
PyInstaller Manual
Version: PyInstaller 3.0.dev8+f1a8933.mod

Homepage: http://www.pyinstaller.org

Contact: pyinstaller@googlegroups.com

Authors: David Cortesi

based on structure by Giovanni Bajo & William Caban

based on Gordon McMillan's manual

Copyright: This document has been placed in the public domain.

PyInstaller Manual -

1

http://www.pyinstaller.org
mailto:pyinstaller@googlegroups.com

Contents
In Brief 4

What's New This Release 4

Requirements 4

Windows 4

Mac OS X 5

Linux 5

AIX, Solaris, and FreeBSD 5

License 5

How To Contribute 5

How to Install PyInstaller 5

Installing in Windows 6

Installing in Mac OS X 6

Installing from the archive 6

Verifying the installation 6

Installed commands 7

What PyInstaller Does and How It Does It 7

Analysis: Finding the Files Your Program Needs 8

Bundling to One Folder 9

How the One-Folder Program Works 9

Bundling to One File 9

How the One-File Program Works 9

Using a Console Window 10

Hiding the Source Code 10

Using PyInstaller 11

Options 11

General Options 11

What to generate 12

What to bundle, where to search 12

How to generate 12

Windows and Mac OS X specific options 13

Windows specific options 13

Windows Side-by-side Assembly searching options (advanced) 13

Mac OS X specific options 14

Shortening the Command 14

Using UPX 14

PyInstaller Manual -

2

Encrypting Python Bytecode 15

Supporting Multiple Platforms 15

Supporting Multiple Python Environments 15

Supporting Multiple Operating Systems 15

Making Linux Apps Forward-Compatible 16

Capturing Windows Version Data 16

Building Mac OS X App Bundles 17

Getting the Opened Document Names 17

Run-time Operation 18

Using Spec Files 19

Spec File Operation 19

Adding Files to the Bundle 20

Adding Data Files 20

Adding Binary Files 21

Advanced Methods of Adding Files 22

Giving Run-time Python Options 22

Spec File Options for a Mac OS X Bundle 22

Multipackage Bundles 23

Example MERGE spec file 24

When Things Go Wrong 25

Recipes and Examples for Specific Problems 25

Finding out What Went Wrong 26

Build-time Messages 26

Build-Time Python Errors 26

Getting Debug Messages 26

Getting Python's Verbose Imports 27

Helping PyInstaller Find Modules 27

Extending the Path 27

Listing Hidden Imports 27

Extending a Package's __path__ 27

Changing Runtime Behavior 28

Getting the Latest Version 28

Asking for Help 28

Advanced Topics 29

The Bootstrap Process in Detail 29

Bootloader 29

PyInstaller Manual -

3

Python imports in a bundled app 30

The TOC and Tree Classes 30

TOC Class (Table of Contents) 30

The Tree Class 31

Inspecting Archives 31

ZlibArchive 32

CArchive 32

Using pyi-archive_viewer 32

Inspecting Executables 33

Understanding PyInstaller Hooks 33

Hooks in Detail 34

Building the Bootloader 35

Development tools 36

Building for Windows 36

Building for LINUX 37

In Brief
PyInstaller bundles a Python application and all its dependencies into a single package. The user can run
the packaged app without installing a Python interpreter or any modules. PyInstaller supports Python 2.7
and Python 3.3+, and correctly bundles the major Python packages such as numpy, PyQt, Django,
wxPython, and others.

PyInstaller is tested against Windows, Mac OS X, and Linux. However, it is not a cross-compiler: to make
a Windows app you run PyInstaller in Windows; to make a Linux app you run it in Linux, etc. PyInstaller
has been used successfully with AIX, Solaris, and FreeBSD, but is not tested against them.

What's New This Release
Release 3.0 is a major rewrite that adds Python 3 support, better code quality through use of automated
testing, and resolutions for many old issues.

Functional changes include removal of support for Python prior to 2.7, an easier way to include data files
in the bundle (Adding Files to the Bundle), and changes to the "hook" API (Understanding PyInstaller
Hooks).

Requirements

Windows
PyInstaller runs in Windows XP or newer. It can create graphical windowed apps (apps that do not need a
command window).

PyInstaller requires the PyWin32 or pypiwin32 Python extension for Windows. If you install PyInstaller
using pip, and PyWin32 is not found, pypiwin32 is automatically installed.

The pip-Win package is also recommended but not required.

PyInstaller Manual - In Brief

4

http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
https://sites.google.com/site/pydatalog/python/pip-for-windows

Mac OS X
PyInstaller runs in Mac OS X 10.6 (Snow Leopard) or newer. It builds 64-bit executables by default, but
can create 32-bit executables. It can build graphical windowed apps (apps that do not use a terminal
window).

Linux
PyInstaller requires the ldd terminal application to discover the shared libraries required by each
program or shared library. It is typically found in the distribution-package glibc or libc-bin .

It also requires the objdump terminal application to extract information from object files. This is typically
found in the distribution-package binutils .

AIX, Solaris, and FreeBSD
Users have reported success running PyInstaller on these platforms, but it is not tested on them. The ldd
and objdump commands are needed.

Before using PyInstaller in these systems you must compile a bootloader; see Building the Bootloader.

License
PyInstaller is distributed under the GPL License but with an exception that allows you to use it to build
commercial products:

1. You may use PyInstaller to bundle commercial applications out of your source code.

2. The executable bundles generated by PyInstaller from your source code can be shipped with
whatever license you want.

3. You may modify PyInstaller for your own needs but changes to the PyInstaller source code fall
under the terms of the GPL license. That is, if you distribute your modifications you must
distribute them under GPL terms.

For updated information or clarification see our FAQ at the PyInstaller home page.

How To Contribute
PyInstaller is an open-source project that is created and maintained by volunteers. At Pyinstaller.org you
find links to the mailing list, IRC channel, and Git repository, and the important How to Contribute link.
Contributions to code and documentation are welcome, as well as tested hooks for installing other
packages.

How to Install PyInstaller
PyInstaller is a normal Python package. You can download the archive from PyPi, but it is easier to install
using pip where is is available, for example:

pip install pyinstaller

or upgrade to a newer version:

pip install --upgrade pyinstaller

PyInstaller Manual - Mac OS X

5

https://raw.github.com/pyinstaller/pyinstaller/develop/COPYING.txt
https://github.com/pyinstaller/pyinstaller/wiki/FAQ
http://www.pyinstaller.org
https://github.com/pyinstaller/pyinstaller/wiki/Community
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
https://pypi.python.org/pypi/PyInstaller/
http://www.pip-installer.org/

Installing in Windows
For Windows, PyWin32 or the more recent pypiwin32, is a prerequisite. The latter is installed
automatically when you install PyInstaller using pip or easy_install. If necessary, follow the pypiwin32 link
to install it manually.

It is particularly easy to use pip-Win to install PyInstaller along with the correct version of PyWin32.
pip-Win also provides virtualenv, which makes it simple to maintain multiple different Python interpreters
and install packages such as PyInstaller in each of them. (For more on the uses of virtualenv, see
Supporting Multiple Platforms below.)

When pip-Win is working, enter this command in its Command field and click Run:

venv -c -i pyi-env-name

This creates a new virtual environment rooted at C:\Python\pyi-env-name and makes it the current
environment. A new command shell window opens in which you can run commands within this
environment. Enter the command

pip install PyInstaller

Once it is installed, to use PyInstaller,

• Start pip-Win

• In the Command field enter venv pyi-env-name

• Click Run

Then you have a command shell window in which commands such as pyinstaller execute in that Python
environment.

Installing in Mac OS X
PyInstaller works with the default Python 2.7 provided with current Mac OS X installations. However, if you
plan to use a later version of Python, or if you use any of the major packages such as PyQt, Numpy,
Matplotlib, Scipy, and the like, we strongly recommend that you install these using either MacPorts or
Homebrew.

PyInstaller users report fewer problems when they use a package manager than when they attempt to
install major packages individually.

Installing from the archive
If pip is not available, download the compressed archive from PyPI. If you are asked to test a problem
using the latest development code, download the compressed archive from the develop branch of
PyInstaller Downloads page.

Expand the archive. Inside is a script named setup.py . Execute python setup.py install with
administrator privilege to install or upgrade PyInstaller.

For platforms other than Windows, Linux and Mac OS, you must first build a bootloader program for your
platform: see Building the Bootloader. After the bootloader has been created, use
python setup.py install with administrator privileges to complete the installation.

Verifying the installation
On all platforms, the command pyinstaller should now exist on the execution path. To verify this,
enter the command

pyinstaller --version

PyInstaller Manual - Installing in Windows

6

http://sourceforge.net/projects/pywin32/files/
https://pypi.python.org/pypi/pypiwin32/219
http://www.pip-installer.org/
http://peak.telecommunity.com/DevCenter/EasyInstall
https://pypi.python.org/pypi/pypiwin32/219
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://sourceforge.net/projects/pywin32/files/
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://www.virtualenv.org/
https://www.macports.org/
http://brew.sh/
https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases

The result should resemble 3.n for a released version, and 3.n.dev0-xxxxxx for a development
branch.

If the command is not found, make sure the execution path includes the proper directory:

• Windows: C:\PythonXY\Scripts where XY stands for the major and minor Python verysion
number, for example C:\Python34\Scripts for Python 3.4)

• Linux: /usr/bin/

• OS X (using the default Apple-supplied Python) /usr/bin

• OS X (using Python installed by homebrew) /usr/local/bin

• OS X (using Python installed by macports) /opt/local/bin

To display the current path in Windows the command is echo %path% and in other systems,
echo $PATH .

Installed commands
The complete installation places these commands on the execution path:

• pyinstaller is the main command to build a bundled application. See Using PyInstaller.

• pyi-makespec is used to create a spec file. See Using Spec Files.

• pyi-archive_viewer is used to inspect a bundled application. See Inspecting Archives.

• pyi-bindepend is used to display dependencies of an executable. See Inspecting Executables.

