
How to add a new type of hardware device to BLACS

January 31, 2014

1

Contents

1 Introduction 4
1.1 Creating the Device Classes . 4

2 Implementing a simple Device Class 5
2.1 Overriding the initialise GUI function . 5
2.2 Overriding the get save data and restore save data functions 8
2.3 Overriding the initialise workers function . 9
2.4 Overriding the start run function . 10

3 DeviceTab reference 10
3.1 Instance Attributes . 10

3.1.1 BLACS connection . 10
3.1.2 connection table . 11
3.1.3 device name . 11
3.1.4 error message . 11
3.1.5 force full buffered reprogram . 11
3.1.6 logger . 11
3.1.7 mode . 11
3.1.8 primary worker . 12
3.1.9 settings . 12
3.1.10 state . 12
3.1.11 tab text colour . 12
3.1.12 ui . 12

3.2 Instance Methods to override . 12
3.2.1 initialise GUI . 12
3.2.2 initialise workers . 13
3.2.3 get save data . 13
3.2.4 restore save data . 13
3.2.5 get front panel values . 13

3.3 Instance Methods . 13
3.3.1 add secondary worker . 13
3.3.2 auto create widgets . 14
3.3.3 auto place widgets . 14
3.3.4 create analog outputs . 15
3.3.5 create analog widgets . 15
3.3.6 create dds outputs . 16
3.3.7 create dds widgets . 17
3.3.8 create digital outputs . 18
3.3.9 create digital widgets . 18
3.3.10 create worker . 18
3.3.11 get channel . 19
3.3.12 get front panel values . 19
3.3.13 get tab layout . 19
3.3.14 queue work . 19
3.3.15 statemachine timeout add . 20
3.3.16 statemachine timeout remove . 20
3.3.17 statemachine timeout remove all . 20

2

3.3.18 supports remote value check . 20
3.3.19 supports smart programming . 21
3.3.20 connect restart receiver . 21
3.3.21 disconnect restart receiver . 21
3.3.22 restart . 21
3.3.23 update from settings . 22

3.4 State-functions . 22

4 Advanced features of the DeviceTab 24
4.1 The state machine . 24
4.2 Device class state machine, callback on timeout . 26
4.3 Remote Value Checking . 26

5 The Worker Class 27
5.1 The init function . 27
5.2 The program manual function . 28
5.3 The transition to buffered function . 28
5.4 The transition to manual function . 29
5.5 Remote value checking . 29
5.6 Abort functions . 29
5.7 The shutdown function . 30

3

1 Introduction

This tutorial covers the basics of adding a new hardware device type to BLACS. Existing device types
include the PulseBlaster, NovatechDDS9m, NI PCIe 6363 and NI PCI 6733. These classes are used
by BLACS to generate the unique tab for each device on the BLACS front panel. Adding support for
your device to BLACS does not add support to labscript, which will also need to be done if you wish
to use the device in a buffered sequence (see labscript documentation).

This tutorial assumes a working knowledge of Python. Some advanced sections also require a
working knowledge of PySide (very similar to PyQt) and QtDesigner. If are not familiar with one or
more of these, please attempt a tutorial on the subject before continuing with this guide!

1.1 Creating the Device Classes

All device classes as stored in pythonlib/BLACS/hardware interfaces. You should create a new file
for your device in this folder, with an appropriate name (the name should be the lowercase version
of the device class used in labscript). We shall refer to the name in this tutorial as my device.py).

The first thing you need to do in your empty python file is import the required packages and
classes. The code below imports the BLACS backend classes for the tab state machine (we’ll cover
these more as we go). You can also optionally import PySide if you wish to add more PySide widgets
to the interface yourself (see section 3.3.13)

from BLACS.tab_base_classes import Worker, define_state
from BLACS.tab_base_classes import MODE_MANUAL, MODE_TRANSITION_TO_BUFFERED
from BLACS.tab_base_classes import MODE_TRANSITION_TO_MANUAL, MODE_BUFFERED
from BLACS.device_base_class import DeviceTab

Next we need to define two classes. The first class will handle the GUI, and related events. The
second will handle the communication with the actual hardware. The first class name (hence forth
known as the device class) should be the lower case version of the device class shown in the entry in
the connection table for an instance of your device. It should also be the same name as your python
file. You may call the second class (hence forth known as the worker class) whatever you wish,
though it is advisable to use something understandable!

In this tutorial we will use my device and MyWorker as our class names.

class my_device(DeviceTab):
pass

class MyWorker(Worker):
pass

Note: We have used pass here as a placeholder. You can assume that the pass statements will
be removed once the tutorial inserts code at the same indentation level.

4

2 Implementing a simple Device Class

The device class handles the creation of the GUI and the interaction with the GUI and the Queue
Manager. Most of this is handled by the DeviceTab class you are subclassing. We’ll first discuss
the minimum requirements for subclassing DeviceTab, followed by an in depth explanation of the
internal workings of DeviceTab and details on advanced implementation possibilities.

When the device tab is instantiated, the functions described in the next sections are run in the
following order:

self.initialise_GUI()
self.restore_save_data(settings_dictionary)
self.initialise_workers()

2.1 Overriding the initialise GUI function

The initialise GUI function is where you define the output capabilities of your device and gener-
ate the graphical interface for manual control of the device through the front panel. The DeviceTab
class you are subclassing has a lot of function to help you do this. Here we’ll walk through a simple
example, but for full details see the DeviceTab reference in section 3.

The first step is to override the initialise GUI function and define some capabilities of the
device:

def initialise_GUI(self):
Capabilities
self.num_DDS = 2
self.num_DO = 12
self.ao_base_units = 'V'
self.ao_base_min = -10.0
self.ao_base_max = 10.0
self.ao_base_step = 0.001
self.ao_base_decimals = 3
self.dds_base_units = {'freq':'Hz', 'amp':'Vpp', 'phase':'Degrees'}
self.dds_base_min = {'freq':0.3, 'amp':0.0, 'phase':0}
self.dds_base_max = {'freq':150000000.0, 'amp':1.0, 'phase':360}
self.dds_base_step = {'freq':1000000, 'amp':0.01, 'phase':1}
self.dds_base_decimals = {'freq':1, 'amp':3, 'phase':3}

This should look pretty straight forward, we are just storing the number of DDS and digital outputs,
followed by the capabilities of the DDSs of the device in base units. Base units are considered to
be SI units like Volts, Hz, etc. Base units are not necessarily the same as hardware units. If your
hardware is not programmed in SI units, we recommend converting from SI to the required unit
within the worker process methods so that the user never has to deal with the arbitrary units the
device manufacturer opted for. All of this information is for your own use, and does not have to
follow any particular naming convention, nor does it have to be stored as an instance atrribute using
self.

