
Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks

Pratik Chaudhari and Stefano Soatto

Computer Science, University of California, Los Angeles

Email: pratikac@ucla.edu, soatto@ucla.edu

Abstract— Stochastic gradient descent (SGD) is widely believed
to perform implicit regularization when used to train deep neural
networks, but the precise manner in which this occurs has thus
far been elusive. We prove that SGD minimizes an average
potential over the posterior distribution of weights along with
an entropic regularization term. This potential is however not
the original loss function in general. So SGD does perform
variational inference, but for a different loss than the one used
to compute the gradients. Even more surprisingly, SGD does
not even converge in the classical sense: we show that the most
likely trajectories of SGD for deep networks do not behave like
Brownian motion around critical points. Instead, they resemble
closed loops with deterministic components. We prove that such
“out-of-equilibrium” behavior is a consequence of highly non-
isotropic gradient noise in SGD; the covariance matrix of mini-
batch gradients for deep networks has a rank as small as 1% of
its dimension. We provide extensive empirical validation of these
claims.

This article summarizes the findings in [1]. See the longer
version for background, detailed results and proofs.

I. INTRODUCTION

Our first result is to show precisely in what sense stochastic

gradient descent (SGD) implicitly performs variational infer-

ence, as is often claimed informally in the literature. For a loss

function f (x) with weights x ∈ R
d , if ρss is the steady-state

distribution over the weights estimated by SGD,

ρss = arg min
ρ

E x∼ρ

[
Φ(x)

]
− η

2b
H(ρ);

where H(ρ) is the entropy of the distribution ρ and η and b

are the learning rate and batch-size, respectively. The potential

Φ(x), which we characterize explicitly, is related but not

necessarily equal to f (x). It is only a function of the architecture

and the dataset. This implies that SGD implicitly performs

variational inference with a uniform prior, albeit of a different

loss than the one used to compute back-propagation gradients.

We next prove that the implicit potential Φ(x) is equal to

our chosen loss f (x) if and only if the noise in mini-batch

gradients is isotropic. This condition, however, is not satisfied

for deep networks. Empirically, we find gradient noise to be

highly non-isotropic with the rank of its covariance matrix

being about 1% of its dimension. Thus, SGD on deep networks

implicitly discovers locations where ∇Φ(x) = 0, these are not

the locations where ∇ f (x) = 0. This is our second main result:

the most likely locations of SGD are not the local minima, nor

the saddle points, of the original loss. The deviation of these

critical points, which we compute explicitly scales linearly

with η/b and is typically large in practice.

When mini-batch noise is non-isotropic, SGD does not even

converge in the classical sense. We prove that, instead of

undergoing Brownian motion in the vicinity of a critical point,

trajectories have a deterministic component that causes SGD

to traverse closed loops in the weight space. We detect such

loops using a Fourier analysis of SGD trajectories. We also

show through an example that SGD with non-isotropic noise

can even converge to stable limit cycles around saddle points.

II. BACKGROUND ON CONTINUOUS-TIME SGD

Stochastic gradient descent performs the following updates

while training a network xk+1 = xk−η ∇ fb(xk) where η is

the learning rate and ∇ fb(xk) is the average gradient over a

mini-batch b,

∇ fb(x) =
1

b
∑
k∈b

∇ fk(x). (1)

We overload notation b for both the set of examples in a mini-

batch and its size. We assume that weights belong to a compact

subset Ω⊂ R
d , to ensure appropriate boundary conditions for

the evolution of steady-state densities in SGD, although all

our results hold without this assumption if the loss grows

unbounded as ‖x‖→ ∞, for instance, with weight decay as a

regularizer.

Definition 1 (Diffusion matrix D(x)). If a mini-batch is

sampled with replacement, we show in Appendix A.1 that

the variance of mini-batch gradients is var(∇ fb(x)) =
D(x)
b

where

D(x) =

(
1

N

N

∑
k=1

∇ fk(x) ∇ fk(x)�
)
−∇ f (x) ∇ f (x)� � 0. (2)

Note that D(x) is independent of the learning rate η and the

batch-size b. It only depends on the weights x, architecture and

loss defined by f (x), and the dataset. We will often discuss

two cases: isotropic diffusion when D(x) is a scalar multiple

of identity, independent of x, and non-isotropic diffusion, when

D(x) is a general function of the weights x.

We now construct a stochastic differential equation (SDE)

for the discrete-time SGD updates.

Lemma 2 (Continuous-time SGD). The continuous-time limit
of SGD is given by

dx(t) =−∇ f (x) dt +
√

2β−1D(x) dW (t); (3)
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where W (t) is Brownian motion and β is the inverse tem-
perature defined as β−1 = η

2b . The steady-state distribution
of the weights ρ(z, t) ∝ P

(
x(t) = z

)
, evolves according to the

Fokker-Planck equation [2, Ito form]:

∂ρ
∂ t

= ∇ ·
(

∇ f (x) ρ +β−1 ∇ · (D(x) ρ
))

(FP)

where the notation ∇ · v denotes the divergence ∇ · v =

∑i ∂xi vi(x) for any vector v(x) ∈R
d; the divergence operator

is applied column-wise to matrices such as D(x).