• pyi-grab_version is used to extract a version resource from a Windows executable. See
Capturing Windows Version Data.

If you do not perform a complete installation (installing via pip or executing setup.py), these
commands will not be installed as commands. However, you can still execute all the functions
documented below by running Python scripts found in the distribution folder. The equivalent of the
pyinstaller command is pyinstaller-folder/pyinstaller.py . The other commands are found in
pyinstaller-folder /cliutils/ with meaningful names (makespec.py , etc.)

What PyInstaller Does and How It Does It
This section covers the basic ideas of PyInstaller. These ideas apply to all platforms. Options and special
cases are covered below, under Using PyInstaller.

PyInstaller reads a Python script written by you. It analyzes your code to discover every other module and
library your script needs in order to execute. Then it collects copies of all those files -- including the active
Python interpreter! -- and puts them with your script in a single folder, or optionally in a single executable
file.

For the great majority of programs, this can be done with one short command,

pyinstaller myscript.py

or with a few added options, for example a windowed application as a single-file executable,

pyinstaller --onefile --windowed myscript.py

You distribute the bundle as a folder or file to other people, and they can execute your program. To your
users, the app is self-contained. They do not need to install any particular version of Python or any
modules. They do not need to have Python installed at all.

PyInstaller Manual - Installed commands

7

Note

The output of PyInstaller is specific to the active operating system and the active version of
Python. This means that to prepare a distribution for:

• a different OS

• a different version of Python

• a 32-bit or 64-bit OS

you run PyInstaller on that OS, under that version of Python. The Python interpreter that executes
PyInstaller is part of the bundle, and it is specific to the OS and the word size.

Analysis: Finding the Files Your Program Needs
What other modules and libraries does your script need in order to run? (These are sometimes called its
"dependencies".)

To find out, PyInstaller finds all the import statements in your script. It finds the imported modules and
looks in them for import statements, and so on recursively, until it has a complete list of modules your
script may use.

PyInstaller understands the "egg" distribution format often used for Python packages. If your script imports
a module from an "egg", PyInstaller adds the egg and its dependencies to the set of needed files.

PyInstaller also knows about many major Python packages, including the GUI packages Qt (imported via
PyQt or PySide), WxPython, TkInter, Django, and other major packages. For a complete list, see
Supported Packages.

Some Python scripts import modules in ways that PyInstaller cannot detect: for example, by using the
__import__() function with variable data, or manipulating the sys.path value at run time. If your
script requires files that PyInstaller does not know about, you must help it:

• You can give additional files on the pyinstaller command line.

• You can give additional import paths on the command line.

• You can edit the myscript.spec file that PyInstaller writes the first time you run it for your script.
In the spec file you can tell PyInstaller about code modules that are unique to your script.

• You can write "hook" files that inform PyInstaller of hidden imports. If you create a "hook" for a
package that other users might also use, you can contribute your hook file to PyInstaller.

If your program depends on access to certain data files, you can tell PyInstaller to include them in the
bundle as well. You do this by modifying the spec file, an advanced topic that is covered under Using
Spec Files.

In order to locate included files at run time, your program needs to be able to learn its path at run time in a
way that works regardless of whether or not it is running from a bundle. This is covered under Run-time
Operation.

PyInstaller does not include libraries that should exist in any installation of this OS. For example in Linux,
it does not bundle any file from /lib or /usr/lib , assuming these will be found in every system.

PyInstaller Manual - Analysis: Finding the Files Your Program Needs

8

http://www.qt-project.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro
http://qt-project.org/wiki/About-PySide
http://www.wxpython.org/
http://wiki.python.org/moin/TkInter
https://www.djangoproject.com/
https://github.com/pyinstaller/pyinstaller/wiki/Supported-Packages

Bundling to One Folder
When you apply PyInstaller to myscript.py the default result is a single folder named myscript . This
folder contains all your script's dependencies, and an executable file also named myscript
(myscript.exe in Windows).

You compress the folder to myscript.zip and transmit it to your users. They install the program simply
by unzipping it. A user runs your app by opening the folder and launching the myscript executable
inside it.

It is easy to debug problems that occur when building the app when you use one-folder mode. You can
see exactly what files PyInstaller collected into the folder.

Another advantage of a one-folder bundle is that when you change your code, as long as it imports
exactly the same set of dependencies, you could send out only the updated myscript executable. That
is typically much smaller than the entire folder. (If you change the script so that it imports more or different
dependencies, or if the dependencies are upgraded, you must redistribute the whole bundle.)

A small disadvantage of the one-folder format is that the one folder contains a large number of files. Your
user must find the myscript executable in a long list of names or among a big array of icons. Also your
user can create a problem by accidentally dragging files out of the folder.

How the One-Folder Program Works
A bundled program always starts execution in the PyInstaller bootloader. This is the heart of the
myscript executable in the folder.

The PyInstaller bootloader is a binary executable program for the active platform (Windows, Linux,
Mac OS X, etc.). When the user launches your program, it is the bootloader that runs. The bootloader
creates a temporary Python environment such that the Python interpreter will find all imported modules
and libraries in the myscript folder.

The bootloader starts a copy of the Python interpreter to execute your script. Everything follows normally
from there, provided that all the necessary support files were included.

(This is an overview. For more detail, see The Bootstrap Process in Detail below.)

Bundling to One File
PyInstaller can bundle your script and all its dependencies into a single executable named myscript
(myscript.exe in Windows).

The advantage is that your users get something they understand, a single executable to launch. A
disadvantage is that any related files such as a README must be distributed separately. Also, the single
executable is a little slower to start up than the one-folder bundle.

Before you attempt to bundle to one file, make sure your app works correctly when bundled to one folder.
It is is much easier to diagnose problems in one-folder mode.

How the One-File Program Works
The bootloader is the heart of the one-file bundle also. When started it creates a temporary folder in the
appropriate temp-folder location for this OS. The folder is named _MEIxxxxxx, where xxxxxx is a random
number.

The one executable file contains an embedded archive of all the Python modules used by your script, as
well as compressed copies of any non-Python support files (e.g. .so files). The bootloader
uncompresses the support files and writes copies into the the temporary folder. This can take a little time.
That is why a one-file app is a little slower to start than a one-folder app.

PyInstaller Manual - Bundling to One Folder

9

After creating the temporary folder, the bootloader proceeds exactly as for the one-folder bundle, in the
context of the temporary folder. When the bundled code terminates, the bootloader deletes the temporary
folder.

(In Linux and related systems, it is possible to mount the /tmp folder with a "no-execution" option. That
option is not compatible with a PyInstaller one-file bundle. It needs to execute code out of /tmp .)

Because the program makes a temporary folder with a unique name, you can run multiple copies of the
app; they won't interfere with each other. However, running multiple copies is expensive in disk space
because nothing is shared.

The _MEIxxxxxx folder is not removed if the program crashes or is killed (kill -9 on Unix, killed by the Task
Manager on Windows, "Force Quit" on Mac OS). Thus if your app crashes frequently, your users will lose
disk space to multiple _MEIxxxxxx temporary folders.

Note

Do not give administrator privileges to a one-file executable (setuid root in Unix/Linux, or the "Run
this program as an administrator" property in Windows 7). There is an unlikely but not impossible
way in which a malicious attacker could corrupt one of the shared libraries in the temp folder while
the bootloader is preparing it. Distribute a privileged program in one-folder mode instead.

Note

Applications that use os.setuid() may encounter permissions errors. The temporary folder where
the bundled app runs may not being readable after setuid is called. If your script needs to call
setuid, it may be better to use one-folder mode so as to have more control over the permissions on
its files.

Using a Console Window
By default the bootloader creates a command-line console (a terminal window in Linux and Mac OS, a
command window in Windows). It gives this window to the Python interpreter for its standard input and
output. Your script's use of print and input() are directed here. Error messages from Python and
default logging output also appear in the console window.

An option for Windows and Mac OS is to tell PyInstaller to not provide a console window. The bootloader
starts Python with no target for standard output or input. Do this when your script has a graphical interface
for user input and can properly report its own diagnostics.

Hiding the Source Code
The bundled app does not include any source code. However, PyInstaller bundles compiled Python
scripts (.pyc files). These could in principle be decompiled to reveal the logic of your code.

If you want to hide your source code more thoroughly, one possible option is to compile some of your
modules with Cython. Using Cython you can convert Python modules into C and compile the C to
machine language. PyInstaller can follow import statements that refer to Cython C object modules and
bundle them.

PyInstaller Manual - Using a Console Window

10

http://www.cython.org/

Additionally, Python bytecode can be obfuscated with AES256 by specifying an encryption key on
PyInstaller's command line. Please note that it is still very easy to extract the key and get back the original
bytecode, but it should prevent most forms of "casual" tampering.

Using PyInstaller
The syntax of the pyinstaller command is:

pyinstaller [options] script [script ...] | specfile

In the most simple case, set the current directory to the location of your program myscript.py and
execute:

pyinstaller myscript.py

PyInstaller analyzes myscript.py and:

• Writes myscript.spec in the same folder as the script.

• Creates a folder build in the same folder as the script if it does not exist.

• Writes some log files and working files in the build folder.

• Creates a folder dist in the same folder as the script if it does not exist.

• Writes the myscript executable folder in the dist folder.

In the dist folder you find the bundled app you distribute to your users.

Normally you name one script on the command line. If you name more, all are analyzed and included in
the output. However, the first script named supplies the name for the spec file and for the executable
folder or file. Its code is the first to execute at run-time.

For certain uses you may edit the contents of myscript.spec (described under Using Spec Files). After
you do this, you name the spec file to PyInstaller instead of the script:

pyinstaller myscript.spec

You may give a path to the script or spec file, for example

pyinstaller options... ~/myproject/source/myscript.py

or, on Windows,

pyinstaller "C:\Documents and Settings\project\myscript.spec"

Options

General Options

-h, --help show this help message and exit

-v, --version Show program version info and exit.

