
Manual

Welcome to Promod’s manual. Here you will find all the information you need to run this software. This
program is a project for the Structural Bioinformatics subject and the Introduction to Python project of the
Msc in Bioinformatics of Universitat Pompeu Fabra.

What is Promod?

Promod is a python tool whose goal is to form macrocomplexes of molecules starting from the interacting
pairs of chains that will form the complex. It is compatible with protein chains, single and double DNA
strands and RNA strands. It has several parameters available to play with according to the users needs.

In essence, the builder approach is similar to a genomic assembler: seeks for similar chains in the different
PDB files given as an input and overlaps them. After that, joins the chains in a single model. Pair by pair
the builder puts all the possible chains inside a single model

Background and scientific explanation

Introduction

Proteins are the executive molecules in all organisms. They perform a wide variety of functions, from
small compounds transport to signals transduction or immune responses. However, proteins do not usually
work individually in cells. Most proteins interact with other proteins (protein-protein interactions, PPIs)
or molecules (DNA, hormones, drugs, among others), which are essential for a proper development of their
activities. That is the reason why collecting PPIs can lead to a better understanding of protein functions,
biological pathways and mechanisms of disease. The identification of such PPIs has been a challenging task
for years. Experimental methods provide irrefutable evidence to test interactions between proteins, but they
are expensive and time-consuming. Nowadays, computational approaches are being developed to reduce as
much as possible the necessity of experimental data. Some advances have been made in this field, but the
range of successful organisms is short and general frameworks are lacking at the moment.

Different experimental approaches for the identification of individual PPIs are available. The most accurate
methods that allow the determination of the exact atom coordinates in the complexes are X-ray crystallography,
Nuclear Magnetic Resonance and Electron Microscopy. These techniques are difficult to perform, they need
very specialised equipments and a strong data analysis procedure. There are also high-throughput methods
based on biochemical properties, such as Tandem Affinity Purification, which can detect multiple PPIs at
once, but a high rate of false positive results can be expected and the information is not very precise. Protein
microarrays are also being used as a screening method that can be easily automated and parallelised. Other
traditional techniques, namely co-immunoprecipitation, yeast two-hybrid or pull-down, are still being used as
well. All these approaches provide complementary views of PPIs and have their advantages and problems.
The main one is the cost-effectiveness of the experiments, making in silico approximations more feasible and
adequate for understanding PPIs at the atomic level.

Regarding the structural properties of the proteins, there are three main categories of methods for computa-
tional modelling of PPIs: homology or template-based modelling, ab initio or template-free modelling, and
hybrid or integrative modelling. Homology modelling is based on the fact that the evolutionary information
in both the sequences and the structures is important for PPI prediction. The latter are preferred, as most
existing predictors use surface patch data, and only the residues in the interface have to be analysed, instead
of the whole sequence of aminoacids. A pitfall of this method is that not all the 3D structures are available,
although public databases such as PDB are unstoppably increasing in size. Template-free modelling needs
more computational resources, as it explores all the possible orientation between the interacting molecules.
The combination of prior knowledge about the individual structures of the components may help reduce the
searching space, but still this approach is more challenging. This kind of techniques also require a careful

1



evaluation of the results by various means and refinement of the candidate models using biological information.
Finally, integrative modelling combines experimental data and bioinformatics developments to narrow the
possible complexes and save computational resources and time.

In this work, our aim is to develop a software that builds protein macrocomplexes using as input pairs of
protein-protein interactions. Interaction with other molecules, such as nucleic acids, is also considered. To
do this, our program is based on homology modelling. Therefore, the homology of the different chains is
analysed, tridimensional structures are superimposed and energy levels of the final models are considered to
propose the best possible solution. Another option would have been template-free modelling, but the required
computational resources and the steps of evaluation and refinement excluded this possibility, because of the
limited means and knowledge that our team has got.

Here we propose Promod as a first step approach to protein-protein and protein-nucleic acid complex modelling.
It is distributed as both a Python package and a standalone application to be run in UNIX-based systems.
Several parameters can be tuned to adjust to the user’s needs. The final result is a single model with the
best option according to the algorithm that is explained below.