We refer to [3, Thm. 1] for the proof of the convergence

of discrete SGD to (3). Note that β−1 completely captures

the magnitude of noise in SGD that depends only upon the

learning rate η and the mini-batch size b.

Assumption 3 (Steady-state distribution exists and is
unique). We assume that the steady-state distribution of the

Fokker-Planck equation (FP) exists and is unique, this is

denoted by ρss(x) and satisfies,

0 =
∂ρss

∂ t
= ∇ ·

(
∇ f (x) ρss +β−1 ∇ · (D(x) ρss

))
. (4)

III. SGD PERFORMS VARIATIONAL INFERENCE

Let us first implicitly define a potential Φ(x) using the

steady-state distribution ρss:

Φ(x) =−β−1 logρss(x), (5)

up to a constant. The potential Φ(x) depends only on the full-

gradient and the diffusion matrix; see Appendix C for a proof.

It will be made explicit in Section V. We express ρss in terms

of the potential using a normalizing constant Z(β ) as

ρss(x) =
1

Z(β )
e−βΦ(x) (6)

which is also the steady-state solution of

dx = β−1 ∇ ·D(x) dt−D(x) ∇Φ(x) dt +
√

2β−1D(x) dW (t)
(7)

as can be verified by direct substitution in (FP).
The above observation is very useful because it suggests that,

if ∇ f (x) can be written in terms of the diffusion matrix and a

gradient term ∇Φ(x), the steady-state distribution of this SDE

is easily obtained. We exploit this observation to rewrite ∇ f (x)
in terms a term D ∇Φ that gives rise to the above steady-state,

the spatial derivative of the diffusion matrix, and the remainder:

j(x) =−∇ f (x)+D(x) ∇Φ(x)−β−1∇ ·D(x), (8)

interpreted as the part of ∇ f (x) that cannot be written as

D Φ′(x) for some Φ′. We now make an important assumption

on j(x) which has its origins in thermodynamics.

Assumption 4 (Force j(x) is conservative). We assume that

∇ · j(x) = 0. (9)

The Fokker-Planck equation (FP) typically models a physical

system which exchanges energy with an external environ-

ment [4, 5]. In our case, this physical system is the gradient

dynamics ∇ ·(∇ f ρ) while the interaction with the environment

is through the term involving temperature: β−1∇ · (∇ · (Dρ)).
The second law of thermodynamics states that the entropy of

a system can never decrease; in Appendix B we show how the

above assumption is sufficient to satisfy the second law. We

also discuss some properties of j(x) in Appendix C that are a

consequence of this. The most important is that j(x) is always

orthogonal to ∇ρss. We illustrate the effects of this assumption

in Example 19.

This leads us to the main result of this section.

Theorem 5 (SGD performs variational inference). The
functional

F(ρ) = β−1 KL
(
ρ || ρss

)
(10)

decreases monotonically along the trajectories of the Fokker-
Planck equation (FP) and converges to its minimum, which
is zero, at steady-state. Moreover, we also have an energetic-
entropic split

F(ρ) = E x∈ρ

[
Φ(x)

]
−β−1H(ρ)+ constant. (11)

Theorem 5 shows that SGD implicitly minimizes a combina-

tion of two terms: an “energetic” term, and an “entropic” term.

The first is the average potential over a distribution ρ . The

steady-state of SGD in (6) is such that it places most of its

probability mass in regions of the parameter space with small

values of Φ. The second shows that SGD has an implicit bias

towards solutions that maximize the entropy of ρ .

Note that the energetic term in (11) has potential Φ(x),
instead of f (x). This is an important fact and the crux of this

paper.

Lemma 6 (Potential equals original loss iff isotropic diffu-
sion). If the diffusion matrix D(x) is isotropic, i.e., a constant
multiple of the identity, the implicit potential is the original
loss itself

D(x) = c Id×d ⇔ Φ(x) = f (x). (12)

The definition in (8) shows that j �= 0 when D(x) is non-

isotropic. This results in a deterministic component in the SGD

dynamics which does not affect the functional F(ρ), hence

j(x) is called a “conservative force”.

Lemma 7 (Most likely trajectories of SGD are limit cycles).
The force j(x) does not decrease F(ρ) in (11) and introduces
a deterministic component in SGD given by

ẋ = j(x). (13)

The condition ∇ · j(x) = 0 in Assumption 4 implies that most
likely trajectories of SGD traverse closed trajectories in weight
space.

A. Wasserstein gradient flow

Theorem 5 applies for a general D(x) and it is equivalent to

the celebrated JKO functional [6] in optimal transportation [7,

8] if the diffusion matrix is isotropic.
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Corollary 8 (Wasserstein gradient flow for isotropic noise).
If D(x) = I, trajectories of the Fokker-Planck equation (FP)
are gradient flow in the Wasserstein metric of the functional

F(ρ) = E x∼ρ

[
f (x)

]
−β−1H(ρ). (JKO)

Observe that the energetic term contains f (x) in Corollary 8.

