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Abstract

Neurons in sensory areas encode/represent stimuli. Surprisingly, recent studies have sug-

gested that, even during persistent performance, these representations are not stable and

change over the course of days and weeks. We examine stimulus representations from fluo-

rescence recordings across hundreds of neurons in the visual cortex using in vivo two-pho-

ton calcium imaging and we corroborate previous studies finding that such representations

change as experimental trials are repeated across days. This phenomenon has been

termed “representational drift”. In this study we geometrically characterize the properties of

representational drift in the primary visual cortex of mice in two open datasets from the Allen

Institute and propose a potential mechanism behind such drift. We observe representational

drift both for passively presented stimuli, as well as for stimuli which are behaviorally rele-

vant. Across experiments, the drift differs from in-session variance and most often occurs

along directions that have the most in-class variance, leading to a significant turnover in the

neurons used for a given representation. Interestingly, despite this significant change due to

drift, linear classifiers trained to distinguish neuronal representations show little to no degra-

dation in performance across days. The features we observe in the neural data are similar

to properties of artificial neural networks where representations are updated by continual

learning in the presence of dropout, i.e. a random masking of nodes/weights, but not other

types of noise. Therefore, we conclude that a potential reason for the representational drift

in biological networks is driven by an underlying dropout-like noise while continuously learn-

ing and that such a mechanism may be computational advantageous for the brain in the

same way it is for artificial neural networks, e.g. preventing overfitting.

Author summary

Recently, it has been shown that the neuronal representations of sensory information in

the brain can vary, even during seemingly stable performance. Why such “representa-

tional drift’’ occurs in the brain is currently unknown. In this work, using experimental

data that images thousands of neurons across many mice, we precisely quantify how cer-

tain representations change over time with geometric tools used to understand high-

dimensional data. Across two datasets where mice are either passively viewing a movie or

actively performing a task, we find the representational changes have strikingly similar
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geometric properties. We then induce representational changes in an artificial neural net-

work by injecting it with several distinct types of noise while it continues to adjust its com-

ponents to maintain stable performance. Comparing the properties of its representational

drift to what we observed in experiment, only a specific category of noise, known as

“dropout’’, matches the geometry we observed in experiments. This hints at a potential

biological mechanism underlying representational drift: a random suppression of certain

neuronal components and a subsequent compensating change in other components.

Additionally, dropout is well-known for helping artificial neural networks learn better,

potentially hinting at a computational advantage to drift in the brain.

1 Introduction

The biological structure of the brain is constantly in flux. This occurs at both the molecular

and cellular level, the latter through mechanisms such as synaptic turnover [1, 2]. For example,

a subset of the boutons and side branches of axons in the primary visual cortex of adult

Macaque monkeys were observed to appear/disappear on the timescale of several days [3]

(though a subset of synaptic spines can be stable over much longer time scales [1]). Despite

this significant turnover in the components, during adult life a healthy brain is able to main-

tain persistent performance and memory recall over timescales significantly greater than that

of the biological changes. This has naturally led to the puzzle of how, once a task is learned or a

long-term memory is stored, if the neuronal recording indeed represents that information [4,

5], how said representation changes over time without disrupting its associated function.

Many recent studies have confirmed that, under persistent performance, neuronal encodings

undergo “representational drift”, i.e. a gradual change in the representation of certain informa-

tion [6–12] (though see Refs. [13–15] for counterexamples).

This raises several questions about the nature of representational drift, that we will often

call just “drift” throughout this work. To begin with, it is unclear how these representations

change over time without a deterioration in performance. One potential mechanism that

would be robust to such changes is that the brain encodes redundant representations. Redun-

dancy that is robust to differences in neural activity has been observed in central pattern gener-

ating circuits of the brain [16]. Additionally, whether or not the brain’s biological turnover is

the cause of drift is also unknown. It has been suggested that there are computational advan-

tages to drifting, and thus it may be something the brain has implemented as a tool for learning

or memory [17, 18]. Finally, although studies have observed representational drift on time

scales of minutes [11] to weeks [6–10, 12], the details of how drift changes as a function of

time is also not clear.

It is our view that, in order to answer these questions regarding representational drift, it is

important that we quantify drift’s behavior by investigating its geometric characteristics. Such

an analysis would allow us, for example, to construct more precise models of how drift occurs

and better understand how it might change for different representations. More specifically, we

would like to quantitatively define the neuronal representation of a given stimulus, understand

how such a stimulus changes over time, and if such changes are at all dependent upon the

geometry of the representations. If representations are characterized using vectors and sub-

spaces of neural state space, the tools of geometry naturally arise in comparing such quantities

across time and neurons. This leads us to perhaps more tractable queries such as how the mag-

nitude of drift relates to the magnitude of the representation vector and whether or not there is

any preferential direction to representational drift in neural state space.
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As mentioned above, an additional benefit of further understanding the geometry behind

drift is that it allows us to construct better models of how it occurs. With a further understand-

ing of the nuances of drift’s behavior, we can induce drift in models of the brain and look for

what modifications need to occur in these systems to have drift with similar geometric charac-

teristics to what we observe experimentally. For example, additional noise can be added to arti-

ficial neural networks (ANNs) in order to cause their feature spaces to drift. Exactly what type

of noise is needed to match experimental observations can give us hints toward understanding

drift’s underlying mechanisms and perhaps its computational benefits.