The Promod method

The algorithm used by our program can be divided in three main steps. The first one is the analysis of the
homology of the subunits. Then, the superimposition of the homologous structures is performed. Finally,
energy levels in the models are taken into account to discard unlikely complexes.

Homology of the subunits In order to build the model, the program begins with several files, each of
them containing information about two interacting chains, whether peptidic, DNA or RNA. We can overlap
similar proteins from two different PDB files to check if two chains in those files are alike. If they effectively
are, they can be joined in the same model. This is known as protein superimposition, and the whole process
can be compared to a DNA sequence assembly. The main objective is to recognise that two sequences are the
same and put them together in the correct spot.

Two chains in different PDB files must be homologous to be considered as part of the same protein and overlap
them. To check if two proteins are homologous or not, a pairwise alignment is performed. This alignment
consists of calculating the similarity between two sequences, taking into account both mutations and gaps,
and then returning a score between 0 and 1. A score close to 1 means that both sequences are identical,
therefore high score values are evidence of a large proportion of sequence identity. Only the homologous
proteins will be overlapped and used to build the model later.

Superimposition of the 3D structure Two homologous sequences will probably have similar structures.
However, it is also possible that two proteins with lower identity score may have similar structures in the
tridimensional space, as a result of convergent evolution. Therefore, when two proteins are significantly
different in sequence but they have similar structures, the may have the same role in our model and it is
desirable to consider them. For example, two homologous proteins from distant species whose alignment do
not pass our homology threshold, but they still preserve the structure.

In these cases, to test if two proteins really have similar structures, we need a measurement, such as the root
median square deviation (RMSD). First, to calculate this value, we have to superimpose these two proteins.
That means placing the atoms of both proteins in the same coordinates and orientation, to check how well
they overlap in the space. Similar structures will have atoms in almost the same positions, while different
structures will be more distant. This similarity between the superimposed proteins can be used to calculate
the RMSD, which is the average distance between the superimposed atoms in the chains. A value close to
zero indicates a perfect fit of the structures. RMSD will increase when the differences between the protein
structures increase.

Due to all this, RMSD must also be a filter to account for those structures that are different, even when we
had considered them homologous in previous steps.

2



Analysis of the energy levels Lastly, it is important to consider the final energy levels of the complex.
A good model should have minimum energy, as functional, naturally occurring complexes are the ones with
the lowest energy among the set of possible foldings. Situations such as two atoms very close to each other,
aminoacids with hydrophobic residues located in the external part of the macromolecule and several other
cases can increase the final energy of the complex, which should be then corrected.

After that, it is possible that the position of the atoms inside the model is not the most adequate. Sometimes,
despite having evidence of interaction between two chains, collisions or clashes appear when they are joined
in the structure. Taking this into account avoids impossible models, such as those with chains crossing with
each other, which will be thermodynamically unstable and unlikely to happen.

Features

The most striking features of Promod are:

1. Building of macromolecular complexes from basic input data (pairs of interactions between molecules).

2. Optimization of the final model using MODELLER.

3. Graphical user interface (GUI), with the same functionalities as the command line interface (CLI).

Implementation

The Promod package is implemented in Python3. It strongly depends on the Biopython library, which is
an installation requirement for the correct execution of this software. The GUI has been developed under
the Tkinter framework, providing a user-friendly interface and, thus, avoiding the use of the command line.
The implementation of the GUI and the CLI are independent, so each one can be executed on its own. This
software works with well-established bioinformatics formats, such as FASTA and PDB files, so no atypical
formatting of input data shall be conducted. Additionally, two scripts are provided to divide a given PDB file
in separate pairs of chains and join them if there is an interaction between the molecules. Some examples are
also included for the testing of the program. Promod is freely available from the following Github repository.
URL: https://github.com/Fabian-RY/SBI-Python-project.

The formatted documentation of the package includes dependencies and installation instructions, examples of
use and a full tutorial with sample code. Each function has got its own documentation that instructs on
the particularities when importing them to be used independently. The users could learn all knowledge of
the library by looking up the detailed documentation. The main functionalities are further explained in the
tutorial section.