5

Following this you should define 1-3 dictionaries which define the properties of the digital, analog
and DDS output channels respectively. If your devices does not have one or more of these types of
outputs, you do not need to create the dictionary of properties for it.

For digital outputs, the dictionary should be of the form:

digital_properties = {'hardware_channel_1':{},
'hardware_channel_2':{}

}

where hardware channel x is the name of the channel connection as specified in your labscript
implementation. For instance PulseBlasters would use Flag 1, Flag 2, etc. while NI PCIe 6363s would
use port0/line0, port0/line1, etc.

For analog outputs, the dictionary should be of the form:

analog_properties = {'hardware_channel_1':{'base_unit':self.ao_base_units,
'min':self.ao_base_min,
'max':self.ao_base_max,
'step':self.ao_base_step,
'decimals':self.ao_base_decimals

},
'hardware_channel_2':{'base_unit':self.ao_base_units,

'min':self.ao_base_min,
'max':self.ao_base_max,
'step':self.ao_base_step,
'decimals':self.ao_base_decimals

},
}

where, again, hardware channel x is the name of the channel connection as specified in your
labscript implementation.

DDS properties are combination of three analog properties and a digital property. The DDS prop-
erty dictionary should thus be of the form:

The creation of this dictionary could be simplified by one or
more for loops. However we chose to write everything out explicitly
here so that it is clear what is going on. Consult one of the already
implemented device classes to see how it could be done in fewer lines
of code (for example the PulseBlaster)
dds_properties = {'hardware_channel_1':

{'freq':{'base_unit':self.dds_base_units['freq'],
'min':self.dds_base_min['freq'],
'max':self.dds_base_max['freq'],
'step':self.dds_base_step['freq'],
'decimals':self.dds_base_decimals['freq']

},
'amp':{'base_unit':self.dds_base_units['amp'],

'min':self.dds_base_min['amp'],
'max':self.dds_base_max['amp'],
'step':self.dds_base_step['amp'],
'decimals':self.dds_base_decimals['amp']

},

6

'phase':{'base_unit':self.dds_base_units['phase'],
'min':self.dds_base_min['phase'],
'max':self.dds_base_max['phase'],
'step':self.dds_base_step['phase'],
'decimals':self.dds_base_decimals['phase']

},
'gate':{}
},

'hardware_channel_2':
{'freq':{'base_unit':self.dds_base_units['freq'],

'min':self.dds_base_min['freq'],
'max':self.dds_base_max['freq'],
'step':self.dds_base_step['freq'],
'decimals':self.dds_base_decimals['freq']

},
'amp':{'base_unit':self.dds_base_units['amp'],

'min':self.dds_base_min['amp'],
'max':self.dds_base_max['amp'],
'step':self.dds_base_step['amp'],
'decimals':self.dds_base_decimals['amp']

},
'phase':{'base_unit':self.dds_base_units['phase'],

'min':self.dds_base_min['phase'],
'max':self.dds_base_max['phase'],
'step':self.dds_base_step['phase'],
'decimals':self.dds_base_decimals['phase']

},
'gate':{}
}

}

where, again, hardware channel x is the name of the channel connection as specified in your
labscript implementation. Importantly, if you omit any of the freq, amp, phase or gate entries, it
will be assumed that the DDS output does not have control over that parameter. For instance you
may have a frequency source for which you cannot control the amplitude or phase, nor does it have
an on/off control (gate). As such you would define your dds dictionary as:

dds_properties = {'hardware_channel_1':
{'freq':{'base_unit':self.dds_base_units['freq'],

'min':self.dds_base_min['freq'],
'max':self.dds_base_max['freq'],
'step':self.dds_base_step['freq'],
'decimals':self.dds_base_decimals['freq']

}
}

}

and only the frequency control will be displayed in the DDS widget.
Once the output property dictionaries are defined, you should call one or more of the following

functions to create python objects (we’ll refer to them as “output objects” or AO, DO or DDS objects

7

for your outputs:

self.create_digital_outputs(digital_properties)
self.create_analog_outputs(analog_properties)
self.create_dds_outputs(dds_properties)

The objects create exist behind the scenes, and will have automatically looked up relevant entries in
the BLACS connection table to get their name and unit conversion class.

You should then create the widgets for each of these outputs. There are several ways you can do
this, see sections 3.3.2, 3.3.5, 3.3.9 and 3.3.7. The simplest is to let the DeviceTab do it for you, as
follows:

dds_widgets,ao_widgets,do_widgets = self.auto_create_widgets()

Note that three dictionaries are always returned, regardless of whether you are using any digital,
analog and dds outputs on your device. For instance, if you have not create any analog outputs as
detailed above, the ao widgets variable will contain an empty dictionary.

You must then place these widgets in the GUI tab for your device. Again, this can be done several
ways (see sections 3.3.3 and 3.3.13), but the simplest is to do:

self.auto_place_widgets(dds_widgets,do_widgets)

The order in which you pass the dictionaries of widgets determines the order they appear in the
device tab. You can split up the dictionaries of widgets if you like, for instance to segregate some
digital outputs from the others. You can also specify heading names, and a sorting function for each
group of widgets you pass to this function (see section 3.3.3 for details).

If you wish to add additional GUI elements, you may do so before or after the call to auto place widgets.
You can access the Qt Layout which contains the main body of the tab using:

self.get_tab_layout()

You can then insert/append Qt Widgets or layouts you have created either from code or by loading
a Qt UI file created by Qt Designer.