The proof follows from Theorem 5 and Lemma 6, see [9] for a

rigorous treatment of Wasserstein metrics. The JKO functional

above has had an enormous impact in optimal transport because

results like Theorem 5 and Corollary 8 provide a way to modify

the functional F(ρ) in an interpretable fashion. Modifying the

Fokker-Planck equation or the SGD updates directly to enforce

regularization properties on the solutions ρss is much harder.

B. Connection to Bayesian inference

Note the absence of any prior in (11). On the other hand,

the evidence lower bound [10] for the dataset Ξ is,

− log p(Ξ)≤ E x∼q
[

f (x)
]
+KL

(
q(x |Ξ) || p(x |Ξ)

)
,

≤ E x∼q
[

f (x)
]−H(q)+H(q, p);

(ELBO)

where H(q, p) is the cross-entropy of the estimated steady-

state and the variational prior. The implicit loss function of

SGD in (11) therefore corresponds to a uniform prior p(x |Ξ).
In other words, we have shown that SGD itself performs

variational optimization with a uniform prior. Note that this

prior is well-defined by our hypothesis of x ∈ Ω for some

compact Ω.

It is important to note that SGD implicitly minimizes a

potential Φ(x) instead of the original loss f (x) in ELBO. We

prove in Section V that this potential is quite different from

f (x) if the diffusion matrix D is non-isotropic, in particular,

with respect to its critical points.

Remark 9 (SGD has an information bottleneck). The

functional (11) is equivalent to the information bottleneck

principle in representation learning [11]. Minimizing this

functional, explicitly, has been shown to lead to invariant

representations [12]. Theorem 5 shows that SGD implicitly

contains this bottleneck and therefore begets these properties,

naturally.

Remark 10 (ELBO prior conflicts with SGD). Working

with ELBO in practice involves one or multiple steps of

SGD to minimize the energetic term along with an estimate

of the KL-divergence term, often using a factored Gaussian

prior [10, 13]. As Theorem 5 shows, such an approach also

enforces a uniform prior whose strength is determined by

β−1 and conflicts with the externally imposed Gaussian prior.

This conflict—which fundamentally arises from using SGD

to minimize the energetic term—has resulted in researchers

artificially modulating the strength of the KL-divergence term

using a scalar pre-factor [14].

C. Practical implications

We will show in Section V that the potential Φ(x) does not

depend on the optimization process, it is only a function of

the dataset and the architecture. The effect of two important

parameters, the learning rate η and the mini-batch size b

therefore completely determines the strength of the entropic

regularization term. If β−1 → 0, the implicit regularization of

SGD goes to zero. This implies that

β−1 =
η
2b

should not be small

is a good tenet for regularization of SGD.

Remark 11 (Learning rate should scale linearly with batch–
size to generalize well). In order to maintain the entropic

regularization, the learning rate η needs to scale linearly with

the batch-size b. This prediction, based on Theorem 5, fits

very well with empirical evidence wherein one obtains good

generalization performance only with small mini-batches in

deep networks [15], or via such linear scaling [16].

Remark 12 (Sampling with replacement is better than
without replacement). The diffusion matrix for the case

when mini-batches are sampled with replacement is very close

to (2), see Appendix A.2. However, the corresponding inverse

temperature is

β ′−1
=

η
2b

(
1− b

N

)
should not be small.

The extra factor of
(
1− b

N

)
reduces the entropic regularization

in (11), as b→ N, the inverse temperature β ′ → ∞. As a

consequence, for the same learning rate η and batch-size

b, Theorem 5 predicts that sampling with replacement has

better regularization than sampling without replacement. This

effect is particularly pronounced at large batch-sizes.

IV. EMPIRICAL CHARACTERIZATION OF SGD DYNAMICS

Section IV-A shows that the diffusion matrix D(x) for

modern deep networks is highly non-isotropic with a very low

rank. We also analyze trajectories of SGD and detect periodic

components using a frequency analysis in Section IV-B; this

validates the prediction of Lemma 7.

We consider the following three networks on the MNIST [17]

and the CIFAR-10 and CIFAR-100 datasets [18].

(i) small-lenet: a smaller version of LeNet [17] on MNIST

with batch-normalization and dropout (0.1) after both con-

volutional layers of 8 and 16 output channels, respectively.

The fully-connected layer has 128 hidden units. This

network has 13,338 weights and reaches about 0.75%

training and validation error.

(ii) small-fc: a fully-connected network with two-layers,

batch-normalization and rectified linear units that takes

7×7 down-sampled images of MNIST as input and has 64

hidden units. Experiments in Section IV-B use a smaller

version of this network with 16 hidden units and 5 output

classes (30,000 input images); this is called tiny-fc.

(iii) small-allcnn: this a smaller version of the fully-

convolutional network for CIFAR-10 and CIFAR-100

introduced by [19] with batch-normalization and 12,24

output channels in the first and second block respectively.
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It has 26,982 weights and reaches about 11% and 17%

training and validation errors, respectively.