Discussion

Promod is a basic tool that relies on information from both the sequence and the tridimensional structure
of pairs of interacting molecules to build a final complex model. As we can see in the analysed examples,
it is successful with small complexes and it can even handle nucleic acids interaction with proteins. The
MODELLER final step adds an additional refinement of the proposed model, returning to the user a good
quality structure. All this methodology is built in an easy-to-use package, well documented and with a GUI
to save unpleasant command line work for the standard user.

However, the main objective of modelling software is to provide new knowledge without the need of huge
amount of experimental data, such as the determination of all paired interactions, in this case. A limitation
of our program is the necessity of input protein-protein or protein-nucleic acid interaction. This type of
software is being broadly developed by means of various approaches, which are proving to be very successful.
Both docking and homology modelling paradigms are being applied to achieve this goal.

3

https://github.com/Fabian-RY/SBI-Python-project


One of the strategies being exploited is evidence combining methods. The core of this strategy is integrating
evidence from multiple sources, including them in comprehensive databases for later integration. They are
called gold standard databases and they contain information for both training and testing of the new methods.
The annotation of paired protein interactions goes beyond structural features. For instance, evolutionary
relationships, functional features, network topologies, sequence-based signatures, structure-based signatures,
and text mining information is recorded in these databases. Finally, machine learning algorithms are fed
with subsets of data and performance is measured to propose the better candidates, depending on target
species, data sources, demand of accuracy and coverage. These evidence combining methods are performed
repeatedly to find converging results with different input data and classifiers.

As we can see, template-based methods are leading the in silico modelling techniques. It is reasonable to
believe that there are a limited number of possible interactions and that, once we have big enough databases
and curated interaction catalogs, most of the PPIs should be easy to model with high confidence. However,
ab initio modelling has also yielded promising results, mainly from competitions such as CASP, CAPRI
or CAMEO, where world-class groups bring their latest developments to test their performance with real
problems. Of course, these solutions are computationally expensive and require a long time to return a final
model. In addition, complexes with weak interactions where the conformational state changes upon binding
are a big challenge for docking software.

A large number of information is nowadays available from high throughput experimental techniques and a lot
of structural bioinformatics software has been developed to integrate these data. The best performance of
in silico techniques has been achieved at the tertiary structure level of proteins. Nevertheless, quaternary
structures are the ones responsible for the majority of biological functions and their knowledge is essential to
disentangle protein interaction networks in both physiological and pathological scenarios. It is clear that
hybrid approaches, joining atomic-level experimental structures, database information and the newest machine
learning techniques, will give promising results in the near future.

Future perspectives

As we have already mentioned, there are diverse strategies for modelling PPIs. The development of refined
algorithms to perform this task is far beyond our current knowledge in structural bioinformatics. Therefore,
if we had time and resources to expand our project, we would focus on improving the user experience and the
accessibility to existing data.

First, we would like to implement different ways of modelling. It would be useful for the user to choose whether
to use a template-based or a template-free approach. We could also use existing Biopython packages to
perform certain operations, but further research and testing would be needed to decide the better candidates.

Next, the result of the modelling operations could return automatic reports about the process. Not only
the final model would be reported, with the tridimensional structure and their characteristics, but also
information about the reasons why our software has discarded certain possible models. Therefore, direct
visualization of these other options and energy plots for user reference should be displayed. A good option for
the format of this report would be a Jupyter notebook, so the user can interactively check all the available
resources.

Another functionality that could be feasible to achieve is the automatic download of structures from public
databases, such as PDB. Both sequences and structures can be obtained using Biopython modules and some
keyword and ID search should be easy to implement, as well. These would be the input data for the additional
scripts that build the pairs of interacting molecules to run the core Promod builder.

Finally, it would be ideal to develop integration options of biological information to help build better complexes,
in line with trending research in the field. We are not aware of Python packages that would allow to directly
implement this kind of work, but maybe external tools are capable of doing it. However, a broad review of the
latest literature and a challenging programming development would be needed to know the most promising
approximations.

