>> ChemVis.plot_time_series(simulationfile, yaxis = yaxisval, species = [

list of species], timerange = timerange)

This method will allow users to visualize species reaction rates or concentrations over
time, or the reaction progress rates over time.

simulationfile is a string or a list of strings corresponding the the csv or HDF5 file(s)
containing the simulation data to be plotted (from ChemSolver.solve).

saxisval is the quantity to be plotted: reaction rate, progress rate, or concentration
species is a list of species to be plotted. If progress rate is chosen for yaxisval, only the

progress rates for reactions involving those species will be plotted.
timerange specifies the start and end time for the time series to be plotted (which can

be a subset of the simulation run).
A mock-up of the output image is shown below in Figure 1.
ChemVis.plot network is an alternative method for visualizing the relationship be-

tween the species in the network.

>>>ChemVis.plot_network(simulationfile,timepoint)

8

Figure 1: This visual plots concentrations of two species over time. We can clearly see that
while Species 1 starts off with a higher concentration, the concentration of Species 2 grows
much faster than that of Species 1 (exponential growth). Users can alternatively choose
reaction rates over time, or the reaction progress rates over time.

An example image is shown in Figure 2 of a 3-reaction system involving 6 species. Red
lines indicate that the species directly react with one another. Single-headed arrows show
which species are direct parents of other species. Double-headed arrows show which
species interconvert. The sizes of the species bubbles can show relative concentration
levels.

simulationfile is the output csv or HDF5 file from ChemSolver. timepoint is the
point in time for which the plot is being generated

9

Figure 2: This visual shows a 3-reaction system involving 6 species. Red lines indicate that
the species directly react with one another. Single-headed arrows show which species are
direct parents of other species. Double-headed arrows show which species interconvert.
In future analysis, the package will offer the sizes of the species bubbles in relation to the
relative concentration levels.

3.4.5 How to use the new feature

Visualizing the species concentrations over time should allow the user to quickly identify
these features of the chemical system:

10

• What are the roles of species in the system (primarily reactants, primarily intermedi-
ates, primarily products).

• What bottlenecks are in the system?

• What species are produced in high quantities and which ones consistently remain
minor?

Additionally, visualizing progress rates and reaction rates over time will help the user
understand what the major sources and sinks are for a given specie at a given time.

The option of run and visualize a grid of models will allow the user to quickly explore
parameter space and tune the starting concentrations and temperature to achieve desired
production levels. For example, if the user wants to minimize the production of H2O2
for a given reaction system, she can provide a matrix of initial concentrations and quickly
identify which starting concentration vector will yield the desired results.

3.4.6 External dependencies

External dependencies include SciPy, HDF5, Matplotlib, and Pandas, in addition to
NumPy and sqlite3 mentioned in Section 2.2.

11

	Introduction
	Key chemical concepts and terminology
	Features
	Calculation of thermodynamic quantities

	Installation
	Where to find and download the code
	Using pip
	Installing from source

	Dependencies

	Basic Usage and Examples
	User-required input
	Computing reaction rates
	Obtaining intermediate calculations
	Obtaining forward rate coefficients
	Obtaining progress rates

	Future features
	Motivation
	How features will fit into the code base
	Modules to realize the features
	Methods to be implemented
	How to use the new feature
	External dependencies