Finally, you should specify whether you implementation will support “smart programming”
and/or “remote value checking”. This can be done by calling the methods:

self.supports_remote_value_check(False)
self.supports_smart_programming(False)

where the single argument is True or False indicating whether support exists. For details on smart
programming, see sections 3.3.19 and 5.3. For details on remote value checking, see section 4.3.

2.2 Overriding the get save data and restore save data functions

You may find you wish to save and restore some data from your tab when BLACS is closed or the
tab is restarted. DeviceTab provides two functions to override to implement this behaviour:

8

• get save data should be implemented to return a dictionary of key:value pairs you wish
saved.

• restore save data provides a dictionary of key:value pairs to restore as you wish.

The signatures of the functions are:

def get_save_data(self):
your code here
pass

def restore_save_data(self, save_data):
your code here
pass

The dictionary you return must meet the following requirements:

This expression must be true
eval(repr(my_save_data)) == my_save_data

See the Camera device class implementation for an example.

2.3 Overriding the initialise workers function

The initialise workers function is used to tell the device Tab to launch one or more worker
processes to communicate with the device. A device tab can have one or more associated worker
processes, with one of them being identified as the primary worker. When the device tab enters one
of the states inbuilt into DeviceTab (such as transition to buffered), the primary worker is
communicated with first. Following this, communication with secondary worker processes com-
mences one after the other. The order in which secondary processes are chosen to communicate with
depends on the names of all worker processes and the number of worker processes. We simply it-
erate over a dictionary of worker processes, keyed by the worker process name (watch the PyCon
“The mighty dictionary” video online for more information on Python dictionary ordering). If you
require secondary worker processes to be communicated with in a specific order, please contact the
developers and request this feature to be added.

To launch a worker process, simply call:

def initialise_workers(self):
self.create_worker("my_worker", MyWorker)

where my worker is a unique name for this worker process and MyWorker is the class name you
wish to launch in the new worker process.

create worker also takes a third, optional dictionary of keyword arguments to pass into the
worker process (see section 3.3.10). A good piece of information to pass in would be the BLACS connection

attribute specified in the connection table. This parameter usually contains information specify-
ing the physical data connection to the PC (Eg. COM12), and is available as an instance attribute of
DeviceClass:

9

def initialise_workers(self):
self.create_worker("my_worker", MyWorker,{'com_port':str(self.BLACS_connection))

You can access this value from within the Worker Class using self.com port.
Finally, you need to set the primary worker. Do do this, simply write:

self.primary_worker = "my_worker"

where my worker is the name you used in the call to create worker

2.4 Overriding the start run function

If your device is a pseudoclock, you will need to override the start run function. This function is
called by the Queue Manager to begin a buffered experiment shot. This function must be a state
function (see section 4.1). You will also need to become familiar with the statemachine timeout add

functionality to schedule a regular poll of the device before continuing with this section (see sec-
tion 4.2). Your implementation of start run will be passed a queue which it will use to notify the
Queue Manager when the experiment shot has finished running. It is up to you to schedule a poll
of your device to determine if the shot has completed.

Below is the PulseBlaster implementation:

@define_state(MODE_BUFFERED,True)
def start_run(self, notify_queue):

self.statemachine_timeout_remove(self.status_monitor)
yield(self.queue_work(self.primary_worker,'pb_start'))
self.statemachine_timeout_add(100,self.status_monitor,notify_queue)

In this implementation, we first stop the existing poll of the device status. We then ask the worker
process to start the buffered shot. Once the shot has begun, we setup a regular poll of the pulseblaster
every 100 ms which will notify the Queue Manager at the end of the shot using the notify queue.

3 DeviceTab reference

3.1 Instance Attributes

These attributes are available to instances of DeviceTab (and its subclasses).

3.1.1 BLACS connection

This attribute contains the string, from the connection table entry of this instantiated device, that
indicates how this device is connected to the PC. The contents of the string is determined by the
connection table entry in labscript. It is likely you will want to pass this value to each worker
process you create as one of the arguments at instantiation of the worker process (see section 3.3.10).
Note that the labscript device class may expose this setting to the user under a different name,
for instance the keyword argument com port.

10

3.1.2 connection table

This attribute contains a reference to the connection table object instantiated when BLACS is started.
This object is an instance of class ConnectionTable located in ‘BLACS/connections.py’.

3.1.3 device name

This attribute contains the name of the device, as specified in the connection table.

3.1.4 error message

This contains the current error message displayed to the user for this device. If no error is present,
it will be an empty string. This attribute is a Python property. This means, in theory, you can
set modify the error message as you wish, using this attribute, and the changes will automati-
cally be applied to the displayed message. We however recommend you only read from it. If you
do wish to modify the error, we recommend appending to the existing error using the += opera-
tor. Note that “not responding” error messages are not stored here, but are instead stored in the
not responding error message and not responding for attributes.

3.1.5 force full buffered reprogram

This attribute is passed to the worker process by DeviceTab.transition to buffered. In the
example implementation shown for the worker function transition to buffered (see section
5.3), the value here is placed in the variable fresh. Set this attribute to True if you wish a full repro-
gram of the device buffer to occur at the start of the next buffered shot. If the device supports smart
programming (see section 3.3.19), then this attribute will be set to False by DeviceTab.transition to buffered

after each buffered sequence has been programmed.

3.1.6 logger

This attribute contains the Python logger object for this device. This can be used to warn the user
of errors, or save debug information to the log file or terminal. Python logger objects have methods
such as info, debug, warning, etc. which can be passed a string to log. See the Python logging
module documentation for more details.

3.1.7 mode

This attribute stores the current mode of the device. It will be an integer, either 1, 2, 4 or 8 cor-
responding to one of the modes described in section 4.1. These modes are one of MODE MANUAL,
MODE TRANSITION TO BUFFERED, MODE BUFFERED and MODE TRANSITION TO MANUAL The mode
should only ever be set to one of these variables/values, and should only be set by an implemen-
tation of DeviceTab.transition to buffered or DeviceTab.transition to manual. You
can read this mode at any time you wish.