4



Conclusion

Although computational approaches for building macromolecular complexes are far to be perfect at the
moment, a lot of effort is being made to develop strategies to overcome the pitfalls in this field. We have
provided a software that, despite not using any novel strategy, achieves notable results when using already
defined structures. Further steps using machine learning approaches and a broader range of training data
would improve the performance and confidence of this type of programs. Finally, the integration of different
types of biological data will also be a key step in the progress of in silico modelling of protein-protein
interactions. The achievement of better methodologies will definitely have an impact in applied fields, such
as drug discovery, biomedical research or food industry.

Input

The input is a folder with two or more files: each file contains two proteins, a protein and DNA/RNA strand
or 2 single DNA strands (which may or may not form a double strand), which represent an interaction
between those chains. Two structures are considered to be interacting if the minimum distance between them
is in a range of a few Argmstrongs (1-10) . However, in lesser distances, forces between atoms are strong
enough to produce changes between the chains and force them to adopt a different conformation, an thus, a
realistic model must keep the residues at an adequate distance to consider it correct.

Output

The output is mainly one pdb file with all the possible chains joined in the selected folder. However, if the
optimized option was selected, several pdb files will be created in the same directory. These are different
approaches made by modeller to optimize the energies of the model and the files it used. The model will be
saved as final_model.pdb

If the model is required with minimum energy, and thus the -optimize flag is used, then several files will be
saved. Modeller will save some mid-step pdbs as ‘final-model.DXXXXX.pdb’ and the fully optimized will be
saved as ‘optimized.pdb’

Tutorial

Installing dependencies

In order to make Promod work, there are some dependencies that must be installed before executing the
software: python3 and Biopython

If you’re using Windows, you can download python3 from its website. If you got Linux, there’s high chance
that you already got it installed.

Independently of the operating sistem you got, you can install biopython using pip.

{sh, eval=F} pip3 install biopython

Instalation

The recommended way to install promod is by using pip, exaclty with the same command as we did with
biopython previously {sh, eval=F} pip3 install promod

You can install Promod easily by downloading it from the github repository and running the next command
in the downloaded folder. This is, for now, the recommended install way

{sh, eval=F} pip3 install .

5

www.python.org


Alternatively, you can also run the setup script installation commands. {sh, eval=F} python3 setup.py
install

Hands on: how to use promod

Promod has a command line interface which explains briefly how to use it before executing it.

promod -h

There are 3 mandatory commands while the rest are optional. The mandatory ones are related to the input
files and output folder, necessary for the program to work, and they are -i, the input folder; -o, the output
folder; and -f, the fasta file of the sequences. All of them will be covered in this manual.

It also has a graphical interface wich accepts the same paramenters but graphically with message boxes and
graphical stuff. It’s an independent executable, so the CLI one can be used for automation without confusion.
The comand is simple:

{sh eval=F} promod-tk

Paramenters

Input folder The input folder should contain, at least, 2 pdb files. This folder may contain other files or
subfolders; however, the program will ignore other files and will not check subfolders to find more pdb files.
If you want to include some pdb, include it in the folder before running the program.

Beyond that last thing, no more things are necessary to know about the input folder. However, it’s a
mandatory argument, and should be indicated with -i or –input-folder tags

Output folder The output folder is the folder where the output files are written. This is mandatory, and
no special folder is required. Just a warning, as, for the moment, the model file is written as ‘final_model.pdb’
and thus any other file with that filename will be overwritten.

The output folder is indicated with the -o or –output-folder tags

Distance You can indicate the minimum distance to consider that two proteins do not clash. The model
will discard interactions with too many atoms at lesser distance than the value indicated in Argmstrongs.
Being too strictive can discard some interactions, but being too flexible can force chains to overlap and not
being energetically favorable.

You can indicate the distance with the -d or –distance tags

Threshold The threshold is the minimum score alignments must reach in order to insert the chain in the
model and determinate its homologous protein. Usually a very high value (0.9 or higher) is recommended to
ensure that the chains are correctly identified. However, for sequences with less homology might be needed to
reduce this value.