Thus the goal of this work is to characterize the geometry of representational drift by study-

ing how the neural state space representations change as a function of time. To this end, we

study the feature space representations from in vivo 2-photon calcium imaging on the primary

visual cortex from two experiments conducted on mice. Both datasets come from experiments

that are conducted over several days, allowing us to understand how their feature space repre-

sentations change. We find that the geometry of drift in the visual cortex is far from completely

random, allowing us to compare these characteristics to drift in ANNs. We find drift in the

two experimental paradigms resembles dropout-like noise in ANNs, i.e. a random masking of

nodes/weights, tying these computational models back to the biological turnover observed in

the brain.

Contributions. The primary contributions and findings of this work are as follows:

• To better understand how neuronal representations of mice change over time, we quantify

said representations during both a passive viewing and an active behavioral visual task over a

time-scale of days.

• When two neuronal measurements of excitatory cells in V1 are separated by timescales on

the order of the days, we find that the change of neuronal activity due to drift is strongly

biased toward directions in neural state space that are the most active (as measured by the

variance/mean of dF/F values).

• Representational drift occurs such that, on average, the most active neurons become less
active at later time steps, indicating a bias toward representation turnover.

• We explore the presence of drift in the feature space of convolutional neural networks

induced by several types of noise injected into the network and find the drift due to dropout,

in particular node dropout [19], strongly resembles the geometrical properties of drift

observed in experiments.

• We discuss how the resemblance of the experimental drift to the findings in artificial neural

networks under dropout hints at both the mechanism behind drift and why drifting may be

computationally advantageous, e.g. in helping to prevent overfitting.

Related work. Drift has been observed in the hippocampus [6, 7, 20, 21] and more recently

in the posterior parietal [8, 22], olfactory [9], and visual [10–12] cortices of mice (see [18, 23,

24] for reviews). The timescale of many drift studies ranges from minutes to weeks. Notably,

other studies have found stable representations over the course of months in the motor cortex

and dorsolateral striatum of mice [13] as well as the forebrain of the adult zebra finch [14].

Despite a drift in the individual neurons, several studies have observed consistent population

behavior across all days [6, 8, 9]. Representational drift is often thought of as a passive, noise-

driven process. However, others have suggested it may be attributed to other ongoing pro-

cesses in a subject’s life including learning in which the influx of additional information

requires a re-coding of previously learned representations [8, 24]. Studies have also observed

differences in representational drift between natural and artificial stimuli, specifically it was
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observed that there is significantly larger drift in natural movies than drifting gratings [10].

Finally, a recent study has found significant behavioral contributions to drift that occurs over

the course of an imaging session, i.e. at the timescale of hours [25].

Representational drift has also been studied at the computational/theoretical levels [26–29].

In particular, Ref. [29] studies representational drift in Hebbian/anti-Hebbian network models

where representations continually change due to noise injected into the weight updates. The

authors find that the receptive fields learned by neurons drift in a coordinated manner and

also that the drift is smallest for neurons whose receptive field response has the largest

amplitude. Furthermore, they find that drift occurs in all dimensions of neural state space, sug-

gesting that there is no subspace along which the network readouts might remain stable. Addi-

tionally, networks of leaky integrate-and-fire neurons with spontaneous synaptic turnover

have observed persistent memory representations in the presence of drift [27]. The benefits of

a geometrical analysis of neuronal representations has been the subject of a few recent works

[30, 31].

Outline. We begin our geometric characterization of representational drift in experiments

by discussing results from the Allen Brain Observatory [32], followed by the Allen Visual

Behavior Two Photon dataset [33]. These datasets come from experiments where mice pas-

sively and actively view stimuli, respectively. Hence, throughout this work, these datasets will

be referred to as the “passive data” and “behavioral data”, respectively. We then follow this up

by analyzing drift in artificial neural networks and show, under certain noise settings, its char-

acteristics match the aforementioned experimental data. Finally, we discuss the implications of

the similarity of representational drift in biological and artificial neural networks and how this

relates to persistent performance and may be computationally advantageous. Additional

details of our results and precise definitions of all geometric quantities are provided in the

Methods section.

2 Results

2.1 Drift in passive data

In this section, we investigate the details of representational drift in the primary visual cortex

over the time-scale of days from the Allen Brain Observatory dataset. We note that drift in this

dataset was analyzed previously in Ref. [11] and we corroborate several of their results here for

completeness.

Experimental setup and neuronal response. Over three sessions, mice are passively

shown a battery of visual stimuli, consisting of gratings, sparse noise, images, and movies (Fig

1a). The neuronal responses in the visual cortex to said stimuli are recorded using in vivo

2-photon calcium imaging. We focus on the neuronal responses of one particular stimuli,

“Natural Movie One”, consisting of a 30-second natural image scene that is repeated 10 times

in each of the three sessions. We analyze data from mice belonging to Cre lines with an excit-

atory target cell class that are imaged in the primary visual cortex. Crucially, a subset of the

neurons imaged across the three sessions can be identified, allowing us to study how the neu-

ronal response of said neurons changes across time. The time difference between the three ses-

sions differs for each mouse and is at least one day.

To quantify the neuronal response, we divide Natural Movie One into 30 non-overlapping

1-second blocks. We define the n-dimensional response vector characterising the neuronal

response to a given block as the time-average dF/F value over the 1-second block for each of

the n neurons (Fig 1b, see Methods for additional details) [11]. Additionally, we define the

response vector to only contain neurons that are identified in all three sessions. This will result

in a conservative estimate of the amount of drift, as a cell which does not have any activity in
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an entire session can be missed by the segmentation. Throughout this work, we define the col-

lection of response vectors corresponding to the same stimulus in a given session as the stimu-
lus group, or just group for brevity. Thus, for the passive data, the response vectors of all 10

repetitions of a given time-block in a given session are members of the same stimulus group.