11

3.1.8 primary worker

This attribute should be set to the name of the primary worker process, defined when you call
create worker (see sections 3.3.10 and 3.2.2). This is generally done in your implementation of
create worker (see section 2.3)

3.1.9 settings

This attribute contains all the settings information for the Device Tab. It includes current values for all
of the AO, DO and DDS objects instantiated (including current units, step size, etc.). It also includes the
device name, connection table object and results from the last call to DeviceTab.get save data.
You generally shouldn’t need to directly access this attribute, as most of the information is exposed
through other instance attributes and methods.

3.1.10 state

This attribute contains name of the current state function we are in. You should not modify the con-
tents of this attribute. It is unlikely you will ever need to read from this attribute (we only document
it here for completeness).

3.1.11 tab text colour

This attribute contains the current colour of the displayed text in the BLACS tab of the notebook.
This is black if there is no error, or red if there is. You may change the colour if you like by setting
this attribute, however the colour may be later overwritten by the statemachine (for instance if an
error occurs) Call update tab text colour() after setting this attribute to apply the change.

3.1.12 ui

This attribute contains all the Qt user interface (UI) objects that were loaded from the ‘BLACS/tab frame.ui’
file. If you wish to modify the UI significantly, this is what you are going to need to access. However
most people should never need to access this attribute.

3.2 Instance Methods to override

These methods should be overridden by your subclass of DeviceTab. See section 2 for more details.

3.2.1 initialise GUI

This method should be used to create any AO, DO and DDS objects and associated widgets, and to add
any custom elements to the graphical user interface (GUI). More details can be found in section 2.1

The signature of this method is:

def initialise_GUI(self):

12

3.2.2 initialise workers

This method should be used to create one or more worker processes using the create worker

method (see section 3.3.10). You should also store the primary worker name (see section 3.1.8) and
secondary worker names (if any, see section 3.3.1). More details can be found in section 2.3

The signature of this method is:

def initialise_workers(self):

3.2.3 get save data

This method should return a dictionary of any custom save data you wish saved across instances
of your device tab (see section 2.2 for more details). This method will be called by BLACS at the
appropriate times.

The signature of this method is:

def get_save_data(self):

3.2.4 restore save data

This method is passed a dictionary of the custom save data returned by a previous instance of your
device tab (using the get save data method, see section 2.2 for more details). This method will be
called by BLACS at the appropriate times. You should restore the data to the appropriate places in
your device tab implementation in this method.

The signature of this method is:

def restore_save_data(self, data):

3.2.5 get front panel values

If you are implementing a custom output that is not bound to an AO, DO or DDS object, you may wish
to override this method to extend it’s capabilities. See section 3.3.12 for more details on this method.

3.3 Instance Methods

3.3.1 add secondary worker

This method is used to register the names of workers that are not the primary worker. The default
implementation of DeviceTab communicates with these workers immediately after communicating
with the primary worker.

The signature of this method is:

def add_secondary_worker(self, worker_name):

where worker name is a string containing the name assigned to the worker when you created it
using create worker (see section 3.3.10).

13

3.3.2 auto create widgets

This method creates and returns a widget for each of the DO, AO and DDS objects created using the
create * outputs methods (see sections 3.3.4, 3.3.8 and 3.3.6). The return value is a tuple contain-
ing 3 elements, each of which is a dictionary of widgets for the DDS, AO and DO objects respectively.
These dictionaries are keyed by the hardware channel name used when creating the outputs.

The signature of this method is:

def auto_create_widgets(self):
dds_widgets, ao_widgets, do_widgets = {}, {}, {}
...
return dds_widgets, ao_widgets, do_widgets

3.3.3 auto place widgets

Calling this method more than once per instance is not recommended. This method places any
passed widgets into a layout. This layout is of our own design, and has the following features:

• collapsible/expandable groups,

• automatically adjusts the number of widgets per row so that they fit and display nicely as the
tab is resized,

• the widgets in a group have a uniform width, and

• the width of widgets across multiple groups can be linked (this feature not yet exposed, contact
the developers if you would like it to be).

The auto place widgets method can take an arbitrary number of arguments. There are two
options for the format of the argument:

1. The argument can be a dictionary of widgets, keyed by the hardware channel name. In this
case, the title of the layout group will correspond to the type of widget of the first element
of the unsorted dictionary (e.g., “Analog Outputs”, “Digital Outputs” or “DDS Outputs”). If
a group with this title already exists, widgets will be added to the existing group. The new
widgets will be sorted alphabetically by key, and added to this group.

2. The argument can be a tuple. The first element of this tuple should be the title of the group you
wish to create or append to. The second element of this tuple should be a dictionary of widgets
as described in option 1 above. The tuple can also contain a third, optional element, which
specifies a function to be used to sort the order of the new widgets. This function is provided
directed to the key keyword argument of the sorted method in the Python standard library.

This method returns no value.
Example usage:

14

analog_outputs = {'ao1':my_ao_widget}
digital_outputs = {'port0/line1': my_do_widget_1, 'port0/line21':my_do_widget_2}
self.auto_place_widgets(analog_outputs,

(``My custom name'', digital_outputs,
lambda x: '\%02d'\%x.replace('port0/line','')

)
)

3.3.4 create analog outputs

This method creates analog output objects. These objects are the backend for analog widgets, and
handle unit conversions, saving/restoring values, etc. The tutorial in section 2 covers how to use this
method in depth.

This method takes a dictionary that defines the properties of the analog output objects you wish
to instantiate. The dictionary should be keyed by hardware channel name. The values of each key
should be a dictionary with the keys base unit, min, max, step and decimals.