Fasta file The fasta file contains the sequences of the chains and the id for the stoichiometry. And it’s
a critical file, as the sequences must be homologous for the chain in the pdb. We can hold up to 5% of
differences (by default, using -t parameter can modify this threshold). However, if one of the chains (if no
stoichiometry indicated) or one of the chains in the indicated stoichiometry differs too much, the program will
exit. This is use to avoid guessing posible chains that could match as that would produce unexpected results.

6



Note: That means the sequences in the fasta should be of a similar length than equivlent chain in the pdb.
For example, the fasta file and the pdbs directly downloaded from Protein Data Bank may differ in the initial
and ending residues, as they are quite difficult to model, and usually are removed from PDBs.

Stoichiometry file An additional file with the stoichiometry can be given to the program to make sure
that the final protein will contain no more than the indicated chains. This file must be properly formatted as
follows:

chain_id_in_fasta,number_of_columns

one per line

Let’s see the stoichiometry file of the example 1

3e0d_A,2
3e0d_B,2
3e0d_C,2

Starting pdb Promod’s result is highly dependant on the first pdb used to build the model. In fact, results
can be very different by varing the starting pdb. Thus we provide an optional argument to select this staring
pdb to select different starting pdbs. This way, the same pdb with the same parameters will provide the same
model. By default, the pdb files are sortered alphabetically and the first one in this sorted list is chosen.

The starting pdb can be selected with -start

Uninstalling

You can uninstall everything by using if installed using pip3

{sh, eval=F} pip3 unistall promod

However, if installed calling setup.py, files must be deleted manually.

Examples

Example 1 (3e0d)

3e0d is a small complex formed by 2 protein chains and 2 double DNA strands. It’s a subunit of the eubacterial
DNA polimerase but it’s perfect for an initial testing of our project, so we can test how the program works,
the time it takes and if the result is similar to the original one. In this cases, we have 6 different interactions,
as each DNA strand is counted as a single one interacting with another one and binded to the protein chain
by one of them. In fact, this complex can be thought as a dimer: two monomers formed by a protein and a
double strand DNA, which interact by some residues in their protein chains.

So, the first test to our program consists on joining the different pdb files into one single structure, without
further information about the stoichiometry. Therefore, the program will try to build the protein with only
the information provided by the pdb files and the fasta file. The command to build it is the next one:

{sh, eval=F} promod -i examples/example_1/chains/pairs -o examples/example_1/results \
-f examples/example_1/3e0d.fa

We just need to give the folder with the input pdbs (-i), the desired output folder (-o) and the fasta file with
the sequences of the proteins. The program will take the different pdbs on the folder (By alphabetical order,
to make it reproducible) And the result it’s incomplete:

There we can see that there is a missing double strand DNA. So, let’s see how we can complete the model.
We can see that there is a missing protein, let’s force the program to include it. We have two different ways of

7

https://www.rcsb.org/


Figure 1: 3e0d structure obtained from: a) rcsb.com b) promod without any extra info c) promod with
starting point and selected stoichiometry d) without stoichiometry control

indicating this: The easiest one is selecting the starting complex of our model (which contains those missing
parts). This results that different starting points can result in different models, so, it’s important to select
a good one. By default, the pdbs filenames are sortered alphabetically and the first one is chosen as the
starting point. In fact, this is an important choice: the differences between not chosing one (Figure 1.b)
chosing an adequate one (Figure 1.c) or chosing another one (Figure 1.d) can result in models with extra
chains or with less chains than expected

The other not-so-difficult way is to indicate the stoichiometry of the complex. In this case we will focus in
selecting the starting pdb, so the command would be.

{sh, eval=F} promod -i examples/example_1/chains/pairs -o examples/example_1/results \
-f examples/example_1/3e0d.fa -start examples/example_1/chains/pairs/3e0d_ZG.pdb

Yay! This is fare more similar to the original structure, very close to the original model. However, this is a
very simple protein, and bigger complexes may are harder to build. However, from this example, we learnt
that:

• The program can build a model without any indication. However, it might be incomplete o have extra
chains.

• The starting pdb is a important choice that can influence the final model. Thus it is important to
remember which starting point gave which result. The same starting pdb will gave the same output.