--distpath=DIR Where to put the bundled app (default: ./dist)

--workpath=WORKPATH Where to put all the temporary work files, .log,
.pyz and etc. (default: ./build)

-y, --noconfirm Replace output directory (default:
SPECPATH/dist/SPECNAME) without asking
for confirmation

--upx-dir=UPX_DIR Path to UPX utility (default: search the
execution path)

PyInstaller Manual - Using PyInstaller

11

-a, --ascii Do not include unicode encoding support
(default: included if available)

--clean Clean PyInstaller cache and remove temporary
files before building.

--log-level=LOGLEVEL Amount of detail in build-time console
messages (default: INFO, choose one of
DEBUG, INFO, WARN, ERROR, CRITICAL)

What to generate

-F, --onefile Create a one-file bundled executable.

-D, --onedir Create a one-folder bundle containing an
executable (default)

--specpath=DIR Folder to store the generated spec file (default:
current directory)

-n NAME, --name=NAME Name to assign to the bundled app and spec
file (default: first script's basename)

What to bundle, where to search

-p DIR, --paths=DIR A path to search for imports (like using
PYTHONPATH). Multiple paths are allowed,
separated by ':', or use this option multiple
times

--hidden-import=MODULENAME Name an import not visible in the code of the
script(s). This option can be used multiple
times.

--additional-hooks-dir=HOOKSPATH An additional path to search for hooks. This
option can be used multiple times.

--runtime-hook=RUNTIME_HOOKS Path to a custom runtime hook file. A runtime
hook is code that is bundled with the
executable and is executed before any other
code or module to set up special features of the
runtime environment. This option can be used
multiple times.

--exclude-module=EXCLUDES Optional module or package (his Python
names,not path names) that will be ignored (as
thoughit was not found).This option can be
used multiple times.

--key=KEY The key used to encrypt Python bytecode.

How to generate

-d, --debug Tell the bootloader to issue progress messages
while initializing and starting the bundled app.
Used to diagnose problems with missing
imports.

-s, --strip Apply a symbol-table strip to the executable
and shared libs (not recommended for
Windows)

--noupx Do not use UPX even if it is available (works
differently between Windows and *nix)

PyInstaller Manual - Using PyInstaller

12

Windows and Mac OS X specific options

-c, --console, --nowindowed Open a console window for standard i/o
(default)

-w, --windowed, --noconsole Windows and Mac OS X: do not provide a
console window for standard i/o. On Mac OS X
this also triggers building an OS X .app
bundle.This option is ignored in *NIX systems.

-i <FILE.ico or FILE.exe,ID or FILE.icns>, --icon=<FILE.ico or FILE.exe,ID or FILE.icns>FILE.ico: apply that icon to a Windows
executable. FILE.exe,ID, extract the icon with
ID from an exe. FILE.icns: apply the icon to the
.app bundle on Mac OS X

Windows specific options

--version-file=FILE add a version resource from FILE to the exe

-m <FILE or XML>, --manifest=<FILE or XML> add manifest FILE or XML to the exe

-r <FILE[,TYPE[,NAME[,LANGUAGE]]]>, --resource=<FILE[,TYPE[,NAME[,LANGUAGE]]]>Add or update a resource of the given type,
name and language from FILE to a Windows
executable. FILE can be a data file or an
exe/dll. For data files, at least TYPE and NAME
must be specified. LANGUAGE defaults to 0 or
may be specified as wildcard * to update all
resources of the given TYPE and NAME. For
exe/dll files, all resources from FILE will be
added/updated to the final executable if TYPE,
NAME and LANGUAGE are omitted or
specified as wildcard *.This option can be used
multiple times.

--uac-admin Using this option creates a Manifest which will
request elevation upon application restart.

--uac-uiaccess Using this option allows an elevated application
to work with Remote Desktop.

Windows Side-by-side Assembly searching options (advanced)

--win-private-assemblies Any Shared Assemblies bundled into the
application will be changed into Private
Assemblies. This means the exact versions of
these assemblies will always be used, and any
newer versions installed on user machines at
the system level will be ignored.

--win-no-prefer-redirects While searching for Shared or Private
Assemblies to bundle into the application,
PyInstaller will prefer not to follow policies that
redirect to newer versions, and will try to
bundle the exact versions of the assembly.

PyInstaller Manual - Using PyInstaller

13

Mac OS X specific options

--osx-bundle-identifier=BUNDLE_IDENTIFIER Mac OS X .app bundle identifier is used as the
default unique program name for code signing
purposes. The usual form is a hierarchical
name in reverse DNS notation. For example:
com.mycompany.department.appname
(default: first script's basename)

Shortening the Command
Because of its numerous options, a full pyinstaller command can become very long. You will run the
same command again and again as you develop your script. You can put the command in a shell script or
batch file, using line continuations to make it readable. For example, in Linux:

pyinstaller --noconfirm --log-level=WARN \
 --onefile --nowindow \
 --hidden-import=secret1 \
 --hidden-import=secret2 \
 --upx-dir=/usr/local/share/ \
 myscript.spec

Or in Windows, use the little-known BAT file line continuation:

pyinstaller --noconfirm --log-level=WARN ^
 --onefile --nowindow ^
 --hidden-import=secret1 ^
 --hidden-import=secret2 ^
 --icon-file=..\MLNMFLCN.ICO ^
 myscript.spec

Using UPX
UPX is a free utility available for most operating systems. UPX compresses executable files and libraries,
making them smaller, sometimes much smaller. UPX is available for most operating systems and can
compress a large number of executable file formats. See the UPX home page for downloads, and for the
list of supported executable formats. Development of UPX appears to have ended in September 2013, at
which time it supported most executable formats except for 64-bit binaries for Mac OS X. UPX has no
effect on those.

A compressed executable program is wrapped in UPX startup code that dynamically decompresses the
program when the program is launched. After it has been decompressed, the program runs normally. In
the case of a PyInstaller one-file executable that has been UPX-compressed, the full execution sequence
is:

• The compressed program start up in the UPX decompressor code.

• After decompression, the program executes the PyInstaller bootloader, which creates a temporary
environment for Python.

• The Python interpreter executes your script.

PyInstaller looks for UPX on the execution path or the path specified with the --upx-dir option. If UPX
exists, PyInstaller applies it to the final executable, unless the --noupx option was given. UPX has been
used with PyInstaller output often, usually with no problems.

PyInstaller Manual - Shortening the Command

14

http://upx.sourceforge.net/
http://upx.sourceforge.net/

Encrypting Python Bytecode
To encrypt the Python bytecode modules stored in the bundle, pass the --key= key-string argument on
the command line.

For this to work, you must have the PyCrypto module installed. The key-string is a string of 16 characters
which is used to encrypt each file of Python byte-code before it is stored in the archive inside the
executable file.

Supporting Multiple Platforms
If you distribute your application for only one combination of OS and Python, just install PyInstaller like any
other package and use it in your normal development setup.

Supporting Multiple Python Environments
When you need to bundle your application within one OS but for different versions of Python and support
libraries -- for example, a Python 3 version and a Python 2.7 version; or a supported version that uses Qt4
and a development version that uses Qt5 -- we recommend you use virtualenv. With virtualenv you can
maintain different combinations of Python and installed packages, and switch from one combination to
another easily. (If you work only with Python 3.4 and later, the built-in script pyvenv does the same job.)

• Use virtualenv to create as many different development environments as you need, each with its
unique combination of Python and installed packages.

• Install PyInstaller in each environment.

• Use PyInstaller to build your application in each environment.

Note that when using virtualenv, the path to the PyInstaller commands is:

• Windows: ENV_ROOT\Scripts

• Others: ENV_ROOT/bin

Under Windows, the pip-Win package installs virtualenv and makes it especially easy to set up different
environments and switch between them. Under Linux and Mac OS, you switch environments at the
command line.

Supporting Multiple Operating Systems
If you need to distribute your application for more than one OS, for example both Windows and Mac OS X,
you must install PyInstaller on each platform and bundle your app separately on each.

You can do this from a single machine using virtualization. The free virtualBox or the paid VMWare and
Parallels allow you to run another complete operating system as a "guest". You set up a virtual machine
for each "guest" OS. In it you install Python, the support packages your application needs, and PyInstaller.

The Dropbox system is useful with virtual machines. Install a Dropbox client in each virtual machine, all
linked to your Dropbox account. Keep a single copy of your script(s) in a Dropbox folder. Then on any
virtual machine you can run PyInstaller thus:

cd ~/Dropbox/project_folder/src # Linux, Mac -- Windows similar
rm *.pyc # get rid of modules compiled by another Python
pyinstaller --workpath=path-to-local-temp-folder \
 --distpath=path-to-local-dist-folder \
 ...other options as required... \
 ./myscript.py

PyInstaller Manual - Encrypting Python Bytecode

15

https://pypi.python.org/pypi/pycrypto/
http://www.virtualenv.org/
https://docs.python.org/3.4/library/venv.html
https://sites.google.com/site/pydatalog/python/pip-for-windows
https://www.virtualbox.org
http://www.vmware.com/solutions/desktop/
http://www.parallels.com/
https://www.dropbox.com/home

PyInstaller reads scripts from the common Dropbox folder, but writes its work files and the bundled app in
folders that are local to the virtual machine.

If you share the same home directory on multiple platforms, for example Linux and OS X, you will need to
set the PYINSTALLER_CONFIG_DIR environment variable to different values on each platform otherwise
PyInstaller may cache files for one platform and use them on the other platform, as by default it uses a
subdirectory of your home directory as its cache location.

It is said to be possible to cross-develop for Windows under Linux using the free Wine environment.
Further details are needed, see How to Contribute.

Making Linux Apps Forward-Compatible
Under Linux, PyInstaller does not bundle libc (the C standard library, usually glibc , the Gnu version)
with the app. Instead, the app expects to link dynamically to the libc from the local OS where it runs.
The interface between any app and libc is forward compatible to newer releases, but it is not backward
compatible to older releases.

For this reason, if you bundle your app on the current version of Linux, it may fail to execute (typically with
a runtime dynamic link error) if it is executed on an older version of Linux.