We train the above networks with SGD with appropriate

learning rate annealing and Nesterov’s momentum set to 0.9.

We do not use any data-augmentation and pre-process data

using global contrast normalization with ZCA for CIFAR-10

and CIFAR-100.

We use networks with about 20,000 weights to keep

the eigen-decomposition of D(x) ∈ R
d×d tractable. These

networks however possess all the architectural intricacies such

as convolutions, dropout, batch-normalization etc. We evaluate

D(x) using (2) with the network in evaluation mode.

A. Highly non-isotropic D(x) for deep networks

Figs. 1 and 2 show the eigenspectrum1 of the diffusion

matrix. In all cases, it has a large fraction of almost-zero

eigenvalues with a very small rank that ranges between 0.3% -

2%. Moreover, non-zero eigenvalues are spread across a vast

range with a large variance.

(a) MNIST: small-lenet

λ (D) = (0.3 ± 2.11)×10−3

rank(D) = 1.8%

(b) MNIST: small-fc

λ (D) = (0.9 ± 18.5)×10−3

rank(D) = 0.6%

Fig. 1: Eigenspectrum of D(x) at three instants during training
(20%, 40% and 100% completion, darker is later). The eigenspectrum
in Fig. 1b for the fully-connected network has a much smaller rank
and much larger variance than the one in Fig. 1a which also performs
better on MNIST. This indicates that convolutional networks are better
conditioned than fully-connected networks in terms of D(x).

Remark 13 (Noise in SGD is largely independent of the
weights). The variance of noise in (3) is

η D(xk)

b
= 2 β−1D(xk).

We have plotted the eigenspectra of the diffusion matrix

in Fig. 1 and Fig. 2 at three different instants, 20%, 40% and

100% training completion; they are almost indistinguishable.

This implies that the variance of the mini-batch gradients

in deep networks can be considered a constant, highly non-

isotropic matrix.

Remark 14 (More non-isotropic diffusion if data is diverse).
The eigenspectra in Fig. 2 for CIFAR-10 and CIFAR-100 have

much larger eigenvalues and standard-deviation than those

in Fig. 1, this is expected because the images in the CIFAR

1thresholded at λmax×d×machine-precision. This formula is widely used,
for instance, in numpy.

datasets have more variety than those in MNIST. Similarly,

while CIFAR-100 has qualitatively similar images as CIFAR-

10, it has 10× more classes and as a result, it is a much harder

dataset. This correlates well with the fact that both the mean

and standard-deviation of the eigenvalues in Fig. 2b are much

higher than those in Fig. 2a. Input augmentation increases the

diversity of mini-batch gradients. This is seen in Fig. 2c where

the standard-deviation of the eigenvalues is much higher as

compared to Fig. 2a.

Remark 15 (Inverse temperature scales with the mean of
the eigenspectrum). Remark 14 shows that the mean of the

eigenspectrum is large if the dataset is diverse. Based on this,

we propose that the inverse temperature β should scale linearly

with the mean of the eigenvalues of D:

(η
b

) (1

d

d

∑
k=1

λ (D)

)
= constant; (14)

where d is the number of weights. This keeps the noise in

SGD constant in magnitude for different values of the learning

rate η , mini-batch size b, architectures, and datasets. Note

that other hyper-parameters which affect stochasticity such as

dropout probability are implicit inside D.

Remark 16 (Variance of the eigenspectrum informs archi-
tecture search). Compare the eigenspectra in Figs. 1a and 1b

with those in Figs. 2a and 2c. The former pair shows that

small-lenet which is a much better network than small-fc

also has a much larger rank, i.e., the number of non-zero

eigenvalues (D(x) is symmetric). The second pair shows that

for the same dataset, data-augmentation creates a larger variance

in the eigenspectrum. This suggests that both the quantities,

viz., rank of the diffusion matrix and the variance of the

eigenspectrum, inform the performance of a given architecture

on the dataset. Note that as discussed in Remark 15, the mean

of the eigenvalues can be controlled using the learning rate η
and the batch-size b.

This observation is useful for automated architecture search

where we can use the quantity

rank(D)

d
+var(λ (D))

to estimate the efficacy of a given architecture, possibly,

without even training, since D does not depend on the weights

much. This task currently requires enormous amounts of

computational power [20, 21, 22].

B. Analysis of long-term trajectories
We train a smaller version of small-fc on 7×7 down-sampled

MNIST images for 105 epochs and store snapshots of the

weights after each epoch to get a long trajectory in the weight

space. We discard the first 103 epochs of training (“burnin”)

to ensure that SGD has reached the steady-state. The learning

rate is fixed to 10−3 after this, up to 105 epochs.