This method returns no value.
Example usage:

analog_properties = {'hardware_channel_1':{'base_unit':self.ao_base_units,
'min':self.ao_base_min,
'max':self.ao_base_max,
'step':self.ao_base_step,
'decimals':self.ao_base_decimals

},
'hardware_channel_2':{'base_unit':self.ao_base_units,

'min':self.ao_base_min,
'max':self.ao_base_max,
'step':self.ao_base_step,
'decimals':self.ao_base_decimals

},
}

self.create_analog_outputs(analog_properties)

3.3.5 create analog widgets

This method is used to create widgets associated with analog output objects. It is used by auto create widgets

(see section 3.3.2) but can be called directly if more control over the widgets are required. This
method takes a dictionary which specifies properties of the analog widgets. The dictionary should
be keyed by hardware channel name. The value associated with each key should be a dictionary
which contains 0 or more of the keys:

• display name: This can be used to display a custom string next to the spinbox in the analog
widget. If set to None, the string defaults to the channel followed by the name specified in the
connection table for this channel (if any). If set to a string, that string is displayed instead. If
this key is not specified, it defaults to None

15

• horizontal alignment: This can be used to specify whether the string discussed in the
above dot point, is aligned above, or to the left of the spinbox. If not specified, it defaults to
False (string above the spinbox). If set to True it places the string to the left of the spinbox.

• parent: If you wish this widget to have a specific parent widget (see Qt documentation on
parent widgets) you can set it here. If this key is not specified, it defaults to None. Note that
any parent set will be overwritten if the widget is added to a layout.

This method returns a dictionary of widgets, keyed by the hardware channel names.
Example usage:

widget_properties = {'ao1':{'display_name':'Frequency',
'horizontal_alignment': True

}
}

my_widgets = self.create_analog_widgets(widget_properties)

3.3.6 create dds outputs

This method creates analog output objects. These objects are the backend for DDS widgets, and
handle unit conversions, saving/restoring values, etc. The tutorial in section 2 covers how to use
this method in depth.

This method takes a dictionary that defines the properties of the DDS output objects you wish
to instantiate. The dictionary should be keyed by hardware channel name. The values of each
key should be a dictionary with one or more of the keys freq, amp, phase and gate. The keys
used determine whether controls for those properties are shown. Each of the freq, amp, phase
and gate keys used should have a value that is a dictionary which follows the format used in
create analog outputs (see section 3.3.4) for freq, amp and phase and follows the format used
in create digital outputs (see section 3.3.8) for the gate.

This method returns no value.
Example usage:

The creation of this dictionary could be simplified by one or
more for loops. However we chose to write everything out explicitly
here so that it is clear what is going on. Consult one of the already
implemented device classes to see how it could be done in fewer lines
of code (for example the PulseBlaster)
dds_properties = {'hardware_channel_1':

{'freq':{'base_unit':self.dds_base_units['freq'],
'min':self.dds_base_min['freq'],
'max':self.dds_base_max['freq'],
'step':self.dds_base_step['freq'],
'decimals':self.dds_base_decimals['freq']

},
'amp':{'base_unit':self.dds_base_units['amp'],

'min':self.dds_base_min['amp'],
'max':self.dds_base_max['amp'],

16

'step':self.dds_base_step['amp'],
'decimals':self.dds_base_decimals['amp']

},
'phase':{'base_unit':self.dds_base_units['phase'],

'min':self.dds_base_min['phase'],
'max':self.dds_base_max['phase'],
'step':self.dds_base_step['phase'],
'decimals':self.dds_base_decimals['phase']

},
'gate':{}
},

'hardware_channel_2':
{'freq':{'base_unit':self.dds_base_units['freq'],

'min':self.dds_base_min['freq'],
'max':self.dds_base_max['freq'],
'step':self.dds_base_step['freq'],
'decimals':self.dds_base_decimals['freq']

},
'amp':{'base_unit':self.dds_base_units['amp'],

'min':self.dds_base_min['amp'],
'max':self.dds_base_max['amp'],
'step':self.dds_base_step['amp'],
'decimals':self.dds_base_decimals['amp']

},
'phase':{'base_unit':self.dds_base_units['phase'],

'min':self.dds_base_min['phase'],
'max':self.dds_base_max['phase'],
'step':self.dds_base_step['phase'],
'decimals':self.dds_base_decimals['phase']

},
'gate':{}
}

}
self.create_dds_outputs(dds_properties)

3.3.7 create dds widgets

This method is used to create widgets associated with dds output objects. It is used by auto create widgets

(see section 3.3.2) but can be called directly. This method takes a dictionary which specifies properties
of the dds widgets. The dictionary should be keyed by hardware channel name. The value associ-
ated with each key should be an empty dictionary (this is so we can expand configuration options in
the future). This method returns a dictionary of widgets, keyed by the hardware channel names.

Example usage:

widget_properties = {'dds0':{},
'dds1':{}
}

my_widgets = self.create_dds_widgets(widget_properties)

17

3.3.8 create digital outputs

This method creates digital output objects. These objects are the backend for digital widgets, and
handle the lock state, saving/restoring values, etc. The tutorial in section 2 covers how to use this
method in depth.

This method takes a dictionary that defines the properties of the digital output objects you wish
to instantiate. The dictionary should be keyed by hardware channel name. The values of each key
should be an empty dictionary (this is so we can expand configuration options in the future).

This method returns no value.
Example usage:

digital_properties = {'hardware_channel_1':{},
'hardware_channel_2':{},
}

self.create_digital_outputs(digital_properties)

3.3.9 create digital widgets

This method is used to create widgets associated with digital output objects. It is used by auto create widgets

(see section 3.3.2) but can be called directly. This method takes a dictionary which specifies proper-
ties of the digital widgets. The dictionary should be keyed by hardware channel name. The value
associated with each key should be an empty dictionary (this is so we can expand configuration op-
tions in the future). This method returns a dictionary of widgets, keyed by the hardware channel
names.

Example usage:

widget_properties = {'port0/line1':{},
'port0/line21':{}
}

my_widgets = self.create_digital_widgets(widget_properties)

3.3.10 create worker

This method creates and instantiates an instance of a specified worker process. This results in a new
process being spawned on your PC. The signature of this method is:

def create_worker(self, worker_name, WorkerClass, worker_arguments = {}):

where worker name is a string containing the name you wish to assign to this worker (used to reg-
ister the worker as a primary or secondary worker, see sections 3.1.8 and 3.3.1). WorkerClass is a
reference to the class (not an instance) you wish to launch in the subprocess (this class should sub-
class the Worker class in ‘BLACS/tab base classes.py’. The create worker method is responsible
for creating an instance of the WorkerClass. worker arguments is a dictionary of arguments to
be passed to the worker process. These arguments become available as instance attributes of the
worker instance with the names specified by the keys of the dictionary (subject to change in the
future).