The solution is to always build your app on the oldest version of Linux you mean to support. It should
continue to work with the libc found on newer versions.

The Linux standard libraries such as glibc are distributed in 64-bit and 32-bit versions, and these are
not compatible. As a result you cannot bundle your app on a 32-bit system and run it on a 64-bit
installation, nor vice-versa. You must make a unique version of the app for each word-length supported.

Capturing Windows Version Data
A Windows app may require a Version resource file. A Version resource contains a group of data
structures, some containing binary integers and some containing strings, that describe the properties of
the executable. For details see the Microsoft Version Information Structures page.

Version resources are complex and some elements are optional, others required. When you view the
version tab of a Properties dialog, there's no simple relationship between the data displayed and the
structure of the resource. For this reason PyInstaller includes the pyi-grab_version command. It is
invoked with the full path name of any Windows executable that has a Version resource:

pyi-grab_version executable_with_version_resource

The command writes text that represents a Version resource in readable form to standard output. You can
copy it from the console window or redirect it to a file. Then you can edit the version information to adapt it
to your program. Using pyi-grab_version you can find an executable that displays the kind of
information you want, copy its resource data, and modify it to suit your package.

The version text file is encoded UTF-8 and may contain non-ASCII characters. (Unicode characters are
allowed in Version resource string fields.) Be sure to edit and save the text file in UTF-8 unless you are
certain it contains only ASCII string values.

Your edited version text file can be given with the --version-file= option to pyinstaller or
pyi-makespec . The text data is converted to a Version resource and installed in the bundled app.

In a Version resource there are two 64-bit binary values, FileVersion and ProductVersion . In the
version text file these are given as four-element tuples, for example:

filevers=(2, 0, 4, 0),
prodvers=(2, 0, 4, 0),

PyInstaller Manual - Making Linux Apps Forward-Compatible

16

http://www.winehq.org/
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
http://msdn.microsoft.com/en-us/library/ff468916(v=vs.85).aspx

The elements of each tuple represent 16-bit values from most-significant to least-significant. For example
the value (2, 0, 4, 0) resolves to 0002000000040000 in hex.

You can also install a Version resource from a text file after the bundled app has been created, using the
set_version command:

set_version version_text_file executable_file

The set_version utility reads a version text file as written by pyi-grab_version , converts it to a
Version resource, and installs that resource in the executable_file specified.

For advanced uses, examine a version text file as written by pyi-grab_version . You find it is Python
code that creates a VSVersionInfo object. The class definition for VSVersionInfo is found in
utils/win32/versioninfo.py in the PyInstaller distribution folder. You can write a program that
imports versioninfo . In that program you can eval the contents of a version info text file to produce a
VSVersionInfo object. You can use the .toRaw() method of that object to produce a Version
resource in binary form. Or you can apply the unicode() function to the object to reproduce the version
text file.

Building Mac OS X App Bundles
If you specify only --onefile under Mac OS X, the output in dist is a UNIX executable myscript . It
can be executed from a Terminal command line. Standard input and output work as normal through the
Terminal window.

If you also specify --windowed , the dist folder contains two outputs: the UNIX executable myscript
and also an OS X application named myscript.app .

As you probably know, an application is a special type of folder. The one built by PyInstaller contains a
folder always named Contents . It contains:

• A folder Frameworks which is empty.

• A folder MacOS that contains a copy of the same myscript UNIX executable.

• A folder Resources that contains an icon file.

• A file Info.plist that describes the app.

PyInstaller builds minimal versions of these elements.

Use the osx-bundle-identifier= argument to add a bundle identifier. This becomes the
CFBundleIdentifier used in code-signing (see the PyInstaller code signing recipe and for more detail,
the Apple code signing overview technical note).

Use the icon= argument to specify a custom icon for the application. (If you do not specify an icon file,
PyInstaller supplies a file icon-windowed.icns with the PyInstaller logo.)

You can add items to the Info.plist by editing the spec file; see Spec File Options for a Mac OS X
Bundle below.

Getting the Opened Document Names

Note

Support for OpenDocument events is broken in PyInstaller 3.0 owing to code changes needed in
the bootloader to support current versions of Mac OS X. Do not attempt to use this feature until it
has been fixed. If this feature is important to you, follow and comment on the status of PyInstaller
Issue #1309.

PyInstaller Manual - Building Mac OS X App Bundles

17

https://github.com/pyinstaller/pyinstaller/wiki/Recipe-OSX-Code-Signing
https://developer.apple.com/library/mac/technotes/tn2206/_index.html
https://github.com/pyinstaller/pyinstaller/issues/1309
https://github.com/pyinstaller/pyinstaller/issues/1309

When a user double-clicks a document of a type your application supports, or when a user drags a
document icon and drops it on your application's icon, Mac OS X launches your application and provides
the name(s) of the opened document(s) in the form of an OpenDocument AppleEvent. This AppleEvent is
received by the bootloader before your code has started executing.

The bootloader gets the names of opened documents from the OpenDocument event and encodes them
into the argv string before starting your code. Thus your code can query sys.argv to get the names of
documents that should be opened at startup.

OpenDocument is the only AppleEvent the bootloader handles. If you want to handle other events, or
events that are delivered after the program has launched, you must set up the appropriate handlers.

Run-time Operation
Your app should run in a bundle exactly as it does when run from source. However, you might want to
learn at run-time whether the app is running from source or "frozen" (bundled).

For example, you might have data files that, when running live, are found based on a module's
__file__ attribute. That will not work when the code is bundled.

The PyInstaller bootloader adds the name frozen to the sys module. So the test for "are we bundled?"
is:

import sys
if getattr(sys, 'frozen', False) :
 # running in a bundle
else :
 # running live

Data files and folders of files can be included in the bundle. by editing the spec file; see Adding Files to
the Bundle. The added files will be in the bundle folder.

The bootloader stores the absolute path to the bundle folder in sys._MEIPASS . For a one-folder bundle,
this is the path to that folder, wherever the user may have put it. For a one-file bundle, this is the path to
the _MEIxxxxxx temporary folder created by the bootloader (see How the One-File Program Works).

When your application needs access to a data file that is bundled with it, you get the path to the file with
the following code:

import sys
import os
...
if getattr(sys, 'frozen', False):
 # we are running in a bundle
 basedir = sys._MEIPASS
else:
 # we are running in a normal Python environment
 basedir = os.path.dirname(os.path.abspath(__file__))

This code sets basedir to the path to the folder containing your script and any other files or folders
bundled with it. When your program was not started by the bootloader, the standard Python variable
__file__ is the full path to the script now executing, and os.path.dirname() extracts the path to the
folder that contains it. When bundled, sys._MEIPASS provides the path to bundle folder.

PyInstaller Manual - Run-time Operation

18

Using Spec Files
When you execute

pyinstaller options.. myscript.py

the first thing PyInstaller does is to build a spec (specification) file myscript.spec . That file is stored in
the --specpath= directory, by default the current directory.

The spec file tells PyInstaller how to process your script. It encodes the script names and most of the
options you give to the pyinstaller command. The spec file is actually executable Python code.
PyInstaller builds the app by executing the contents of the spec file.

For many uses of PyInstaller you do not need to examine or modify the spec file. It is usually enough to
give all the needed information (such as hidden imports) as options to the pyinstaller command and
let it run.

There are four cases where it is useful to modify the spec file:

• When you want to bundle data files with the app.

• When you want to include run-time libraries (.dll or .so files) that PyInstaller does not know
about from any other source.

• When you want to add Python run-time options to the executable.

• When you want to create a multiprogram bundle with merged common modules.

These uses are covered in topics below.

You create a spec file using this command:

pyi-makespec options name.py [other scripts ...]

The options are the same options documented above for the pyinstaller command. This command
creates the name.spec file but does not go on to build the executable.

After you have created a spec file and modified it as necessary, you build the application by passing the
spec file to the pyinstaller command:

pyinstaller options name.spec

When you create a spec file, most command options are encoded in the spec file. When you build from a
spec file, those options cannot be changed. If they are given on the command line they are ignored and
replaced by the options in the spec file.

Only the following command-line options have an effect when building from a spec file:

• --upx-dir=

• --distpath=

• --workpath=

• --noconfirm

• --ascii

Spec File Operation
After PyInstaller creates a spec file, or opens a spec file when one is given instead of a script, the
pyinstaller command executes the spec file as code. Your bundled application is created by the
execution of the spec file. The following is an shortened example of a spec file for a minimal, one-folder
app:

PyInstaller Manual - Using Spec Files

19

block_cipher = None
a = Analysis(['minimal.py'],
 pathex=['/Developer/PItests/minimal'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=None,
 runtime_hooks=None,
 excludes=None,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,...)
coll = COLLECT(...)

The statements in a spec file create instances of four classes, Analysis , PYZ, EXE and COLLECT.

• A new instance of class Analysis takes a list of script names as input. It analyzes all imports and
other dependencies. The resulting object (assigned to a) contains lists of dependencies in class
members named:

• scripts : the python scripts named on the command line;

• pure : pure python modules needed by the scripts;

• binaries : non-python modules needed by the scripts;

• datas : non-binary files included in the app.

• An instance of class PYZ is a .pyz archive (described under Inspecting Archives below), which
contains all the Python modules from a.pure .

• An instance of EXE is built from the analyzed scripts and the PYZ archive. This object creates the
executable file.

• An instance of COLLECT creates the output folder from all the other parts.

In one-file mode, there is no call to COLLECT, and the EXE instance receives all of the scripts, modules
and binaries.

You modify the spec file to pass additional values to Analysis and to EXE.

Adding Files to the Bundle
To add files to the bundle, you create a list that describes the files and supply it to the Analysis call.

Adding Data Files
You provide a list that describes the files as the value of the datas= argument to Analysis . The list of
data files is a list of tuples. Each tuple has two values, both of which must be strings:

• The first string specifies the file or files as they are in this system now.