Between sessions, we will see the response vectors collectively drift (Fig 1c). To understand

the geometry behind representational drift, we first quantify the feature space representations

of the various stimulus groups in each session. The following quantification will be used on the

passive data and throughout the rest of this work.

Feature space geometry. An important quantity for each stimulus group will be its mean
response vector, defined as the mean over all m members of a stimulus group in a given session

(Fig 1d). Since there are 10 repetitions of the movie in each session, m = 10 for each stimulus

group of the passive data. To characterize the distribution around this mean, for each stimulus

group in each session, we perform principal component analysis (PCA) over all m response

vectors. This gives us the PCi directions, each of which we can associate with a ratio of variance
explained, 0� vi� 1, for i = 1, . . ., N and N�min(m, n) the number of PCs for the particular

stimulus group and session. The PC directions are ordered such that vi� vj for i< j. We define

the dimension of the feature space representation, D, by calculating the “participation ratio” of

the resulting PCA variance explained vector,

D �

�PN
i¼1

vi

�2

PN
i¼1

v2
i

; ð1Þ

Fig 1. Setup of passive data and visualization of feature space representations. (a) Summary of passive data experiment. (b) Summary of response

vector extraction across three imaging sessions. [c-f] Visualization of feature space representations. (c) Drift of response vectors belonging to two separate

stimulus groups between two sessions. For example, stimulus group 1 might corresponding to the response vectors of the 0 to 1 second time-block of

Natural Movie One and stimulus group 2 the 1 to 2 second time-block. (d) For each stimulus group in each session, we perform PCA to characterize the

group’s variation. An important quantity is also the group’s mean response vector. (e) Moving to the respective stimulus group’s PC basis, there is a

strong correlation between the variance and mean value along a given direction, familiar from Poisson-like distributions. (f) The aforementioned feature

space characterization is used to quantify drift. We define the drift vector, d, of a given stimulus group as pointing from the mean response vector of an

earlier session (e.g. Session 1) to the mean response vector of a later session (e.g. Session 2). Δt is the time difference between the sessions.

https://doi.org/10.1371/journal.pcbi.1010716.g001
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where 1� D� N. D thus quantifies roughly how many PC dimensions are needed to contain

the majority of the stimulus group variance (Fig 1d). We define the variational space of a given

stimulus group as the dDe-dimensional subspace spanned by the first dDe PC vectors (where

d�e is the ceiling function). Lastly, to eliminate the directional ambiguity of PC directions, we

define a given PC direction such that the stimulus group has a positive mean along said

direction.

Across all datasets analyzed in this work, we find the mean along a given PC direction is

strongly correlated with its percentage of variance explained (Fig 1e). That is, directions which

vary a lot tend to have larger mean values, familiar from Poisson-like distributions and consis-

tent with previous results [34]. Below we will show how the above feature space representa-

tions allows us to quantify certain characteristics of drift between sessions (Fig 1f).

As mentioned above, each stimulus group from a given session of the passive data consists

of 10 members, corresponding to the response vectors of a given 1-second block from 10

movie repeats (Fig 2a). Across stimulus groups, sessions, and mice (nmice = 73), we find D to

be small relative to the size of the neural state space D/n = 0.05 ± 0.04, but the variational space

captures 91 ± 4% of the group’s variation (mean ± s.e.) [35, 36]. Note that the fact that the vari-

ational space is relatively small and yet captures a large variation in the data is not too surpris-

ing given m = 10, i.e. there are only 10 members of each stimulus group, and hence D could be

at most 9. We find D = 2.7 ± 1.1 (mean ± s.e.). Below we will show these numbers are consis-

tent with larger stimulus groups. We also find the mean along a given PC direction is strongly

correlated with its percentage of variance explained (S1 Fig).

Fig 2. Passive data: Feature space, drift, and drift’s dependence on time. [a-d] Data from an exemplar mouse. (a) Response vectors (dots), mean

response vectors (X’s), and first two PC dimensions (lines, scaled by variance explained), for two stimulus groups in a given session. Plotted in stimulus

group 1’s PC space. (b) Same as previous subplot, but response vectors of stimulus group 1 across two different sessions, plotted in session 1’s PC space.

(c) Pairwise angle between the response vectors of the 30 1-second time-blocks across the first five movie repeats of a single session. (d) Pairwise angle

between mean response vectors across the three different sessions, same color scale as (c) (Methods). [e-h] Various metrics as a function of the time

between earlier and later session, Δt, for all mice. All metrics are computed for each individual stimulus group, then averaged across all 30 groups.

Colored curves are linear regression fits and shaded regions represent all fits within 95% confidence intervals of slope and intercept. (e) Average angle

between mean response vectors. (f) Average (L2) magnitude of drift relative to magnitude of earlier session’s mean response vector. (g) Average change

in variational space dimension, D, from later session to earlier session. (h) Average drift magnitude within earlier session’s variational space, ratio

relative to full drift magnitude, see Eq (9). In yellow, the same metric if drift were randomly oriented in neural state space (mean ± s.e., across mice).

https://doi.org/10.1371/journal.pcbi.1010716.g002
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Representational drift occurs between sessions. We now consider how the stimulus

groups representing the 1-second blocks of Natural Movie One drift from one session to

another (Fig 2b). Since we have three distinct sessions for each mouse, we can analyze three

separate instances of drift, 1! 2, 2! 3, and 1! 3.