Example 2 (6gmh)

6gmh is a very big complex formed by 24 different chains, with a double strand of DNA. There are several
chains that interact between them, but there are not repeated sequences: each monomer is unique.

Thus, lets try to build it:

{sh, eval=F} promod -i examples/example_2/chains/pairs -o examples/example_2/results \
-f examples/example_2/6gmh.fa

8



Figure 2: 6gmh structure obtained from a) rcsb.com b) builded without assistance c) selecting starting point
and stoichiometry

In this case, there are several chains that hasn’t been added to the model, and some are repeated. So, let’s
select a different starting point and limit the chains with the stoichiometry, so at maximun there is 1 copy of
each chain.

{sh, eval=F} promod -i examples/example_2/chains/pairs -o examples/example_2/results \
-f examples/example_2/6gmh.fa -start examples/example_2/chains/pairs/6ghm_VA.pdb \ -s
examples/example_2/6gmh.stoic

The 6gmh.stoic file contains the stoichiometry of the protein. In essence, is a csv file, without header, in
which each line follows the same structure: ,. Each chain_name must be in the fasta as a sequence

This starting pdb was not in the model, and with this we force it to be included in the model, and start
growing from there. And this way, the result contains far more chains in the model and it’s far more similar
to the original one.

Example 4 (5nss)

Here we want to show how to use two parameters we haven’t shown yet: distance and threshold. Distance
is a value that considers if two atoms collide, which is not allowed, as two atoms very close would have
very high energy (if the separation between them is less than distance, it’s considered invalid. However, to
avoid some errors, up to 10 atoms colliding are allowed to consider a valid interaction). Threshold, however,
makes reference to the homology percentage between the pdb sequences between themselves and between the
sequences in the fasta. This allows for certain flexibility in sequences with some mutations that may alter the
conformation of the chain.

{sh, eval=F} promod -i examples/example_3/chains/pairs -o examples/example_3/results \
-f examples/example_3/5nss.fa -d 2 -t 0.9 -start examples/example_3/chains/pairs/5nss_NG.pdb

In this case, the result is quite good, but let’s focus on the speed of the program. As the number of interactions
grew, the time it takes for the program also increases. However, there are a few things to comment about it.

1.- Adding a new chain that passes all the checks is the most computationally expensive moment. The number
of checks grows as the number of chains of the model increases.

2.- It takes less time to discard an interaction that has no homologous already in the model than adding a
new chain. During the first steps of the program, until the model has grown enough, this is the most common

9



Figure 3: 5nss structure obtained from rcsb.org vs composed one

case. The number of alignments done is relatively low as there are a few chains in the model, but it can be
an issue

3.- Once the model has a considerable number of chains, and particularly if there are several copies of a
monomer, it’s also noticeable that discarding an homologous protein because doesn’t fit with the current
parameters is a very time-consuming processes. The program tries to introduce the chain using all the possible
alignments whose score is higher than the threshold. This is an important issue for proteins with a lot of
copies of several monomers.

4.- The stoichiometry must be carefully selected to reach the desired structure. It’s possible that the program
cannot construct a model with the desire stoichiometry, but it’s also possible that the stoichiometry wasn’t
what the user meant

Example 5 (6om3)

In this last example, let’s talk about how the software behaves about the number of input pdbs and
stoichiometry related stuff.

{sh, eval=F} promod -i examples/example_4/chains/pairs -o examples/example_4/results \
-f examples/example_4/6om3.fa -d 0.3 -t 0.95 \ -s examples/example_4/stoic.csv

In this last example, let’s talk about how the software behaves about the number of input pdbs and
stoichiometry related stuff.

There are som chains left in the protein builded with promod, which can be added used custom values of
distance or an apropiate starting point, but let’s ignore that and focus on topics still not covered in the
manual.

If you indicate a stoichiometry file but it doesn’t exist, it exits. We could have changed it to a non-stoichiometry
builder but we think it’s better to do things explicitly as you may or may not notice this error.