• The second specifies the names of the files in the bundled app at run-time.

For example, to add a single README file to a one-folder app, you could modify the spec file as follows:

a = Analysis(...
 datas=[('src/README.txt', 'README')],

PyInstaller Manual - Adding Files to the Bundle

20

 hiddenimports=...
)

You have made the datas= argument a one-item list. The item is a tuple in which the first string says the
existing file is src/README.txt . This file will be copied into the bundle with name README.

The spec file is more readable if you create the list of added files in a separate statement:

added_files = [
 ('src/README.txt', 'README')
]
a = Analysis(...
 datas= added_files,
 ...
)

The strings may use either / or \ as the path separator character. You can specify input files using
"glob" abbreviations. When the input is multiple files, the output string may be the name of a folder. For
example to include all the .mp3 files from a certain folder:

added_files = [
 ('/mygame/sfx/*.mp3', 'sfx'),
 ('src/README.txt', 'README')
]

All files matching /mygame/sfx/*.mp3 will be copied into the bundle and stored in a folder named sfx .

The path to the input file or folder may be absolute as in the first tuple, or relative as in the second. When
it is relative, it is taken as relative to the location of the spec file.

You can also include the entire contents of a folder:

added_files = [
 ('/mygame/data', 'data'),
 ('/mygame/sfx/*.mp3', 'sfx'),
 ('src/README.txt', 'README')
]

All files in /mygame/data will be copied recursively into a folder named data in the bundle.

Adding Binary Files
To add binary files, make a list of tuples that describe the files needed. Assign the list of tuples to the
binaries= argument of Analysis.

Normally PyInstaller learns about .so and .dll libraries by analyzing the imported modules.
Sometimes it is not clear that a module is imported; in that case you use a --hidden-import=
command option. But even that might not find all dependencies.

Suppose you have a module special_ops.so that is written in C and uses the Python C-API. Your
program imports special_ops , and PyInstaller finds and includes special_ops.so . But perhaps
special_ops.so links to libiodbc.2.dylib . PyInstaller does not find this dependency. You could
add it to the bundle this way:

PyInstaller Manual - Adding Files to the Bundle

21

a = Analysis(...
 binaries=[('/usr/lib/libiodbc.2.dylib', 'libiodbc.dylib')],
 ...

As with data files, if you have multiple binary files to add, create the list in a separate statement and pass
the list by name.

Advanced Methods of Adding Files
PyInstaller supports a more advanced (and complex) way of adding files to the bundle that may be useful
for special cases. See The TOC and Tree Classes below.

Giving Run-time Python Options
You can pass command-line options to the Python interpreter. The interpreter takes a number of
command-line options but only the following are supported for a bundled app:

• v to write a message to stdout each time a module is initialized.

• u for unbuffered stdio.

• W and an option to change warning behavior: W ignore or W once or W error .

To pass one or more of these options, create a list of tuples, one for each option, and pass the list as an
additional argument to the EXE call. Each tuple has three elements:

• The option as a string, for example v or W ignore .

• None

• The string OPTION

For example modify the spec file this way:

options = [('v', None, 'OPTION'), ('W ignore', None, 'OPTION')]
a = Analysis(...
)
...
exe = EXE(pyz,
 a.scripts,
 options, <--- added line
 exclude_binaries=...
)

Spec File Options for a Mac OS X Bundle
When you build a windowed Mac OS X app (that is, running in Mac OS X, you specify the
--onefile --windowed options), the spec file contains an additional statement to create the
Mac OS X application bundle, or app folder:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None)

PyInstaller Manual - Giving Run-time Python Options

22

The icon= argument to BUNDLE will have the path to an icon file that you specify using the --icon=
option. The bundle_identifier will have the value you specify with the
--osx-bundle-identifier= option.

An Info.plist file is an important part of a Mac OS X app bundle. (See the Apple bundle overview for
a discussion of the contents of Info.plist .)

PyInstaller creates a minimal Info.plist . You can add or overwrite entries in the plist by passing an
info_plist= parameter to the BUNDLE call. The value of this argument is a Python dict. Each key and
value in the dict becomes a key and value in the Info.plist file. For example, when you use PyQt5,
you can set NSHighResolutionCapable to True to let your app also work in retina screen:

app = BUNDLE(exe,
 name='myscript.app',
 icon=None,
 bundle_identifier=None
 info_plist={
 'NSHighResolutionCapable': 'True'
 },
)

The info_plist= parameter only handles simple key:value pairs. It cannot handle nested XML arrays.
For example, if you want to modify Info.plist to tell Mac OS X what filetypes your app supports, you
must add a CFBundleDocumentTypes entry to Info.plist (see Apple document types). The value
of that keyword is a list of dicts, each containing up to five key:value pairs.

To add such a value to your app's Info.plist you must edit the plist file separately after PyInstaller
has created the app. However, when you re-run PyInstaller, your changes will be wiped out. One solution
is to prepare a complete Info.plist file and copy it into the app after creating it.

Begin by building and testing the windowed app. When it works, copy the Info.plist prepared by
PyInstaller. This includes the CFBundleExecutable value as well as the icon path and bundle identifier
if you supplied them. Edit the Info.plist as necessary to add more items and save it separately.

From that point on, to rebuild the app call PyInstaller in a shell script, and follow it with a statement such
as:

cp -f Info.plist dist/myscript.app/Contents/Info.plist

Multipackage Bundles

Note

This feature is broken in the PyInstaller 3.0 release. Do not attempt building multipackage bundles
until the feature is fixed. If this feature is important to you, follow and comment on PyInstaller Issue
#1527.

Some products are made of several different apps, each of which might depend on a common set of
third-party libraries, or share code in other ways. When packaging such an product it would be a pity to
treat each app in isolation, bundling it with all its dependencies, because that means storing duplicate
copies of code and libraries.

PyInstaller Manual - Multipackage Bundles

23

https://developer.apple.com/library/mac/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html
https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/uid/20001431-101685
https://github.com/pyinstaller/pyinstaller/issues/1527
https://github.com/pyinstaller/pyinstaller/issues/1527

You can use the multipackage feature to bundle a set of executable apps so that they share single copies
of libraries. You can do this with either one-file or one-folder apps. Each dependency (a DLL, for example)
is packaged only once, in one of the apps. Any other apps in the set that depend on that DLL have an
"external reference" to it, telling them to extract that dependency from the executable file of the app that
contains it.

This saves disk space because each dependency is stored only once. However, to follow an external
reference takes extra time when an app is starting up. All but one of the apps in the set will have slightly
slower launch times.

The external references between binaries include hard-coded paths to the output directory, and cannot be
rearranged. If you use one-folder mode, you must install all the application folders within a single parent
directory. If you use one-file mode, you must place all the related applications in the same directory when
you install the application.

To build such a set of apps you must code a custom spec file that contains a call to the MERGE function.
This function takes a list of analyzed scripts, finds their common dependencies, and modifies the analyses
to minimize the storage cost.

The order of the analysis objects in the argument list matters. The MERGE function packages each
dependency into the first script from left to right that needs that dependency. A script that comes later in
the list and needs the same file will have an external reference to the prior script in the list. You might
sequence the scripts to place the most-used scripts first in the list.

A custom spec file for a multipackage bundle contains one call to the MERGE function:

MERGE(*args)

MERGE is used after the analysis phase and before EXE and COLLECT. Its variable-length list of
arguments consists of a list of tuples, each tuple having three elements:

• The first element is an Analysis object, an instance of class Analysis, as applied to one of the apps.

• The second element is the script name of the analyzed app (without the .py extension).

• The third element is the name for the executable (usually the same as the script).

MERGE examines the Analysis objects to learn the dependencies of each script. It modifies these objects
to avoid duplication of libraries and modules. As a result the packages generated will be connected.

Example MERGE spec file
One way to construct a spec file for a multipackage bundle is to first build a spec file for each app in the
package. Suppose you have a product that comprises three apps named (because we have no
imagination) foo , bar and zap :

pyi-makespec options as appropriate... foo.py

pyi-makespec options as appropriate... bar.py

pyi-makespec options as appropriate... zap.py

Check for warnings and test each of the apps individually. Deal with any hidden imports and other
problems. When all three work correctly, combine the statements from the three files foo.spec ,
bar.spec and zap.spec as follows.

First copy the Analysis statements from each, changing them to give each Analysis object a unique name:

foo_a = Analysis(['foo.py'],
 pathex=['/the/path/to/foo'],
 hiddenimports=[],

PyInstaller Manual - Multipackage Bundles

24

 hookspath=None)

bar_a = Analysis(['bar.py'], etc., etc...

zap_a = Analysis(['zap.py'], etc., etc...

Now call the MERGE method to process the three Analysis objects:

MERGE((foo_a, 'foo', 'foo'), (bar_a, 'bar', 'bar'), (zap_a, 'zap', 'zap'))

The Analysis objects foo_a , bar_a , and zap_a are modified so that the latter two refer to the first for
common dependencies.

Following this you can copy the PYZ, EXE and COLLECT statements from the original three spec files,
substituting the unique names of the Analysis objects where the original spec files have a. , for example:

foo_pyz = PYZ(foo_a.pure)
foo_exe = EXE(foo_pyz, foo_a.scripts, ... etc.
foo_coll = COLLECT(foo_exe, foo_a.binaries, foo_a.datas... etc.

bar_pyz = PYZ(bar_a.pure)
bar_exe = EXE(bar_pyz, bar_a.scripts, ... etc.
bar_coll = COLLECT(bar_exe, bar_a.binaries, bar_a.datas... etc.

(If you are building one-file apps, there is no COLLECT step.) Save the combined spec file as
foobarzap.spec and then build it:

pyi-build foobarzap.spec

The output in the dist folder will be all three apps, but the apps dist/bar/bar and dist/zap/zap
will refer to the contents of dist/foo/ for shared dependencies.

There are several multipackage examples in the PyInstaller distribution folder under
/tests/old_suite/multipackage .