We first verify the difference in neuronal representations between sessions is distinct from

the within-session variation. To do so, we train a linear support vector classifier (SVC) to dis-

tinguish response vectors of a given stimulus group from one session to another session. We

compare the 5-fold cross validated accuracy of this SVC to two SVCs trained to distinguish

members of the same stimulus group within a single session. This is done by creating two types

of within-session subgroups: (1) subgroups correspond to the first or second half of the session

(2) subgroups correspond to either the even or odd movie repeats. The SVC trained to distin-

guish separate sessions achieves an accuracy significantly higher than chance (68 ± 8%,

mean ± s.e.), while both within-session accuracies are at chance levels (51 ± 7 for first-second

half, 45 ± 5% for even-odd, mean ± s.e.). We also note that previous work found the mean

activity rates, number of active cells, pupil area, running speed, and gradual deterioration of

neuronal activity/tuning do not explain the variation between sessions [11].

Now let us quantify how the response vectors change as a function of time. Throughout

this work, we use the angle between response vectors as a measure of their similarity. Across

repeats but within the same session, we find the angle between response vectors corresponding

to the same time-block to generally be small, i.e. more similar, relative to those belonging to

different blocks (Fig 2c). Comparing the mean response vectors of stimulus groups across ses-

sions, we find a smaller angle between the same group relative to different groups, but it is evi-

dent that the neuronal representation of some groups is changing across sessions, as shown by

the greater angle between their mean response vectors (Fig 2d).

Drift has a weak dependence on the exact time difference between sessions. As a mea-

sure of the size and direction of drift, we define the drift vector, d, as the difference in the

mean response vector of a given stimulus group from one session to another (Fig 1f, Methods).

Additionally, we denote the time difference between pairs of imaging sessions by Δt. We will

always take Δt> 0, so we refer to the individual sessions between which we are measuring drift

as the earlier and later sessions.

Recall that the number of days between sessions is mouse-dependent. In order to compare

aggregate data across mice, we would like to better understand how certain features of drift

change as a function of Δt. To this end, we compare how several characteristics of the stimulus

groups change as a function of time between sessions (Methods). We see a very modest

increase in the average angle between mean response vectors as a function of Δt (Fig 2e). This

indicates that mean response vectors are, on average, only becoming slightly more dissimilar

as a function of the time between sessions (< 1 degree/day). Many other geometric character-

istics of the drift do not change considerably as a function of Δt as well. We note here that this

result does not mean that drift at shorter timescales does not accumulate over time, nor does it

mean longer timescale drift would also exhibit such a weak dependence on Δt. See the Discus-

sion for further consideration of how this result compares to other works.

We see the magnitude of the drift vector, d, is on average slightly larger than that of the

mean response vector (Fig 2f). This not only indicates that size of drift on the time scale of

days is quite large, but also that the size of drift does not seem to be increasing considerably

with the time difference between sessions. Across Δt, we also see very little change in the varia-

tional space dimension, D, indicating the size of the variational space is not changing consider-

ably (Fig 2g). As a measure of the direction of the drift relative to a stimulus group’s variation

space, we consider the ratio of the drift’s magnitude that lies within the earlier session’s varia-

tional space (Methods). Across Δt values, we find this is quite steadily around 0.5, meaning
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about half the drift vector’s magnitude lies within the relatively small variational space (Fig

2h). This is significantly higher than if the drift vector were simply randomly oriented in neu-

ral state space (Fig 2h).

We take the above metrics to indicate that the drift characteristics of excitatory cells in V1

are fairly steady across the Δt we investigate in this work, 1 to 9 days. Thus, in the remainder of

this section we aggregate the data by session and across all Δt (see S1 Fig for additional plots as

a function of Δt).
Drift’s dependence on variational space. Seeing that the drift direction lies primarily in

the earlier session’s variational space, next we aim to understand specifically what about said

variational space determines the direction of drift. Since, by definition, the variational space is

spanned the stimulus group’s PC vectors, this provides a natural basis to understand the prop-

erties of drift. Looking at the magnitude of drift along the earlier session’s PC direction as a

function of the PC direction’s variance explained ratio, vi, we find that the magnitude of drift

increases with the PC direction’s variance explained (Fig 3a). That is, stimulus group direc-

tions that vary a lot tend to have the largest amount of drift. Additionally, there is a strong

trend toward drift occurring at an angle obtuse to the top PC directions, i.e. those with high

variance explained (Fig 3b). Said another way, drift has an increasingly large tendency to move

in a direction opposite to PC directions with a large amount of variance Furthermore, we find

Fig 3. Passive data: Drift geometry and classifier persistence. [a-c] How various drift metrics depend on PC dimension of the earlier session’s variational

space. Metrics are plotted as a function of PCi’s ratio of variance explained, vi, across all stimulus groups. Colored curves are linear regression fits and shaded

regions (often too small to see) are all fits within the 95% confidence intervals of slope and intercept. (a) Magnitude of drift along PCi direction relative to full

(L2) magnitude of drift. (b) Angle of drift with respect to PCi direction. (c) Post-drift variance explained along PCi direction, black dotted line is equality.

Linear regression fit to log(var. exp.). [d-f] Various metrics and how they change between sessions. The darker dots/lines always show mean value with error

bars of ± s.e. The lighter color dots show data from individual mice. (d) The variational space overlap between earlier and later stimulus groups, 0� Γ� 1.