18

3.3.11 get channel

This method returns an AO, DO or DDS object for a given hardware channel name, or None if it does
not exist.

The signature of this method is:

def get_channel(self, channel_name):

where channel name is a string containing the hardware channel name of the output object you
wish to return.

3.3.12 get front panel values

This method returns a dictionary, keyed by hardware channel name, containing all the current values
of the AO, DO and DDS objects.

This method is used to get the values on the BLACS front panel when programming the device
in both manual and buffered mode. If you have a custom output not registered as either an AO, DO or
DDS object, you may wish to override this method to extend the dictionary to contain your custom
values.

3.3.13 get tab layout

This method takes no arguments and returns a reference to the main layout of the tab. This layout is
an instance of QVBoxLayout.

3.3.14 queue work

This method returns a tuple in the form required to yield from a statefunction (see section 4.1 for
more details). It is used to communicate with a worker process.

The signature of this method is:

def queue_work(self, worker_name, worker_function_name, *args, **kwargs):

where worker name should be a string containing the name of the worker you wish to communicate
wish (as defined when you created the worker process, see section 3.3.10). worker function name

should be a string containing the name of the method of the worker process you wish to run. You
can also specify any number of optional arguments and keyword arguments following this. These
arguments will be passed to the method of the worker process you have specified to run.

Example usage:

result = yield(self.queue_work(self.primary_worker, 'my_worker_function',
1, 7, keyword = 'foo'))

or alternatively
work = self.queue_work(self.primary_worker, 'my_worker_function',

1, 7, keyword = 'foo')
result = yield(work)

19

3.3.15 statemachine timeout add

This method sets up a timer which repeatedly calls the specified state-function after a delay. The
signature of this method is:

def statemachine_timeout_add(self, delay, statefunction, *args, **kwargs):

where delay is the minimum time in millseconds between calls to the specified state-function and
statefunction is a reference to the method to call (this method must be decorated with @define state,
see section 4.1). You can also specify any number of optional arguments and keyword arguments fol-
lowing this. These arguments will be passed to the state-function you have specified to run.

Note that the specified delay is the minimum time between calls. Immediately after your state-
function has been run, another state will execute which sets up a timer object that fires in delay

milliseconds. There is some overhead in processing this state. Furthermore, when the timer fires,
your state-function is queued up in the state machine, but is not guaranteed to immediately run as
there may be other state-functions in the queue. However, it is guaranteed that the state which sets
up the timer, will always run immediately after your state-function. This ensures there will only ever
be one entry for your state-function in the state queue at any given time.

Note: You cannot set up multiple timeout callback for the same state-function. Subsequent calls
to statemachine timeout addwith the same state-function in the argument, will result in the old
timeout being replaced with the delay, etc. of this new call.

3.3.16 statemachine timeout remove

This method takes a reference to a state-function as the only argument, and removes the timeout
callback created with statemachine timeout add (see section 3.3.15). This method returns True
if a timeout was found to remove, otherwise False.

The signature of this method is:

def statemachine_timeout_remove(self, statefunction):

where statefunction is a reference to a function decorated with @define state (see section
4.1).

3.3.17 statemachine timeout remove all

This method takes no arguments, and removes all timeout callbacks created with statemachine timeout add

(see section 3.3.15). This method returns True if there were timeouts to remove, otherwise False.
The signature of this method is:

def statemachine_timeout_remove_all(self):

3.3.18 supports remote value check

This method sets an internal flag that determines whether a timeout callback will be setup that runs
a state-function which periodically checks the output values programmed into the device and com-

20

pares them with the BLACS front panel. This is effectively a consistency check to make sure the
BLACS front panel is up to date. As not all devices support this feature, you must explicitly enable
it if you device does.

3.3.19 supports smart programming

This method sets an internal flag that determines whether the checkbox to force a full buffered repro-
gram is shown or hidden. If set to False, the checkbox is hidden and left checked permanently. Note
that even if set to False, you can still programmatically change whether a full buffered reprogram
can occur with the force full buffered reprogram property (see section 3.1.5).

The signature of this method is:

def supports_smart_programming(self, value):

where value is True or False.

3.3.20 connect restart receiver

This method allows you to register a function to be called when the device tab is restarted. Usually
this is only used by components of BLACS outside of the device Tab, though there is no reason why
you couldn’t call it from within DeviceTab.

The signature of this method is:

def connect_restart_receiver(self, function):

where function is a reference to the function you wish called. The function you provide should take
one argument (the name of the device that has been restarted).

3.3.21 disconnect restart receiver

This method allows you to deregister a function that was registered using connect restart receiver

(see section 3.3.20). Usually this is only used by components of BLACS outside of the device Tab,
though there is no reason why you couldn’t call it from within DeviceTab.

The signature of this method is:

def disconnect_restart_receiver(self, function):

where function is a reference to the function you wish deregister.

3.3.22 restart

This method initiates a restart of the device Tab. Usually this is called when the restart button is
clicked, however you could call this method programmatically if you wished. The method takes an
arbitrary number of keyword arguments (and ignores them all) so it can be connected to GUI signals
that pass arguments.

The signature of this method is:

21

def restart(self, *args):

3.3.23 update from settings

This method restores the settings of the tab from a provided dictionary. This method is called by
BLACS on startup and if the user loads a front panel via the file menu. This method will not affect
the state of “locked” widgets.

The signature of this method is:

def update_from_settings(self, settings):

where settings is a dictionary with the keys device name, connection table, saved data

and front panel settings. These keys should have the following values:

• device name: A string containing the device name (as stored in the device name attribute).

• connection table: A reference to the connection table object (as stored in the connection table

attribute).

• saved data: A dictionary of the form that get save data is to be passed.

• front panel settings: A dictionary keyed by hardware channel name. Each of these keys
should have a value which is a dictionary containing the settings for the output channel.

3.4 State-functions

State-functions are methods decorated with the @define state decorator. When called, they do
not run immediately, but are placed in a queue and executed in the order they were called. See
section 4.1 for more details.