Remember that a spec file is executable Python. You can use all the Python facilities (for and with
and the members of sys and io) in creating the Analysis objects and performing the PYZ, EXE and
COLLECT statements. You may also need to know and use The TOC and Tree Classes described below.

When Things Go Wrong
The information above covers most normal uses of PyInstaller. However, the variations of Python and
third-party libraries are endless and unpredictable. It may happen that when you attempt to bundle your
app either PyInstaller itself, or your bundled app, terminates with a Python traceback. Then please
consider the following actions in sequence, before asking for technical help.

Recipes and Examples for Specific Problems
The PyInstaller FAQ page has work-arounds for some common problems. Code examples for some
advanced uses and some common problems are available on our PyInstaller Recipes page. Some of the
recipes there include:

• A more sophisticated way of collecting data files than the one shown above (Adding Files to the
Bundle).

PyInstaller Manual - When Things Go Wrong

25

https://github.com/pyinstaller/pyinstaller/wiki/FAQ
https://github.com/pyinstaller/pyinstaller/wiki/Recipes

• Bundling a typical Django app.

• A use of a run-time hook to set the PyQt4 API level.

• A workaround for a multiprocessing constraint under Windows.

and others. Many of these Recipes were contributed by users. Please feel free to contribute more recipes!

Finding out What Went Wrong

Build-time Messages
When the Analysis step runs, it produces error and warning messages. These display after the
command line if the --log-level option allows it. Analysis also puts messages in a warnings file
named build/ name/warn name.txt in the work-path= directory.

Analysis creates a message when it detects an import and the module it names cannot be found. A
message may also be produced when a class or function is declared in a package (an __init__.py
module), and the import specifies package.name . In this case, the analysis can't tell if name is supposed
to refer to a submodule or package.

The "module not found" messages are not classed as errors because typically there are many of them.
For example, many standard modules conditionally import modules for different platforms that may or may
not be present.

All "module not found" messages are written to the build/ name/warn name.txt file. They are not
displayed to standard output because there are many of them. Examine the warning file; often there will
be dozens of modules not found, but their absence has no effect.

When you run the bundled app and it terminates with an ImportError, that is the time to examine the
warning file. Then see Helping PyInstaller Find Modules below for how to proceed.

Build-Time Python Errors
PyInstaller sometimes terminates by raising a Python exception. In most cases the reason is clear from
the exception message, for example "Your system is not supported", or "Pyinstaller requires at least
Python 2.7". Others clearly indicate a bug that should be reported.

One of these errors can be puzzling, however: IOError("Python library not found!")
PyInstaller needs to bundle the Python library, which is the main part of the Python interpreter, linked as a
dynamic load library. The name and location of this file varies depending on the platform in use. Some
Python installations do not include a dynamic Python library by default (a static-linked one may be present
but cannot be used). You may need to install a development package of some kind. Or, the library may
exist but is not in a folder where PyInstaller is searching.

The places where PyInstaller looks for the python library are different in different operating systems, but
/lib and /usr/lib are checked in most systems. If you cannot put the python library there, try setting
the correct path in the environment variable LD_LIBRARY_PATH in Linux or DYLD_LIBRARY_PATH in
OS X.

Getting Debug Messages
Giving the --debug option causes the bundled executable itself to write progress messages when it
runs. This can be useful during development of a complex package, or when your app doesn't seem to be
starting, or just to learn how the runtime works.

Normally the debug progress messages go to standard output. If the --windowed option is used when
bundling a Windows app, they are displayed as MessageBoxes. For a --windowed Mac OS app they
are not displayed.

PyInstaller Manual - Finding out What Went Wrong

26

Remember to bundle without --debug for your production version. Users would find the messages
annoying.

Getting Python's Verbose Imports
You can also pass a -v (verbose imports) flag to the embedded Python interpreter (see Giving Run-time
Python Options above). This can be extremely useful. It can be informative even with apps that are
apparently working, to make sure that they are getting all imports from the bundle, and not leaking out to
the local installed Python.

Python verbose and warning messages always go to standard output and are not visible when the
--windowed option is used. Remember to not use this in the distributed program.

Helping PyInstaller Find Modules

Extending the Path
If Analysis recognizes that a module is needed, but cannot find that module, it is often because the script
is manipulating sys.path . The easiest thing to do in this case is to use the --paths= option to list all
the other places that the script might be searching for imports:

pyi-makespec --paths=/path/to/thisdir \
 --paths=/path/to/otherdir myscript.py

These paths will be noted in the spec file. They will be added to the current sys.path during analysis.

Listing Hidden Imports
If Analysis thinks it has found all the imports, but the app fails with an import error, the problem is a hidden
import; that is, an import that is not visible to the analysis phase.

Hidden imports can occur when the code is using __import__ or perhaps exec or eval . Hidden
imports can also occur when an extension module uses the Python/C API to do an import. When this
occurs, Analysis can detect nothing. There will be no warnings, only an ImportError at run-time.

To find these hidden imports, build the app with the -v flag (Getting Python's Verbose Imports above)
and run it.

Once you know what modules are needed, you add the needed modules to the bundle using the
--hidden-import= command option, or by editing the spec file, or with a hook file (see Understanding
PyInstaller Hooks below).

Extending a Package's __path__

Python allows a script to extend the search path used for imports through the __path__ mechanism.
Normally, the __path__ of an imported module has only one entry, the directory in which the
__init__.py was found. But __init__.py is free to extend its __path__ to include other
directories. For example, the win32com.shell.shell module actually resolves to
win32com/win32comext/shell/shell.pyd . This is because win32com/__init__.py appends
../win32comext to its __path__ .

Because the __init__.py of an imported module is not actually executed during analysis, changes it
makes to __path__ are not seen by PyInstaller. We fix the problem with the same hook mechanism we
use for hidden imports, with some additional logic; see Understanding PyInstaller Hooks below.

Note that manipulations of __path__ hooked in this way apply only to the Analysis. At runtime all
imports are intercepted and satisfied from within the bundle. win32com.shell is resolved the same way
as win32com.anythingelse , and win32com.__path__ knows nothing of ../win32comext .

PyInstaller Manual - Helping PyInstaller Find Modules

27

Once in a while, that's not enough.

Changing Runtime Behavior
More bizarre situations can be accomodated with runtime hooks. These are small scripts that manipulate
the environment before your main script runs, effectively providing additional top-level code to your script.

There are two ways of providing runtime hooks. You can name them with the option
--runtime-hook= path-to-script.

Second, some runtime hooks are provided. At the end of an analysis, the names in the module list
produced by the Analysis phase are looked up in loader/rthooks.dat in the PyInstaller install folder.
This text file is the string representation of a Python dictionary. The key is the module name, and the value
is a list of hook-script pathnames. If there is a match, those scripts are included in the bundled app and
will be called before your main script starts.

Hooks you name with the option are executed in the order given, and before any installed runtime hooks.
If you specify --runtime-hook=file1.py --runtime-hook=file2.py then the execution order at
runtime will be:

1. Code of file1.py .

2. Code of file2.py .

3. Any hook specified for an included module that is found in rthooks/rthooks.dat .

4. Your main script.

Hooks called in this way, while they need to be careful of what they import, are free to do almost anything.
One reason to write a run-time hook is to override some functions or variables from some modules. A
good example of this is the Django runtime hook (see loader/rthooks/pyi_rth_django.py in the
PyInstaller folder). Django imports some modules dynamically and it is looking for some .py files.
However .py files are not available in the one-file bundle. We need to override the function
django.core.management.find_commands in a way that will just return a list of values. The runtime
hook does this as follows:

import django.core.management
def _find_commands(_):
 return """cleanup shell runfcgi runserver""".split()
django.core.management.find_commands = _find_commands

Getting the Latest Version
If you have some reason to think you have found a bug in PyInstaller you can try downloading the latest
development version. This version might have fixes or features that are not yet at PyPI. You can download
the latest stable version and the latest development version from the PyInstaller Downloads page.

If you have Git installed on your development system, you can use it together with pip to install the latest
version of PyInstaller directly:

pip install -e git://github.com/pyinstaller/pyinstaller.git#egg=PyInstaller

Asking for Help
When none of the above suggestions help, do ask for assistance on the PyInstaller Email List.

Then, if you think it likely that you see a bug in PyInstaller, refer to the How to Report Bugs page.

PyInstaller Manual - Getting the Latest Version

28

https://pypi.python.org/pypi/PyInstaller/
https://github.com/pyinstaller/pyinstaller/releases
http://git-scm.com/downloads
https://groups.google.com/forum/#!forum/pyinstaller
https://github.com/pyinstaller/pyinstaller/wiki/How-to-Report-Bugs

Advanced Topics
The following discussions cover details of PyInstaller internal methods. You should not need this level of
detail for normal use, but such details are helpful if you want to investigate the PyInstaller code and
possibly contribute to it, as described in How to Contribute.

The Bootstrap Process in Detail
There are many steps that must take place before the bundled script can begin execution. A summary of
these steps was given in the Overview (How the One-Folder Program Works and How the One-File
Program Works). Here is more detail to help you understand what the bootloader does and how to figure
out problems.

Bootloader
The bootloader prepares everything for running Python code. It begins the setup and then returns itself in
another process. This approach of using two processes allows a lot of flexibility and is used in all bundles
except one-folder mode in Windows. So do not be surprised if you will see your bundled app as two
processes in your system task manager.

What happens during execution of bootloader:

A. First process: bootloader starts.

1. If one-file mode, extract bundled files to temppath_MEIxxxxxx

2. Set/unset various environment variables, e.g. override LD_LIBRARY_PATH on Linux or
LIBPATH on AIX; unset DYLD_LIBRARY_PATH on OSX.