The “–” marker indicates the average value of Γ for randomly oriented variational spaces of the same dimensions. (e) Angle between linear support vector

classifiers (normal vector) trained on distinct sessions. The purple dotted line is the average angle between different sessions. (f) Cross classification accuracy

as a function of trained data session (Class.) and tested data session (Data). The “–” marker shows average classification accuracy when SVCs are randomly

rotated by same angle that separates respective sessions’ classifiers. (g) The relative cross accuracy, see Eq (14), as a function of the angle of a random SVC

rotation. The purple dotted line is again the average angle found between drift sessions, also shown in (e).

https://doi.org/10.1371/journal.pcbi.1010716.g003
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both the magnitude and angular dependence of drift as a function of variance explained to be

well fit by linear curves (Fig 3a and 3b).

What is the net effect of the above geometric characteristics? On average, a drift opposite
the direction of the top PC directions results in a reduction of the mean value along said direc-

tions. Since a PC direction’s magnitude and variation are correlated (S1 Fig), this also causes a

reduction of the variation along said direction. This can be seen directly by plotting the vari-

ance explained along the earlier session’s PC directions before and after the drift (Fig 3c). We

see a decrease in variance explained in the top PC directions (below the diagonal), and an

increase in variance explained for lower PC directions (above the diagonal). So at the same

time variance is flowing out of the top PC directions, we find additional directions of variation

grow, often directions that had smaller variation to begin with, compensating for the loss of

mean/variance. Thus the net effect of this drift is to reduce the stimulus group variance along

directions that already vary significantly within the group and grow variation along new

directions.

A byproduct of this behavior is that the variational space of a stimulus group should change

as it drifts. To quantitatively measure the change in variational spaces, we define the varia-
tional space overlap, Γ (see Methods for precise definition). By definition, 0� Γ� 1, where

Γ = 0 when the variational spaces of the earlier and later sessions are orthogonal and Γ = 1

when the variational spaces are the same (and when one space is a subspace of the other, see

Methods). Between all sessions, we find Γ� 0.5, which is not far from Γ values if the subspaces

were simply randomly oriented, indicating that the variational space of a given stimulus group

indeed changes quite a bit as it drifts (Fig 3d).

Classifier persistence under drift. Above we showed that drift is both large and has a

preference toward turning over directions with large variation, thus significantly changing a

stimulus group’s variational space. Intuitively, this is difficult to reconcile with previous results

(and results later in this paper) that have observed mice performance remains persistent

despite a large amount of drift [6, 8, 9]. To quantify the separability of stimulus groups and

how this changes under drift, for each session we train a linear SVC to distinguish groups

within said session using 10-fold cross validation. In particular, to avoid feature space similar-

ity due to temporal correlation in the movie, we train our SVCs to distinguish the response

vectors from the first and last 1-second blocks of a given session.

For a given mouse, we find the linear SVCs trained on its sessions are significantly different

from one another, as measured by the angle between their normal vectors, on average 57

degrees (Fig 2e). However, despite this difference, we find that when we use one session’s SVC

to classify response data from a different session, the accuracy on the data does not fall signifi-

cantly (Fig 2f). Interestingly, this appears to be a result of the high-dimensionality of the neural

state space, as has been discussed previously [8]. Randomly rotating our SVCs in neural state

space by the same angles we found between SVCs of different sessions, we achieve only slightly

lower accuaracies (Fig 2f). Indeed, calculating the ratio of accuaracies as a function of the angle

of the random rotation, we observe a monotonically decreasing function that is relatively stable

up to the average angle we observed experimentally (Fig 2g). Note the relative cross accuracy is

still finite at a change in the SVC angle of 180˚ because the SVC does not achieve 100% classifi-

cation accuracy, so even with the weights flipped the SVC gets a non-trivial number of exam-

ples correct. We find it interesting that drift occurs such that the angle between SVCs is large

yet not large enough to cause a significant dip in accuracy when used across sessions. Although

they investigate drift in the parietial cortex, Ref. [8] also finds population decoding accuracies

to be relatively stable across days for the part of the task that yields the high decoding accuracy.

However, neural recordings at other parts of the tasks and smaller cell counts appear less sta-

ble. In the olfactory cortex, Ref. [9] finds a significant degradation in classification accuracy
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over time, though their decoders are tasked with a much more difficult 8-way classification

and smaller cell counts.

2.2 Drift in behavioral data

Now we corroborate our findings of drift geometry in a separate dataset, the Allen Visual

Behavior Two Photon project (“behavioral data”), consisting of neuronal responses of mice

tasked with detecting image changes [33].

Experimental setup and neuronal response. Mice are continually presented one of

eight natural images and are trained to detect when the presented image changes by respond-

ing with a lick (Fig 4a). After reaching a certain performance threshold on a set of eight train-

ing images, their neuronal responses while performing the task are measured over several

sessions using in vivo 2-photon calcium imaging. Specifically, their neuronal responses are

first imaged over two “familiar” sessions, F1 and F2, in which they must detect changes on

the set of eight training images. Afterwards, two additional “novel” imaging sessions, N1 and

N2, are recorded where the mice are exposed to a new set of eight images but otherwise the

task remains the same (Fig 4b, Methods). Similar to the passive data, the time difference

between pairs of imaging sessions, F1-F2 or N1-N2, is on the order of several days, but differs

for each mouse.

We will be particularly interested in the neuronal responses of a mouse’s success and fail-

ures to identify an image change, which we refer to as “Hit” and “Miss” trials, respectively (see

Methods for a parallel study of “Change” and “No Change” stimulus groups, which yields qual-

itatively similar results to what we present here). We once again form a response vector of the

neuronal responses by averaging dF/F values across time windows for each neuron. The time

window is chosen to be the 600 ms experimentally-defined “response window” after an image

change occurs (Fig 4b, Methods). Once again, we define the response vector to only contain

cells that are identified in both of the sessions that we wish to compare. Furthermore, to ensure

a mouse’s engagement with the task, we only analyze trials in which a mouse’s running success

rate is above a given threshold (Methods).