Remark 17 (Low-frequency periodic components in SGD
trajectories). Iterates of SGD, after it reaches the neigh-
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(a) CIFAR-10

λ (D) = 0.27 ± 0.84

rank(D) = 0.34%

(b) CIFAR-100

λ (D) = 0.98 ± 2.16

rank(D) = 0.47%

(c) CIFAR-10: data augmentation

λ (D) = 0.43 ± 1.32

rank(D) = 0.32%

Fig. 2: Eigenspectrum of D(x) at three instants during training (20%, 40% and 100% completion, darker is later). The eigenvalues are much
larger in magnitude here than those of MNIST in Fig. 1, this suggests a larger gradient diversity for CIFAR-10 and CIFAR-100. The diffusion
matrix for CIFAR-100 in Fig. 2b has larger eigenvalues and is more non-isotropic and has a much larger rank than that of Fig. 2a; this
suggests that gradient diversity increases with the number of classes. As Fig. 2a and Fig. 2c show, augmenting input data increases both the
mean and the variance of the eigenvalues while keeping the rank almost constant.

(a) FFT of xi
k+1− xi

k (b) Auto-correlation (AC) of xi
k (c) Normalized gradient

‖∇ f (xk)‖√
d

Fig. 3: Fig. 3a shows the Fast Fourier Transform (FFT) of xi
k+1− xi

k where k is the number of epochs and i denotes the index of the weight.

Fig. 3b shows the auto-correlation of xi
k with 99% confidence bands denoted by the dotted red lines. Both Figs. 3a and 3b show the mean

and one standard-deviation over the weight index i; the standard deviation is very small which indicates that all the weights have a very
similar frequency spectrum. Figs. 3a and 3b should be compared with the FFT of white noise which should be flat and the auto-correlation of
Brownian motion which quickly decays to zero, respectively. Figs. 3 and 3a therefore show that trajectories of SGD are not simply Brownian
motion. Moreover the gradient at these locations is quite large (Fig. 3c).

borhood of a critical point ‖∇ f (xk)‖ ≤ ε , are expected to

perform Brownian motion with variance var(∇ fb(x)), the FFT

in Fig. 3a would be flat if this were so. Instead, we see low-

frequency modes in the trajectory that are indicators of a

periodic dynamics of the force j(x). These modes are not

sharp peaks in the FFT because j(x) can be a non-linear

function of the weights thereby causing the modes to spread

into all dimensions of x. The FFT is dominated by jittery

high-frequency modes on the right with a slight increasing

trend; this suggests the presence of colored noise in SGD at

high-frequencies.

The auto-correlation (AC) in Fig. 3b should be compared

with the AC for Brownian motion which decays to zero very

quickly and stays within the red confidence bands (99%). Our

iterates are significantly correlated with each other even at very

large lags. This further indicates that trajectories of SGD do

not perform Brownian motion.

Remark 18 (Gradient magnitude in deep networks is

always large). Fig. 3c shows that the full-gradient computed

over the entire dataset (without burnin) does not decrease much

with respect to the number of epochs. While it is expected to

have a non-zero gradient norm because SGD only converges

to a neighborhood of a critical point for non-zero learning

rates, the magnitude of this gradient norm is quite large. This

magnitude drops only by about a factor of 3 over the next 105

epochs. The presence of a non-zero j(x) also explains this, it

causes SGD to be away from critical points, this phenomenon

is made precise in Theorem 22. Let us note that a similar plot

is also seen in [23] for the per-layer gradient magnitude.

V. SGD FOR DEEP NETWORKS IS OUT-OF-EQUILIBRIUM

This section now gives an explicit formula for the potential

Φ(x). We also discuss implications of this for generalization

in Section V-C.

The fundamental difficulty in obtaining an explicit expression

for Φ is that even if the diffusion matrix D(x) is full-rank, there
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need not exist a function Φ(x) such that ∇Φ(x)=D−1(x) ∇ f (x)
at all x ∈Ω. We therefore split the analysis into two cases:

(i) a local analysis near any critical point ∇ f (x) = 0 where

we linearize ∇ f (x) = Fx and ∇Φ(x) = Ux to compute

U = G−1 F for some G, and

(ii) the general case where ∇Φ(x) cannot be written as a

local rotation and scaling of ∇ f (x).

Let us introduce these cases with an example from [24].

Example 19 (Double-well potential with limit cycles). De-

fine

Φ(x) =
(x2

1−1)2

4
+

x2
2

2
.

Instead of constructing a diffusion matrix D(x), we will directly

construct different gradients ∇ f (x) that lead to the same

potential Φ; these are equivalent but the later is much easier.

The dynamics is given by dx =−∇ f (x) dt+
√

2 dW (t), where

∇ f (x) = − j(x)+∇Φ(x). We pick j = λeΦ Jss(x) for some

parameter λ > 0 where

Jss(x) = e−
(x2

1+x2
2)

2

4 (−x2, x1).

Note that this satisfies (6) and does not change ρss = e−Φ.

Fig. 4 shows the gradient field f (x) along with a discussion.

A. Linearization around a critical point

Without loss of generality, let x = 0 be a critical point of

f (x). This critical point can be a local minimum, maximum,

or even a saddle point. We linearize the gradient around the

origin and define a fixed matrix F ∈ R
d×d (the Hessian) to be

∇ f (x) = Fx. Let D = D(0) be the constant diffusion matrix

matrix. The dynamics in (3) can now be written as

dx =−Fx dt +
√

2β−1 D dW (t). (15)

Lemma 20 (Linearization). The matrix F in (15) can be
uniquely decomposed into

F = (D+Q) U ; (16)

D and Q are the symmetric and anti-symmetric parts of a
matrix G with GF�−FG� = 0, to get Φ(x) = 1

2 x�Ux.