The DeviceTab class provides some default implementations of state-functions, which should
be adequate for most device implementations. We list them below:

• abort buffered

• abort transition to buffered

• check remote values (has an associated method on resolve value inconsistencywhich
is not a state-function)

• destroy

• program device

• transition to buffered

• transition to manual

22

There are some cases where it may be desirable to override these methods. Please check with us
on the mailing list before doing so, in case there is an easy way to achieve your aims. Should you
wish to override them, do not call the state-function method you are overriding in an attempt to
extend it’s functionality. If you override, you must reimplement yourself, any functionality you
want to keep from the DeviceTab implementation.

23

4 Advanced features of the DeviceTab

4.1 The state machine

The Tab class (DeviceTab subclasses Tab) contains a state machine which regulates the interprocess
communication between the worker process and the GUI process, as well as making sure that the
Qt event based architecture is transformed into a deterministic system. The simple Device Class
implementation discussed in section 2 is already using the state machine behind the scenes.

Most of the state machine architecture is hidden within the Tab class. Any function in the de-
vice class prefixed (decorated) with @define state will be queued up appropriately in the state
machine when it is called. We will refer to functions prefixed with @define state as state machine
functions.

The state machine has 4 modes it can be in: MODE MANUAL, MODE TRANSITION TO BUFFERED,
MODE BUFFERED and MODE TRANSITION TO MANUAL. These 4 modes correspond to the following
situations for the device:

• MODE MANUAL: The device is programmed to static values that match the front panel interface
of BLACS. The device is not running a buffered experiment compiled by labscript.

• MODE TRANSITION TO BUFFERED: The device is being programmed with a buffered sequence
from a HDF5 file.

• MODE BUFFERED: The device is either waiting for a trigger to start the execution of a buffered
experiment, or is currently executing an experiment.

• MODE TRANSITION TO MANUAL: The device has finished executing the buffered experiment
and is currently saving any acquired data and preparinfg to entered MODE MANUAL.

In general you should not need to worry about transitioning between these modes unless you are
overwriting transition to buffered or transition to manual.

A state machine function can be configured to run only in one or more of these modes. A state
machine function can also be configured to stay in the queue until the state machine is in a matching
mode and/or to only use the most recently queued call of the state machine function. The code
@define state is a Python decorator, and takes 2 required arguments and 1 optional argument.
The arguments are:

• allowed modes: This in the binary OR of the modes in which the following state machine
function is allowed to run in. If the statemachine is in a mode not specified here, it will not run
until the state machine is in a matching mode

• queue state indefinitely: This argument should be set to True or False. If True, the state
machine function will remain in the queue until the statemachine enters one of the allowed
modes. Setting this flag to True guarantees the state machine function will run eventually
(unless the device tab is restarted or BLACS is closed). If False, this state machine function will

24

be removed from the queue if it is the next item in the state machine to be run, but the current
state machine mode is not one of the allowed modes.

• delete stale states: An optional argument that defaults to False. If set to True, the state
machine will look for newer versions of the state machine function in the queue, and will run
the most recent found before encountering a different state machine function in the queue. If
set to False (the default), this state will not be deleted when newer versions exist.

An example use of @define state is shown below:

@define_state(allowed_modes=MODE_MANUAL|MODE_BUFFERED,
queue_state_indefinitely=True,
delete_stale_states=False)

def start(self,widget=None):
some code follows
time.sleep(5)

Note that if we call this function from within our code, E.g.:

def foo(self):
self.start() # This function call returns immediately

the call to start returns immediately. Some time in the future, the function start will be executed,
and the main thread (the GUI) will sleep for 5 seconds as expected.

This means that calls to state machine functions (E.g. start) cannot return parameters in the
conventional way. It is expected that state machine functions will be called upon a Qt event (in
which case you will never need to return anything from your state) or from another thread (in which
case you can use a Python Queue to block the calling thread until your state machine function puts
the return values in the queue)

As mentioned, state machine functions are designed to interact with the worker process. You can
call functions within your worker process with the following code:

@define_state(MODE_MANUAL,True)
def start(self,widget=None):

result = yield(self.queue_work(self.primary_worker,'foo'))

If you wish to pass arguments to your function, you can instead call something similar to

result = yield(self.queue_work(self.primary_worker,'foo',1,5,x=3))

This will call the function foo with the arguments 1,5,3 in the worker process name stored in
self.primary worker.

It is important to note that you cannot pass objects as arguments to a worker class function. The
arguments must be able to be placed into a Python Queue.

You may yield to one or more worker process function many times within a single state function.
Note that you can only do this from within a function that is decorated with @define state.

25

4.2 Device class state machine, callback on timeout

The state machine architecture of BLACS provides the functionality to register a timeout callback;
that is, a function to be called (approximately) every n milliseconds. This is generally used for peri-
odic status monitoring of a device.

To add such a timeout callback to your code, you call from within your device class:

self.statemachine_timeout_add(delay,self.some_function,userdata1,...)

where userdata1 and following arguments are passed to self.some function.
To remove the timeout, call

self.statemachine_timeout_remove(self.some_function)

Due to the nature of state machines (callbacks are processed one at a time based on the order in
the queue), your function is not guaranteed to run as often as you have requested. Initially, because
your function is a state machine function, BLACS will add your function to the state machine queue.
Once your function has run, it will add a Qt single-shot timer to run an internal function in delay

milliseconds. This internal function will queue up your function in the state machine again, and,
depending on the length of the queue at that time, may not run immediately.

Also note that you can only have one timeout for a given function. Creating a timeout for the
same function will replace the existing timeout.

4.3 Remote Value Checking

The default implementation of the DeviceTab supports a periodic consistency check on the out-
put values of a device (providing that the device supports this). This can be enabled by setting
supports remote value check The tab will query the worker process for current output values,
and compare these to the values on the BLACS front panel. If any inconsistencies exist, BLACS will
ask the user to choose whether to keep the remote values of the device, or the local values shown on
the BLACS front panel. Beyond enabling the feature, no further implementation is required in the
device class. For the worker class implementation, see section 5.5.