Since each session contains hundreds of image change trials, we have many members of

the Hit and Miss stimulus groups. We once again find the dimension of the feature space

representations, D, to be small relative to the size of the neural state space. Specifically,

D/n = 0.06 ± 0.04 and 0.06 ± 0.05, yet it captures a significant amount of variation in the

data, 0.79 ± 0.06 and 0.80 ± 0.06, for the Hit group of the familiar (nmice = 28) and novel

(nmice = 23) sessions, respectively (mean ± s.e.) [35, 36]. Additionally, we continue to observe

a strong correlation between the mean along a given PC direction and its corresponding var-

iance explained (S2 Fig).

Drift geometry is qualitatively the same as the passive data. Once again, we distinguish

the the between-session variation due to drift from the inter-session variation by training lin-

ear SVCs. We again find the SVCs trained to distinguish sessions achieve an accuracy signifi-

cantly higher than chance. For example, in the familiar session drift, the Hit stimulus groups

can be distinguished with accuracy 74 ± 11% (mean ± s.e., novel data yields similar values).

Meanwhile, the SVCs trained to distinguish the first/second half of trials and the even/odd tri-

als within a single session do not do statistically better than chance (familiar Hit groups, first/

second: 57 ± 8%, even/odd: 52 ± 6%, mean ± s.e.). Additional quality control checks were per-

formed on this dataset to ensure behavioral differences and imaging variability across days

could not explain the drift we observed (Secs. 4.3.1 and 4.3.2, S7, S8, and S9 Figs).

Similar to the passive data, the exact number of days between F1 and F2, as well as N1 and

N2, differs for each mouse. Across Δt values, we find many of the same drift characteristics
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we observed in the passive data, including: (1) a drift magnitude of the same order as the mag-

nitude of the mean response vector, (2) on average, no change in the size of the variational

space, and (3) a greater than chance percentage of the drift vector’s magnitude lying within the

earlier session’s variation space (S2 Fig). Across all these measures, we do not find a significant

Fig 4. Behavioral data: Experimental setup and drift geometry. (a) Summary of experimental setup. (b) Summary of session ordering, trial types,

and extraction of response vectors from dF/F values. Bottom plot shows dF/F values over time, with colored columns representing image flashes

where different colors are different images. [c-e] Various drift metrics of Hit trials and their dependence on PCi direction of the earlier session’s

variational space. Dark colors correspond to drift between familiar sessions, while lighter colors are those between novel sessions. Metrics are plotted

as a function of each PCi’s ratio of variance explained, vi. Colored curves are again linear regression fits. (c) Magnitude of drift along a given PCi
direction, relative to full magnitude of drift. (d) Angle of drift with respect to PCi direction. (e) Post-drift variance explained along PCi direction

(dotted line is equality). Linear regression fit to log(var. exp). [f-h] Various metrics as a function of session(s). Dark solid dots/lines show mean values

with ± s.e. Light colored dots/lines show raw mice data. (f) Mean performance metric over engaged trails, d0 (Methods). (g) Angle between SVC

normal vectors. (h) Cross classification accuracy, as a function of trained data session (Class.) and tested data session (Data). The “–” marker again

shows average classification accuracy when SVCs are randomly rotated by same angle that separates respective sessions’ classifiers.

https://doi.org/10.1371/journal.pcbi.1010716.g004
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quantitative dependence on Δt, for the range of 1 to 6 days, so we will continue to treat drift

data from different mice on equal footing, as we did for the passive data.

Between both the familiar and novel sessions, we again find the magnitude of drift along a

given PC direction is strongly correlated with the amount of stimulus group variation in said

direction (Fig 4c). Although their ratio is comparable to the familiar sessions, both the magni-

tude of drift and the mean response vectors are significantly larger in the novel sessions, con-

sistent with previous findings (S2 Fig). Additionally, for both pairs of sessions, the drift again

has a tendency to be directed away from the PC directions of largest variation (Fig 4d). The net

effect of these characteristics is that we once again observe a flow of variation out of the top PC

directions into directions that previously contained little variation (Fig 4e). It is fascinating

that the familiarity/novelty of the image set does not seem to significantly affect the quantita-

tive characteristics of these three measures.

Inter-group characteristics under drift. Does the drift affect the mouse’s performance?

We observe no statistically significant difference in the performance of the mice despite the

large amount of drift between sessions (Fig 4f). Notably, the novelty of the second image set

does not affect the performance of the mice either, showing their ability to immediately gener-

alize to the new examples.

We train a linear SVC to distinguish the Hit and Miss stimulus groups within a given ses-

sion using 10-fold cross validation. Comparing the SVC between pairs of familiar/novel ses-

sions, we again observe a significant amount of change between the SVCs as measured by the

angle between their normal vectors (Fig 4g). Once again, an SVC trained on the earlier (later)

session is able to classify the later (earlier) session’s data with accuracy comparable to the clas-

sifier train on the data itself (Fig 4h). These are the same results we saw on the passive data:

despite significant changes in the SVC, the stimulus groups do not seem to drift in such a way

as to significantly change their linear separability.