The above lemma is a classical result if the critical point is a

local minimum, i.e., if the loss is locally convex near x= 0; this

case has also been explored in machine learning before [14].

We refer to [25] for the proof that linearizes around any critical

point.

Remark 21 (Rotation of gradients). We see from Lemma 20

that, near a critical point,

∇ f = (D+Q) ∇Φ−β−1∇ ·D−β−1∇ ·Q (17)

up to the first order. This suggests that the effect of j(x) is to

rotate the gradient field and move the critical points, also seen

in Fig. 4b. Note that ∇ ·D = 0 and ∇ ·Q = 0 in the linearized

analysis.

B. General case
We next give the general expression for the deviation of the

critical points ∇Φ from those of the original loss ∇ f .
A-type stochastic integration: A Fokker-Planck equation

is a deterministic partial differential equation (PDE) and every

steady-state distribution, ρss ∝ e−βΦ in this case, has a unique

such PDE that achieves it. However, the same PDE can be

tied to different SDEs depending on the stochastic integration

scheme, e.g., Ito, Stratonovich [2, 26], Hanggi [27], α-type

etc. An “A-type” interpretation is one such scheme [28, 29].

It is widely used in non-equilibrium studies in physics and

biology [30, 31] because it allows one to compute the steady-

state distribution easily; its implications are supported by other

mathematical analyses such as [32, 5].
The main result of the section now follows. It exploits the

A-type interpretation to compute the difference between the

most likely locations of SGD which are given by the critical

points of the potential Φ(x) and those of the original loss f (x).

Theorem 22 (Most likely locations are not the critical
points of the loss). The Ito SDE

dx =−∇ f (x) dt +
√

2β−1D(x) dW (t)

is equivalent to the A-type SDE [28, 29]

dx =−
(

D(x)+Q(x)
)

∇Φ(x) dt +
√

2β−1D(x) dW (t) (18)

with the same steady-state distribution ρss ∝ e−βΦ(x) and
Fokker-Planck equation (FP) if

∇ f (x) =
(

D(x)+Q(x)
)

∇Φ(x)−β−1∇ ·
(

D(x)+Q(x)
)
.

(19)

The anti-symmetric matrix Q(x) and the potential Φ(x) can
be explicitly computed in terms of the gradient ∇ f (x) and the
diffusion matrix D(x). The potential Φ(x) does not depend on
the inverse temperature β .

The proof exploits the fact that the the Ito SDE (3) and the A-

type SDE (18) should have the same Fokker-Planck equations

because they have the same steady-state distributions.

Remark 23 (SGD is far away from critical points). The

time spent by a Markov chain at a state x is proportional

to its steady-state distribution ρss(x). While it is easily seen

that SGD does not converge in the Cauchy sense due to the

stochasticity, it is very surprising that it may spend a significant

amount of time away from the critical points of the original

loss. If D(x)+Q(x) has a large divergence, the set of states

with ∇Φ(x) = 0 might be drastically different than those with

∇ f (x) = 0. This is also seen in example Fig. 4c; in fact, SGD

may even converge around a saddle point.

This also closes the logical loop we began in Section III

where we assumed the existence of ρss and defined the potential

Φ using it. Lemma 20 and Theorem 22 show that both can be

defined uniquely in terms of the original quantities, i.e., the

gradient term ∇ f (x) and the diffusion matrix D(x). There is

no ambiguity as to whether the potential Φ(x) results in the
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(a) λ = 0 (b) λ = 0.5 (c) λ = 1.5

Fig. 4: Gradient field for the dynamics in Example 19: line-width is proportional to the magnitude of the gradient ‖∇ f (x)‖, red dots denote
the most likely locations of the steady-state e−Φ while the potential Φ is plotted as a contour map. The critical points of f (x) and Φ(x) are
the same in Fig. 4a, namely (±1,0), because the force j(x) = 0. For λ = 0.5 in Fig. 4b, locations where ∇ f (x) = 0 have shifted slightly as
predicted by Theorem 22. The force field also has a distinctive rotation component, see Remark 21. In Fig. 4c with a large ‖ j(x)‖, SGD
converges to limit cycles around the saddle point at the origin. This is highly surprising and demonstrates that the solutions obtained by SGD
may be very different from local minima.

steady-state ρss(x) or vice-versa.

Remark 24 (Consistent with the linear case). Theorem 22

presents a picture that is completely consistent with Lemma 20.

If j(x) = 0 and Q(x) = 0, or if Q is a constant like the linear

case in Lemma 20, the divergence of Q(x) in (19) is zero.