3. Set up to handle signals for both processes.

4. Run the child process.

5. Wait for the child process to finish.

6. If one-file mode, delete temppath_MEIxxxxxx.

B. Second process: bootloader itself started as a child process.

1. On Windows set the activation context.

2. Load the Python dynamic library. The name of the dynamic library is embedded in the
executable file.

3. Initialize Python interpreter: set sys.path, sys.prefix, sys.executable.

4. Run python code.
Running Python code requires several steps:

1. Run the Python initialization code which prepares everything for running the user's main script. The
initialization code can use only the Python built-in modules because the general import mechanism is
not yet available. It sets up the Python import mechanism to load modules only from archives
embedded in the executable. It also adds the attributes frozen and _MEIPASS to the sys built-in
module.

2. Execute any run-time hooks: first those specified by the user, then any standard ones.

3. Install python "egg" files. When a module is part of a zip file (.egg), it has been bundled into the
./eggs directory. Installing means appending .egg file names to sys.path . Python automatically
detects whether an item in sys.path is a zip file or a directory.

4. Run the main script.

PyInstaller Manual - Advanced Topics

29

https://github.com/pyinstaller/pyinstaller/wiki/How-to-Contribute
http://msdn.microsoft.com/en-us/library/windows/desktop/aa374153(v=vs.85).aspx

Python imports in a bundled app
PyInstaller embeds compiled python code (.pyc files) within the executable. PyInstaller injects its code
into the normal Python import mechanism. Python allows this; the support is described in PEP 302 "New
Import Hooks".

PyInstaller implements the PEP 302 specification for importing built-in modules, importing "frozen"
modules (compiled python code bundled with the app) and for C-extensions. The code can be read in
./PyInstaller/loader/pyi_mod03_importers.py .

At runtime the PyInstaller PEP 302 hooks are appended to the variable sys.meta_path . When trying to
import modules the interpreter will first try PEP 302 hooks in sys.meta_path before searching in
sys.path . As a result, the Python interpreter loads imported python modules from the archive embedded
in the bundled executable.

This is the resolution order of import statements in a bundled app:

1. Is it a built-in module? A list of built-in modules is in variable sys.builtin_module_names .

2. Is it a module embedded in the executable? Then load it from embedded archive.

3. Is it a C-extension? The app will try to find a file with name package.subpackage.module.pyd or
package.subpackage.module.so

4. Next examine paths in the sys.path . There could be any additional location with python modules or
.egg filenames.

5. If the module was not found then raise ImportError .

The TOC and Tree Classes
PyInstaller manages lists of files using the TOC (Table Of Contents) class. It provides the Tree class as
a convenient way to build a TOC from a folder path.

TOC Class (Table of Contents)
Objects of the TOC class are used as input to the classes created in a spec file. For example, the
scripts member of an Analysis object is a TOC containing a list of scripts. The pure member is a TOC
with a list of modules, and so on.

Basically a TOC object contains a list of tuples of the form

(name, path, typecode)

In fact, it acts as an ordered set of tuples; that is, it contains no duplicates (where uniqueness is based on
the name element of each tuple). Within this constraint, a TOC preserves the order of tuples added to it.

A TOC behaves like a list and supports the same methods such as appending, indexing, etc. A TOC also
behaves like a set, and supports taking differences and intersections. In all of these operations a list of
tuples can be used as one argument. For example, the following expressions are equivalent ways to add
a file to the a.datas member:

a.datas.append([('README', 'src/README.txt', 'DATA')])
a.datas += [('README', 'src/README.txt', 'DATA')]

Set-difference makes excluding modules quite easy. For example:

a.binaries - [('badmodule', None, None)]

PyInstaller Manual - The TOC and Tree Classes

30

http://www.python.org/dev/peps/pep-0302/

is an expression that produces a new TOC that is a copy of a.binaries from which any tuple named
badmodule has been removed. The right-hand argument to the subtraction operator is a list that contains
one tuple in which name is badmodule and the path and typecode elements are None. Because set
membership is based on the name element of a tuple only, it is not necessary to give accurate path and
typecode elements when subtracting.

In order to add files to a TOC, you need to know the typecode values and their related path values. A
typecode is a one-word string. PyInstaller uses a number of typecode values internally, but for the normal
case you need to know only three:

typecode description name path

'BINARY' A shared library. Run-time name. Full path name in build.

'DATA' Arbitrary files. Run-time name. Full path name in build.

'OPTION' A Python run-time option. Option code ignored.

The Tree Class
The Tree class is a way of creating a TOC that describes some or all of the files within a directory:

Tree(root, prefix= run-time-folder, excludes= match)

• The root argument is a path string to a directory. It may be absolute or relative to the spec file
directory.

• The prefix argument, if given, is a name for a subfolder within the run-time folder to contain the tree
files. If you omit prefix or give None, the tree files will be at the top level of the run-time folder.

• The excludes argument, if given, is a list of one or more strings that match files in the root that should
be omitted from the Tree. An item in the list can be either:

• a name, which causes files or folders with this basename to be excluded

• *.ext , which causes files with this extension to be excluded
For example:

extras_toc = Tree('../src/extras', prefix='extras', excludes=['tmp','*.pyc'])

This creates extras_toc as a TOC object that lists all files from the relative path ../src/extras ,
omitting those that have the basename (or are in a folder named) tmp or that have the type .pyc .

Each tuple in this TOC has:

• A typecode of DATA,

• A path consisting of a complete, absolute path to one file in the root folder,

• A name consisting of the filename of this file, or, if you specify a prefix, the name is prefix/ filename.

Inspecting Archives
An archive is a file that contains other files, for example a .tar file, a .jar file, or a .zip file. Two
kinds of archives are used in PyInstaller. One is a ZlibArchive, which allows Python modules to be stored
efficiently and, with some import hooks, imported directly. The other, a CArchive, is similar to a .zip file,
a general way of packing up (and optionally compressing) arbitrary blobs of data. It gets its name from the
fact that it can be manipulated easily from C as well as from Python. Both of these derive from a common
base class, making it fairly easy to create new kinds of archives.

PyInstaller Manual - Inspecting Archives

31

ZlibArchive
A ZlibArchive contains compressed .pyc or .pyo files. The PYZ class invocation in a spec file creates
a ZlibArchive.

The table of contents in a ZlibArchive is a Python dictionary that associates a key, which is a member's
name as given in an import statement, with a seek position and a length in the ZlibArchive. All parts of a
ZlibArchive are stored in the marshalled format and so are platform-independent.

A ZlibArchive is used at run-time to import bundled python modules. Even with maximum compression
this works faster than the normal import. Instead of searching sys.path , there's a lookup in the
dictionary. There are no directory operations and no file to open (the file is already open). There's just a
seek, a read and a decompress.

A Python error trace will point to the source file from which the archive entry was created (the __file__
attribute from the time the .pyc was compiled, captured and saved in the archive). This will not tell your
user anything useful, but if they send you a Python error trace, you can make sense of it.

CArchive
A CArchive can contain any kind of file. It's very much like a .zip file. They are easy to create in Python
and easy to unpack from C code. A CArchive can be appended to another file, such as an ELF and COFF
executable. To allow this, the archive is made with its table of contents at the end of the file, followed only
by a cookie that tells where the table of contents starts and where the archive itself starts.

A CArchive can be embedded within another CArchive. An inner archive can be opened and used in
place, without having to extract it.

Each table of contents entry has variable length. The first field in the entry gives the length of the entry.
The last field is the name of the corresponding packed file. The name is null terminated. Compression is
optional for each member.

There is also a type code associated with each member. The type codes are used by the self-extracting
executables. If you're using a CArchive as a .zip file, you don't need to worry about the code.

The ELF executable format (Windows, Linux and some others) allows arbitrary data to be concatenated to
the end of the executable without disturbing its functionality. For this reason, a CArchive's Table of
Contents is at the end of the archive. The executable can open itself as a binary file, seek to the end and
'open' the CArchive.

Using pyi-archive_viewer
Use the pyi-archive_viewer command to inspect any type of archive:

pyi-archive_viewer archivefile

With this command you can examine the contents of any archive built with PyInstaller (a PYZ or PKG), or
any executable (.exe file or an ELF or COFF binary). The archive can be navigated using these
commands:

O name

Open the embedded archive name (will prompt if omitted). For example when looking in a one-file
executable, you can open the outPYZ.pyz archive inside it.

U

Go up one level (back to viewing the containing archive).

X name

PyInstaller Manual - Inspecting Archives

32

http://docs.python.org/library/marshal

Extract name (will prompt if omitted). Prompts for an output filename. If none given, the member is
extracted to stdout.

Q

Quit.

The pyi-archive_viewer command has these options:
-h, --help Show help.

-l, --log Quick contents log.

-b, --brief Print a python evaluable list of contents
filenames.

-r, --recursive Used with -l or -b, applies recursive behaviour.

Inspecting Executables
You can inspect any executable file with pyi-bindepend :

pyi-bindepend executable_or_dynamic_library

The pyi-bindepend command analyzes the executable or DLL you name and writes to stdout all its
binary dependencies. This is handy to find out which DLLs are required by an executable or by another
DLL.

pyi-bindepend is used by PyInstaller to follow the chain of dependencies of binary extensions during
Analysis.

Understanding PyInstaller Hooks

Note

THE FOLLOWING IS THE TEXT FROM THE 2.1 MANUAL.

IT NEEDS TO BE REWRITTEN FOR THE NEW HOOKS API OF VERSION 3.0.

DO NOT ATTEMPT TO BUILD OR EDIT A HOOK BASED ON THIS TEXT.

In summary, a "hook" file tells PyInstaller about hidden imports called by a particular module. The name of
the hook file is hook-<module>.py where "<module>" is the name of a script or imported module that
will be found by Analysis. You should browse through the existing hooks in the hooks folder of the
PyInstaller distribution folder, if only to see the names of the many supported imports.

For example hook-cPickle.py is a hook file telling about hidden imports used by the module
cPickle . When your script has import cPickle the Analysis will note it and check for a hook file
hook-cPickle.py .

Typically a hook module has only one line; in hook-cPickle.py it is

hiddenimports = ['copy_reg', 'types', 'string']

assigning a list of one or more module names to hiddenimports . These module names are added to
the Analysis list exactly as if the script being analyzed had imported them by name.