One hypothesis for the persistence of performance under drift is that individual stimulus

groups drift in a coordinated manner [11, 26, 29] (though some studies see a significant lack of

coordination [9]). We find the average angle between the drift vectors of the Hit and Miss

groups to be 68.5 ± 16.5˚ and 56.9 ± 14.6˚ for familiar and novel sessions, respectively

(mean ± s.e.). That is, the drift directions are aligned at a level greater than chance (on average

90˚ for two random vectors), indicting that there is at least some level of coordination between

the individual stimulus group drifts. Since we have found a tendency for drift to lie in the ear-

lier session’s variational space, an alignment in drift could be a byproduct of a similarity of the

two groups’ variational spaces. Indeed, we find the variational subspaces of the two stimulus

groups to be aligned with one another at a rate significantly higher than chance, as measured

by the variational space overlap, Γ (S2 Fig).

2.3 Drift in artificial neural networks

Across two separate datasets observing mice passively or while performing a task, we have

found qualitatively similar representational drift characteristics. We now turn to analyzing fea-

ture space drift in ANNs to try to understand what could possibly be the underlying mecha-

nism behind this type of drift and its geometrical characteristics.

Convolutional neural networks (CNNs) have long been used as models to understand the

sensory cortex (see [37] for a review). In this section, we analyze the effect of various types of

noise on the feature space representations of simple CNNs, i.e. the node values of the penulti-

mate layer (S4 Fig, Methods). Specifically, using the same geometrical analysis of the previous

sections, we study how the variational spaces of different classes evolve as a function of time

once the network has achieved a steady accuracy. If the feature space does drift, our goal is to
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see if any of these types of noise cause the network’s feature space to bear the qualitative prop-

erties we have found are present in representational drift the primary visual cortex analyzed in

Secs. 2.1 and 2.2.

Experimental setup. We train our CNNs on the CIFAR-10 dataset consisting of 60, 000

32 × 32 color images from 10 different classes (e.g. birds, frogs, cars, etc.) [38]. Once a steady

accuracy is achieved, we analyze the the time-evolution of the feature space representations

under continued training of a two-class subset (results are not strongly dependent upon the

particular subset). We take the analog of the response vectors of the previous sections to be the

n-dimensional feature vector in the feature (penultimate) layer and the separate stimulus

groups to be the classes of CIFAR-10. Throughout this section, we train all networks with sto-

chastic gradient descent (SGD) at a constant learning rate and L2 regularization (Methods).

Finally, we note that our goal in training the CNNs is to arrive at a feature space that somewhat

resembles the neural data in the sense that the distinct groups, i.e. the CIFAR-10 classes,

occupy somewhat distinct subspaces and the network’s performance had stabilized. Specifi-

cally, we confirm the networks achieve stable accuracies well above chance, but do not opti-

mize the networks’ hyperparameters or learning schedules to achieve the highest possible

accuracy for the given architecture.

Different types of noise to induce drift. We begin by training our CNNs in a setting with

minimal noise: the only element of stochasticity in the network’s training is that due to batch

sampling in SGD. Once our networks reach a steady accuracy, under continued training we

observe very little drift in the feature space representations (red curve, Fig 5b). To induce

feature space drift, we apply one of five types of additional noise to the feature layer of our

networks:

1. Additive node: Randomness injected directly into the feature space by adding iid Gaussian

noise,� N ð0; s2Þ, to each preactivation of the feature layer.

2. Additive gradient: Noise injected into the weight updates by adding iid Gaussian noise,

� N ð0; s2Þ, to the gradients of the feature layer. Specifically, we add noise only to the gradi-

ents of the weights feeding into the feature layer. This is similar to how noise was injected

into the Hebbian/anti-Hebbian networks studied in Ref. [29].

3. Node dropout: Each node in the feature layer is omitted from the network with probability

p [19, 39].

4. Weight dropout: Each weight feeding into the feature nodes is omitted from the network

with probability p [40].

5. Multiplicative node: Each feature node value is multiplied by iid Gaussian noise,

� N ð1; s2Þ. This is also known as multiplicative Gaussian noise [39]. Note this type of

noise is often seen as a generalization of node dropout, since instead of multiplying each

node by�Bernoulli(p), it multiplies by Gaussian noise.

All types of noise are applied both during initial training and the drift observation at steady

accuracy. Of these five types of noise injection, below we will show that node dropout, and to a

lesser extent multiplicative node and weight dropout, induce drift that strongly resembles that

which we observed in both the passive and behavioral data.

Changes in the feature space are of course dependent upon the time difference over which

said changes are measured. Similar to the experimental results above, below we will show that

many of the drift metrics discussed in this section show no significant dependence upon Δt, so

long as Δt is large compared to the time scale of the noise. Additionally, the degree of drift
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found in the feature space of our CNNs is dependent upon the size of the noise injected, i.e.

the exact values of σ and p above. For each type of noise, we conducted a hyperparameter

search over values of p (0.1 to 0.9) or σ (10−3 to 10+1) to find the values that best fit the experi-

mental data (Fig 5a, Methods). Below we discuss results for the best fits of each types of noise.

We find the qualitative results are not strongly dependent upon the exact values chosen, up to

when too much noise is injected and the network does not train well.