Remark 25 (Out-of-equilibrium effect can be large even
if D is constant). The presence of a Q(x) with non-zero

divergence is the consequence of a non-isotropic D(x) and it

persists even if D is constant and independent of weights

x. So long as D is not isotropic, as we discussed in the

beginning of Section V, there need not exist a function Φ(x)
such that ∇Φ(x) = D−1 ∇ f (x) at all x. This is also seen in

our experiments, the diffusion matrix is almost constant with

respect to weights for deep networks, but consequences of

out-of-equilibrium behavior are still seen in Section IV-B.

Remark 26 (Out-of-equilibrium effect increases with β−1).
The effect predicted by (19) becomes more pronounced if

β−1 = η
2b is large. In other words, small batch-sizes or high

learning rates cause SGD to be drastically out-of-equilibrium.

Theorem 5 also shows that as β−1 → 0, the implicit entropic

regularization in SGD vanishes. Observe that these are exactly

the conditions under which we typically obtain good general-

ization performance for deep networks [15, 16]. This suggests

that non-equilibrium behavior in SGD is crucial to obtain good

generalization performance, especially for high-dimensional

models such as deep networks where such effects are expected

to be more pronounced.

C. Generalization

It was found that solutions of discrete learning problems that

generalize well belong to dense clusters in the weight space [33,

34]. Such dense clusters are exponentially fewer compared to

isolated solutions. To exploit these observations, the authors

proposed a loss called “local entropy” that is out-of-equilibrium

by construction and can find these well-generalizable solutions

easily. This idea has also been successful in deep learning

where [35] modified SGD to seek solutions in “wide minima”

with low curvature to obtain improvements in generalization

performance as well as convergence rate [36].

Local entropy is a smoothed version of the original loss

given by

fγ(x) =− log
(

Gγ ∗ e− f (x)
)
,

where Gγ is a Gaussian kernel of variance γ . Even with an

isotropic diffusion matrix, the steady-state distribution with

fγ(x) as the loss function is ρss
γ (x) ∝ e−β fγ (x). For large values

of γ , the new loss makes the original local minima exponentially

less likely. In other words, local entropy does not rely on non-

isotropic gradient noise to obtain out-of-equilibrium behavior,

it gets it explicitly, by construction. This is also seen in Fig. 4c:

if SGD is drastically out-of-equilibrium, it converges around

the “wide” saddle point region at the origin which has a small

local entropy.

Actively constructing out-of-equilibrium behavior leads to

good generalization in practice. Our evidence that SGD on

deep networks itself possesses out-of-equilibrium behavior then

indicates that SGD for deep networks generalizes well because

of such behavior.

VI. RELATED WORK

SGD, variational inference and implicit regularization
The idea that SGD is related to variational inference has been

seen in machine learning before [37, 14] under assumptions

such as quadratic steady-states; for instance, see [38] for

methods to approximate steady-states using SGD. Our results

here are very different, we would instead like to understand

properties of SGD itself. Indeed, in full generality, SGD

performs variational inference using a new potential Φ that it

implicitly constructs given an architecture and a dataset.

It is widely believed that SGD is an implicit regularizer,

see [39, 40, 23] among others. This belief stems from its

remarkable empirical performance. Our results show that such

intuition is very well-placed. Thanks to the special architecture

of deep networks where gradient noise is highly non-isotropic,
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SGD helps itself to a potential Φ with properties that lead to

both generalization and acceleration.

SGD and noise: Noise is often added in SGD to improve

its behavior around saddle points for non-convex losses,

see [41, 42, 43]. It is also quite indispensable for training deep

networks [44, 45, 46, 47, 12]. There is however a disconnect

between these two directions due to the fact that while adding

external gradient noise helps in theory, it works poorly in

practice [48, 49]. Instead, “noise tied to the architecture” works

better, e.g., dropout, or small mini-batches. Our results close

this gap and show that SGD crucially leverages the highly

degenerate noise induced by the architecture.

Gradient diversity [50] construct a scalar measure of the

gradient diversity given by ∑k‖∇ fk(x)‖/‖∇ f (x)‖, and analyze

its effect on the maximum allowed batch-size in the context

of distributed optimization.

Markov Chain Monte Carlo MCMC methods that sample

from a negative log-likelihood Φ(x) have employed the idea

of designing a force j = ∇Φ−∇ f to accelerate convergence,

see [51] for a thorough survey, or [52, 53] for a rigorous

treatment. We instead compute the potential Φ given ∇ f and

D, which necessitates the use of techniques from physics. In

fact, our results show that since j �= 0 for deep networks due

to non-isotropic gradient noise, very simple algorithms such

as SGLD by [54] also benefit from the acceleration that their

sophisticated counterparts aim for [55, 56].

VII. DISCUSSION

The continuous-time point-of-view used in this paper gives

access to general principles that govern SGD, such analyses are

increasingly becoming popular [57, 58]. However, in practice,

deep networks are trained for only a few epochs with discrete-

time updates. Closing this gap is an important future direction.

A promising avenue towards this is that for typical conditions

in practice such as small mini-batches or large learning rates,

SGD converges to the steady-state distribution quickly [59].
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APPENDIX

A. Diffusion matrix D(x)

In this section we denote gk := ∇ fk(x) and g := ∇ f (x) =
1
N ∑N

k=1 gk. Although we drop the dependence of gk on x to

keep the notation clear, we emphasize that the diffusion matrix

D depends on the weights x.