26

5 The Worker Class

The worker class is used solely to communicated with the hardware for our device. It exists to
separate out the code, modules, dll’s, etc. from the GUI to provide better stability to the system. The
worker class is instantiated inside a separate process (referred to from now on as the worker process),
which can be restarted by the user if the device becomes unresponsive. Upon restart, all libraries are
completely reloaded as they are only loaded within the worker process. This allows the system to
recover from errors in 3rd party API’s without the need to restart the entire control system.

The worker class consists of functions which can be executed by the state machine. In your device
class you can call:

result = yield(self.queue_work('worker_name','some_function',arg1,arg2,kwrd1=arg3))

and this will call the function called some function with arguments arg1,arg2,kwrd1=arg3 in
the worker process you have created and named ’my worker’ (not to be confused with the Worker
class name). This is covered in more detail in section 4.1.

5.1 The init function

The init function in the worker class is special for two reasons. The first is that it is not called
init as you would expect. This is because we don’t want to override the init function

in class Worker, which is essential for successful operation.
The second is that this is the function in which you should import the modules, classes, etc. that

you wish to access from within the worker class. They are imported here, within the class, so that
they only exist within the worker process, and not within the BLACS process. This allows modules
to be completely unloaded from the system when the worker process is restarted, and thus recovery
of the programming library without the need to completely restart the program (a technique not seen
in any other control system to our knowledge). The init function will always be the first function
in your worker process to be run after it has been created.

If you wish to import a module (for example h5py), use the following code:

class MyWorker(Worker):
def init(self):

global h5py; import h5_lock, h5py

This imports both the labscript suite h5 lock module (which prevents simultaneous accessing of h5
file which could cause data corruption) and the h5py module which is stored as a global variable.

If you wish to import something from within a module (for example one or more functions from
the spinapi module), you can use:

exec 'from spinapi import *' in globals()

or

exec 'from spinapi import pb_start, pb_stop' in globals()

27

You can also set the default values for any class attributes in the init function. For instance:

self.smart_cache = {}

5.2 The program manual function

This function is called whenever the device needs to be programmed to output values when not
executing a buffered shot. The most common time this happens is when a value of a digital, analog
or DDS output widget on the front panel is changed.

The function is passed an argument which contains all of the current front panel values in a dictio-
nary. The dictionary is keyed by the hardware channel names you defined in the initialise GUI

function in your Device GUI class.
The method should return the values for each output value, coerced to the value that the device

is actually outputting now. This is to accurately reflect the device quantisation on the front panel of
BLACS. The return value should be a dictionary of the same format as the one passed in.

Your function should look something like:

def program_manual(self, front_panel_values):
Program the device
work out what values the device is actually outputting
return modified_front_panel_values

5.3 The transition to buffered function

This function is called whenever the Queue Manager requests the device to move into buffered mode
in preparation for executing a buffered sequence.

This function is passed the device name to look up in the HDF5 file located at the path con-
tained by h5file. The function is also passed the current initial values, so that your device can be
programmed to maintain output continuity until the device is triggered. This may require inserting
a dummy instruction at the beginning of the instruction list provided by labscript. The final argu-
ment passed to this function is a Boolean value that indicates whether the device should have it’s en-
tire instruction table overwritten (only applies to device classes that have called self.supports smart programming(True)

in the initialise GUI function).
The function should return a dictionary containing the final value of each output once the buffered

shot has finished execution. The dictionary should be keyed by the hardware channel names you de-
fined in the initialise GUI function in your Device GUI class.

Note: you should avoid holding the HDF5 file open when programming the device. Open the
file, copy the data into local memory, close the file and the program the device. This will allow other
devices to access the file to begin their programming process, and will minimise your experiment
cycle time.

Example:

28

def transition_to_buffered(self,device_name,h5file,initial_values,fresh):
Open HDF5 file
copy device data to local memory
close HDF5 file
#
check whether we need to do a completely fresh program or not
Check whether the data for this shot is similar enough to the last shot
and whether only some instructions need reprogramming
#
build final value dictionary
return final_experiment_values

5.4 The transition to manual function

This function is called after the master pseudoclock reports that the experiment has finished. This
function takes no arguments, should place the device back in the correct mode for operation by the
front panel of BLACS, and return a Boolean flag indicating the success of this method. Any acquisi-
tions made during the buffered shot should be saved to the HDF5 file now (you must store a reference
to the HDF5 file in transition to buffered if you need to access it in transition to manual).

Example:

def transition_to_manual(self):
save any acquired data to HDF5 file
place device in mode ready for BLACS front panel control
return True if this was all successful, or False otherwise
return True/False

5.5 Remote value checking

This check remote values method should only be present if your tab is configured to check re-
mote values (see section 4.3). The method takes no arguments, and should return a dictionary of
remote values, keyed by hardware channel name.

Example:

def check_remote_values(self):
current_output_values = {}
read from the device, the values it is outputting
place them in a dictionary, keyed by hardware channel
return current_output_values

5.6 Abort functions

There are two functions that may be called if something went wrong and the experiment shot is to
be aborted. The first, abort transition to buffered, is called if the experiment shot must be

29

aborted before the master pseudoclock has been triggered to begin. The second, abort buffered,
is called if the shot must be aborted during the execution of a buffered shot. Both functions take no
arguments (other than self) and should return True or False depending on whether they were
successful and the device is ready for front panel input from BLACS again. If False is returned, this
will cause an error to be displayed requesting the user to restart the device tab themselves.

Example

def abort_buffered(self):
place the device back in manual mode, while in the middle
of an experiment shot
return True if this was all successful, or False otherwise
return True/False

def abort_transition_to_buffered(self):
place the device back in manual mode, after the device has run
transition_to_buffered, but has not been triggered to
begin the experiment shot.
return True if this was all successful, or False otherwise
return True/False

5.7 The shutdown function

The shutdown function is called when BLACS is asked to close. This should put the device in safe
state, for example closing any open communication connections with the device. The function should
not return any value (the return value is ignored)

Example:

def shutdown(self):
close any open connections
place the device in a nice state
return nothing

30