When the module that needs these hidden imports is local to your project, store the hook file(s)
somewhere near your source file. Then specify their location to the pyinstaller or pyi-makespec

PyInstaller Manual - Inspecting Executables

33

command with the --additional-hooks-dir= option. If the hook file(s) are at the same level as the
script, the command could be simply

pyinstaller --additional-hooks-dir=. myscript.py

If you successfully hook a publicly distributed module in this way, please send us the hook file so we can
make it available to others.

Hooks in Detail
A hook is a module named hook- fully.qualified.import.name .py in the hooks folder of the PyInstaller
folder (or in a folder specified with --additional-hooks-dir).

A hook is executable Python code that should define one or more of the following several global names:

Note

A hook is just a normal Python script. So you can do all things like testing sys.version and
adjust e.g. hiddenimports based on that.

excludedimports

A list of module names (relative or absolute) that the hooked module excludes in some opaque way.
These names reduce the list of imported modules created by scanning the code. Example:

excludedimports = ['_proxy', 'utils', 'defs']

hiddenimports

A list of module names (relative or absolute) that the hooked module imports in some opaque way.
These names extend the list of imported modules created by scanning the code. Example:

hiddenimports = ['_proxy', 'utils', 'defs']

A way to simplify adding all submodules of a package is to use:

from PyInstaller.utils.hooks import collect_submodules
hiddenimports = collect_submodules('package')

For an example see hook-docutils.py in the hooks folder.

Note: We suggest always using the fully qualified name PyInstaller.utils.hooks for importing
the hook utilities. This avoids some pitfalls when implementing hooks for sub-modules.

datas

A list of globs of files or directories to bundle as datafiles. For each glob, a destination directory is
specified.

Example:

datas = [
 ('/usr/share/icons/education_*.png', 'icons'),
 ('/usr/share/libsmi/mibs/*', 'mibs'),
]

PyInstaller Manual - Hooks in Detail

34

This will copy all files matching education_*.png into the subdirectory icons, and recursively (because
of the * wildcard) copy the content of /usr/share/libsmi/mibs into mibs.

A way to simplify collecting a folder of files is to use:

from PyInstaller.utils.hooks import collect_data_files
datas = collect_data_files('package_name')

to collect all package-related data files into a folder package_name in the app bundle. For an
example see hook-pytz.py in the hooks folder.

binaries

A list of globs of files or directories to bundle as binaries. Binaries is a special case of datas in that
PyInstaller will check if they depend on other possible dynamic libraries. Otherwise it looks the same.

Example:

binaries = [
 ('/usr/lib/lib*.so', 'libs'),
 ('C:\\Windows\\System32*.dll', 'dlls'),
]

attrs

A list of (name , value) pairs (where value is normally meaningless).

This will set the module-attribute name to value for each pair in the list. The value is usually
unimportant because the modules are not executed.

The main purpose is so that ImportTracker will not issue spurious warnings when the rightmost node
in a dotted name turns out to be an attribute in a package, instead of a missing submodule. For an
example see the hook file hook-xml.sax.py .

def hook(mod):

Note

The need to use this should be rare. Instead, try to use the global names described above
first. This will keep the hook's code simple.

Defines a function that takes a Module object. It must return a Module object, possibly the same
one unchanged, or a modified one. A Module object is an instance of the class
PyInstaller.depend.modules.Module() which you can read. If defined, hook(mod) is called
before PyInstaller processed the global names described above.

This function is supported to handle cases like dynamic modification of a package's __path__
variable. A static list of names won't suffice because the new entry on __path__ may well require
computation. See hook-win32com.py in the hooks folder for an example.

Building the Bootloader
PyInstaller comes with binary bootloaders for most platforms in the bootloader folder of the distribution
folder. For most cases, these precompiled bootloaders are all you need.

PyInstaller Manual - Building the Bootloader

35

If there is no precompiled bootloader for your platform, or if you want to modify the bootloader source, you
need to build the bootloader.

For

• cd into the distribution folder.

• cd bootloader .

• Make the bootloader with: python ./waf distclean all .

This will produce the bootloader executables,

• ./PyInstaller/bootloader/YOUR_OS/run ,

• ./PyInstaller/bootloader/YOUR_OS/run_d

• ./PyInstaller/bootloader/YOUR_OS/runw and

• ./PyInstaller/bootloader/YOUR_OS/runw_d

Note: If you have multiple versions of Python, the Python you use to run waf is the one whose
configuration is used.

If this reports an error, read the detailed notes that follow, then ask for technical help.

Development tools
On Debian/Ubuntu systems, you can run the following to install everything required:

sudo apt-get install build-essential

On Fedora/RHEL and derivates, you can run the following:

su
yum groupinstall "Development Tools"

On Mac OS X you can get gcc by installing Xcode. It is a suite of tools for developing software for
Mac OS X. It can be also installed from your Mac OS X Install DVD. It is not necessary to install the
version 4 of Xcode.

On Solaris and AIX the bootloader is built and tested with gcc.

Building for Windows
On Windows you can use the Visual Studio C++ compiler (Visual Studio 2008 is recommended). A free
version you can download is Visual Studio Express.

Note: When compiling libs to link with Python it is important to use the same level of Visual Studio as was
used to compile Python. That is not the case here. The bootloader is a self-contained static executable
that imposes no restrictions on the version of Python being used. So you can use any Visual Studio
version that is convenient.

If Visual Studio is not convenient, you can download and install the MinGW distribution from one of the
following locations:

• MinGW-w64 required, uses gcc 4.4 and up.

• TDM-GCC - MinGW (not used) and MinGW-w64 installers

On Windows, when using MinGW-w64, add PATH_TO_MINGW\bin to your system PATH. variable.
Before building the bootloader run for example:

PyInstaller Manual - Development tools

36

http://developer.apple.com/xcode
http://www.microsoft.com/express/
http://mingw-w64.sourceforge.net/
http://tdm-gcc.tdragon.net/

set PATH=C:\MinGW\bin;%PATH%

Change to the bootloader subdirectory. Run:

python ./waf distclean all

This will produce the bootloader executables run*.exe in the
.\PyInstaller\bootloader\YOUR_OS directory.

Building for LINUX
By default, the bootloaders on Linux are LSB binaries.

LSB is a set of open standards that should increase compatibility among Linux distributions. PyInstaller
produces a bootloader as an LSB binary in order to increase compatibility for packaged applications
among distributions.

Note: LSB version 4.0 is required for successfull building of bootloader.

On Debian- and Ubuntu-based distros, you can install LSB 4.0 tools by adding the following repository to
the sources.list file:

deb http://ftp.linux-foundation.org/pub/lsb/repositories/debian lsb-4.0 main

then after having update the apt repository:

sudo apt-get update

you can install LSB 4.0:

sudo apt-get install lsb lsb-build-cc

Most other distributions contain only LSB 3.0 in their software repositories and thus LSB build tools 4.0
must be downloaded by hand. From Linux Foundation download LSB sdk 4.0 for your architecture.

Unpack it by:

tar -xvzf lsb-sdk-4.0.3-1.ia32.tar.gz

To install it run:

cd lsb-sdk
./install.sh

After having installed the LSB tools, you can follow the standard building instructions.

NOTE: if for some reason you want to avoid LSB compilation, you can do so by specifying --no-lsb on the
waf command line, as follows:

python waf configure --no-lsb build install

This will also produce support/loader/YOUR_OS/run , support/loader/YOUR_OS/run_d ,
support/loader/YOUR_OS/runw and support/loader/YOUR_OS/runw_d , but they will not be LSB
binaries.

PyInstaller Manual - Building for LINUX

37

http://ftp.linuxfoundation.org/pub/lsb/bundles/released-4.0.0/sdk/

	In Brief
	What's New This Release

	Requirements
	Windows
	Mac OS X
	Linux
	AIX, Solaris, and FreeBSD

	License
	How To Contribute
	How to Install PyInstaller
	Installing in Windows
	Installing in Mac OS X
	Installing from the archive
	Verifying the installation
	Installed commands

	What PyInstaller Does and How It Does It
	Analysis: Finding the Files Your Program Needs
	Bundling to One Folder
	How the One-Folder Program Works
	Bundling to One File
	How the One-File Program Works
	Using a Console Window
	Hiding the Source Code

	Using PyInstaller
	Options
	General Options
	What to generate
	What to bundle, where to search
	How to generate
	Windows and Mac OS X specific options
	Windows specific options
	Windows Side-by-side Assembly searching options (advanced)
	Mac OS X specific options

	Shortening the Command
	Using UPX
	Encrypting Python Bytecode
	Supporting Multiple Platforms
	Supporting Multiple Python Environments
	Supporting Multiple Operating Systems

	Making Linux Apps Forward-Compatible
	Capturing Windows Version Data
	Building Mac OS X App Bundles
	Getting the Opened Document Names

	Run-time Operation
	Using Spec Files
	Spec File Operation
	Adding Files to the Bundle
	Adding Data Files
	Adding Binary Files
	Advanced Methods of Adding Files

	Giving Run-time Python Options
	Spec File Options for a Mac OS X Bundle
	Multipackage Bundles
	Example MERGE spec file

	When Things Go Wrong
	Recipes and Examples for Specific Problems
	Finding out What Went Wrong
	Build-time Messages
	Build-Time Python Errors
	Getting Debug Messages
	Getting Python's Verbose Imports

	Helping PyInstaller Find Modules
	Extending the Path
	Listing Hidden Imports
	Extending a Package's __path__
	Changing Runtime Behavior

	Getting the Latest Version
	Asking for Help

	Advanced Topics
	The Bootstrap Process in Detail
	Bootloader
	Python imports in a bundled app

	The TOC and Tree Classes
	TOC Class (Table of Contents)
	The Tree Class

	Inspecting Archives
	ZlibArchive
	CArchive
	Using pyi-archive_viewer

	Inspecting Executables

	Understanding PyInstaller Hooks
	Hooks in Detail

	Building the Bootloader
	Development tools
	Building for Windows
	Building for LINUX