1) With replacement: Let i1, . . . , ib be b iid random variables

in {1,2, . . . ,N}. We would like to compute

var

(
1

b

b

∑
j=1

gi j

)

= Ei1,...,ib

⎧⎨
⎩
(

1

b

b

∑
j=1

gi j −g

) (
1

b

b

∑
j=1

gi j −g

)�⎫⎬
⎭ .

Note that we have that for any j �= k, the random vectors gi j

and gik are independent. We therefore have

covar(gi j ,gik) = 0 = Ei j , ik

{
(gi j −g)(gik −g)�

}
We use this to obtain

var

(
1

b

b

∑
j=1

gi j

)
=

1

b2

b

∑
j=1

var(gi j)

=
1

Nb

N

∑
k=1

(
(gk−g) (gk−g)�

)

=
1

b

(
∑N

k=1 gk g�k
N

−g g�
)
.

We will set

D(x) =
1

N

(
N

∑
k=1

gk g�k

)
−g g�. (A1)

and assimilate the factor of b−1 in the inverse temperature β .

2) Without replacement: Let us define an indicator random

variable 1i∈b that denotes if an example i was sampled in batch

b. We can show that

var(1i∈b) =
b

N
− b2

N2
,

and for i �= j,

covar(1i∈b,1 j∈b) =− b(N− b)

N2(N−1)
.
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Similar to [60], we can now compute

var

(
1

b

N

∑
k=1

gk 1k∈b

)

=
1

b2
var

(
N

∑
k=1

gk 1k∈b

)

=
1

b2

N

∑
k=1

gk g�k var(1k∈b)+
1

b2

N

∑
i, j=1, i �= j

gi g�j covar(1i∈b,1 j∈b)

=
1

b

(
1− b

N

) [
∑N

k=1 gk g�k
N−1

−
(

1− 1

N−1

)
g g�

]
.

We will again set

D(x) =
1

N−1

(
N

∑
k=1

gk g�k

)
−
(

1− 1

N−1

)
g g� (A2)

and assimilate the factor of b−1
(
1− b

N

)
that depends on the

batch-size in the inverse temperature β .

B. Discussion on Assumption 4

The definition of the conservative force j(x) in (8) and

the free energy (11) allows us to rewrite the Fokker-Planck

equation (FP) as

ρt = ∇ ·
(
− j ρ +ρ D ∇

(
δF
δρ

))
. (A3)

Let F(ρ) be as defined in (11). In non-equilibrium thermody-

namics, it is assumed that the local entropy production is a

product of the force −∇
(

δF
δρ

)
from (A3) and the probability

current −J(x, t) from (FP). This assumption in this form was

first introduced by [61] based on the works of [62, 63]. See [64,

Sec. 4.5] for a mathematical treatment and [65] for further

discussion. The rate of entropy (Si) increase is given by

β−1 dSi

dt
=
∫

x∈Ω
∇
(

δF
δρ

)
J(x, t) dx.

This can now be written using (A3) again as

β−1 dSi

dt
=
∫

ρ D :

(
∇

δF
δρ

) (
∇

δF
δρ

)�
+
∫

jρ
(

∇
δF
δρ

)
dx.

The first term in the above expression is non-negative, in order

to ensure that dSi
dt ≥ 0, we require

0 =
∫

jρ
(

∇
δF
δρ

)
dx

=
∫

∇ · ( jρ)
(

δF
δρ

)
dx;

where the second equality again follows by integration by

parts. It can be shown [64, Sec. 4.5.5] that the condition

in Assumption 4, viz., ∇ · j(x) = 0, is sufficient to make the

above integral vanish and therefore for the entropy generation

to be non-negative.

C. Some properties of the force j

The Fokker-Planck equation (FP) can be written in terms of

the probability current as

0 = ρss
t = ∇ · (− j ρss +D ∇Φ ρss−β−1(∇ ·D) ρss +β−1∇ · (Dρss)

)
= ∇ · Jss.

Since we have ρss ∝ e−βΦ(x), from the observation (7), we also

have that

0 = ρss
t = ∇ · (D ∇Φ ρss +β−1D ∇ρss

)
,

and consequently,

0 = ∇ · ( j ρss)

⇒ j(x) =
Jss

ρss
.

(A4)

In other words, the conservative force is non-zero only if

detailed balance is broken, i.e., Jss �= 0. We also have

0 = ∇ · ( j ρss)

= ρss (∇ · j − j ·∇Φ) ,

which shows using Assumption 4 and ρss(x)> 0 for all x ∈Ω
that j(x) is always orthogonal to the gradient of the potential

0 = j(x) ·∇Φ(x)

= j(x) ·∇ρss.
(A5)

Using the definition of j(x) in (8), we have detailed balance

when

∇ f (x) = D(x) ∇Φ(x)−β−1∇ ·D(x). (A6)
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