An important thing about the stoichiometry is that is critical to make sure that all the model is builded as you
want. For example, without any assistance, the work heres is quite good, but with a selected stoichiometry,
the result is missing some chains. Here we want to say that is important to check the stoichiometry file to
make sure the chains are correctly selected and the number of them is adequate to our purpose.

10



Figure 4: 6om3 builded from: a) rcsb.com b) promod with stoichiometry

Limitations

1. The sequences in the pdb and the sequences in the fasta must be similar. The program admits a certain
degree of tolerance (which can be selected by the user using the -t parameter) but using sequences in
the fasta which are fairly different from the pdb will not allow the assembly of the protein. This is
particularly difficult for pdb in which protein tails are not well modelled and they’re not present in the
pdb but they’re in the fasta. The pairwise alignment with the tail will drop the score of the alignment
under the threshold, forcing to decrease it or even mistake to which sequence in the fasta corresponds
to jus by chance. Thus, our recommendation is to prepare the fasta file with the sequence as similar as
possible to avoid mistakes. In case you needed, in this package there is a script included, pdbsplit.py,
which can give you the sequences of the chains inside the pdb file, avoiding this kind of errors up to
ceratin degree. So, if you’re looking for the effect of certain mutations in the desired protein, might be
worthy prepare the fasta file according to the pdb sequences.

2. The running time of the program is proportional to the number of pdbs selected and is affected by the
order of the structures and the starting point. The most critical steps: Reading all the pdbs sequences
(However, the higher number of interactions, more chains might be added). This is a tradeoff between
number of interactions and speed.

3. Selecting different starting points can produce different models. It’s difficult to say which is the most
adequate starting point, as may vary according to the goal of the assembly.

4. The fasta file require to be specially prepared for this application: There should not be repeated
sequences (with at least an alignment score equal or higher than threshold selected). This also applies
for sequences with unknown aminoacids, as they are marked as X in the fasta file and therefore will
mismatch with the sequence in the pdb. Those sequences are usually missing in the final model

11



Bibliography

Chang, J., Zhou, Y., Qamar, M. T. U., et al. Prediction of protein–protein interactions by evidence combining
methods. International Journal of Molecular Sciences 17, 1946 (2016). doi: 10.3390/ijms17111946

Ding, Z., Kihara, D. Computational identification of protein-protein interactions in model plant proteomes.
Scientific Reports 9, 8740 (2019). doi: 10.1038/s41598-019-45072-8

Hayes, S., Malacrida, B. , Kiely, M., Kiely, P. A. Studying protein–protein interactions: progress, pitfalls and
solutions. Biochemical Society Transactions 44, 994-1004. doi: 10.1042/BST20160092

Liu, S., Liu, C., Deng, L. Machine learning approaches for protein–protein interaction hot spot prediction:
progress and comparative assessment. Molecules 23, 2535 (2018). doi: 10.3390/molecules23102535

Nealon, J. O., Philomina, L. S., McGuffin, L. J. Predictive and experimental approaches for elucidating
protein–protein interactions and quaternary structures. International Journal of Molecular Sciences 18, 2623
(2017). doi: 10.3390/ijms18122623

Sarkar, S., Gulati, K., Kairamkonda, M., et al. Elucidating protein-protein interactions through computational
approaches and designing small molecule inhibitors against them for various diseases. Current Topics in
Medicinal Chemistry 18, 1-18 (2018). doi: 10.2174/1568026618666181025114903

Keskin, O. , Tuncbag, N. , Gursoy, A. Predicting protein-protein interactions from the molecular to the
proteome level. Chemical Reviews 116, 4884-4909 (2016). doi: 10.1021/acs.chemrev.5b00683

12


	Manual
	What is Promod?
	Background and scientific explanation
	Introduction
	The Promod method

	Features
	Implementation
	Discussion
	Future perspectives
	Conclusion
	Input
	Output

	Tutorial
	Installing dependencies
	Instalation
	Hands on: how to use promod
	Uninstalling

	Examples
	Example 1 (3e0d)
	Example 2 (6gmh)
	Example 4 (5nss)
	Example 5 (6om3)

	Limitations
	Bibliography