Feature space geometry and Δt dependence. Once more, we find the variational space of

the various classes to be small relative to the neural state space. For example, under p = 0.5

node dropout we find D/n = 0.070 ± 0.003, capturing 82.2 ± 0.3% of the variance. Notably, the

feature space geometry continues to exhibit a correlation between variance explained and the

Fig 5. Artificial neural networks: Hyperparameter fits and drift geometry as a function of Δt and variance explained. (a) Measure of fit to

experimental data, Ztotal see Eq (19), as a function of noise hyperparameters, p (top labels) or σ (bottom labels). Dots are best fits, for which additional

data is plotted here and in supplemental figures (S5 Fig, Methods). [b-c] Various metrics as a function of the time between earlier and later session, Δt.
Colored curves are linear regression fits. All data is averaged over 10 initializations. (b) Average magnitude of drift relative to magnitude of mean

response vector. (c) Average percent of drift vector that lies in the variational space of initial session. [d-i] Various drift metrics and their dependence

on PC dimension of the earlier session’s variational space. Metrics are plotted as a function each PCi’s ratio of variance explained, vi, of the

corresponding stimulus group Colored curves are linear regression fits. Grey curves are behavioral data fits from the novel sessions shown in Fig 4c, 4d

and 4e. Middle row is for networks with additive Gaussian noise (σ = 0.1) and bottom row is with node dropout (p = 0.5). All data is averaged over 10

initializations. (d, g) Magnitude of drift along PCi direction, relative to full magnitude of drift. (e, h) Angle of drift with respect to PCi direction. (f, i)

Post-drift variance explained along PCi direction (dotted line is equality). Linear regression fit to log(var. exp.).

https://doi.org/10.1371/journal.pcbi.1010716.g005
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mean value along a given direction, again indicating that directions which vary a lot tend to

have larger mean values (S4 Fig). Additionally, the variational spaces of the different classes

continue to be aligned at a rate greater than chance (S4 Fig).

As expected, all five noise types are capable of inducing drift in the representations. This

drift occurs amongst stable accuracies, that are comparable across all types of noise and steady

as a function of time (S4 Fig). We find the size of drift relative to the size of the means to be

comparable to that which was found in experiments for several types of noise (Fig 5b). Addi-

tionally, the relative magnitude of the drift for all types of noise is close to constant as a func-

tion of Δt. Similar to the experimental data, we find all the drifts do not induce a significant

change in the dimensionality of the variational space (S4 Fig). Finally, we again note that the

drift percentage that lies in variational space for all types of noise is significantly larger than

chance, though all but the smallest drifts have a ratio smaller than that observed in experiment

(Fig 5c).

Having observed several metrics that are constant in Δt, we use Δt = 1/10 epoch henceforth

since it is within this weak Δt-dependence regime, and thus comparable to the experimental

data analyzed in the previous sections. Decreasing the time scale of the noise injection to

slower than each forward pass, it is possible to observe stronger Δt dependence (Fig 6f). How-

ever, since our goal in this work is to match onto experimental data, where there we find evi-

dence for very weak Δt dependence, here we will focus on results within said regime.

Dropout drift geometry resembles experimental data. For clarity, here in the main text

we only plot data/fits for the additive node and node dropout noises (Fig 5). Equivalent plots

for SGD only and all other types of noise, as well as a plot with all six fits together, can be

found in the supplemental figures (S5 Fig).

For all types of noise, we find an increasing amount of drift with PC dimension/variance

explained, though the overall magnitude and distribution over variance explained vary with

the type of noise (Fig 5d and 5g). All types of noise also exhibits a degree of increasing angle

between the drift direction as a function of variance explained. However, for several types of

noise, this trend is very weak compared to the experimental data, and it is clear the fitted data

is qualitatively different from that observed in experiment (Fig 5e). The exceptions to this are

node dropout, and to a lesser degree, weight dropout, where the fits and raw data match exper-

iment quite well (Fig 5h). One way this can be seen quantitatively is by comparing the r-values

of the linear fits, for which we see the node dropout data is relatively well approximated by the

linear trend we also saw in the experimental data (S5 Fig). We see all types of noise result in a

flow of variance out of the top PC dimensions and into lower dimensions. Once again though,

for many types of noise, the amount of flow out of the top PC dimensions is very weak relative

to the passive and behavioral data (Fig 5f). We do however see that the two types of dropout, as

well as multiplicative node, all exhibit a strong flow of variation out of directions with large

variations (Fig 5i and S5 Fig). Finally, it can also be helpful to compare drift geometry as a

function of the earlier session’s PC dimension instead of variance explained. See S6 Fig for

plots of both experimental setups and all six ANN setups considered here.

From these results, we conclude that the three types of dropout, especially node dropout,

exhibit features that are qualitatively similar to experiments. We now turn our focus to addi-

tional results under node dropout noise.

Classifier and readouts persistence under drift. Unique to the ANNs in this work, we

have access to true readouts from the feature space to understand how the representations gets

translated to the network’s ultimate output. Previously, we fit SVCs to the feature space repre-

sentation to understand how drift might affect performance, so to analyze our CNNs on an

equal footing, we do the same here. Once again, we find classifiers fit at different time steps to

be fairly misaligned from one another, on average 71 (±3) degrees (mean ± s.e., Fig 6a).
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Despite this, an SVC trained at one time step has slightly lower yet still comparable accuracy

when used on feature space representations from another time step, with relative cross accu-

racy is 0.86 (±0.03) (Fig 6b). This is similar to what we observed in both the experimental

datasets.

Interestingly, when we look at how the readouts of the CNN change with time, we see their

direction changes very little, on average only 2.6 degrees over 5 epochs (Fig 6c). How can this

be despite the large amount of drift present in the network? Comparing the direction of the

drift to the network’s readouts, we see that they are very close to perpendicular across time

(Fig 6d). If the stimulus group means move perpendicular to the readouts then, on average,

the readout value of the group remains unchanged. As such, despite the stimulus group drift

being large, on average it does not change the classification results. Perhaps contradicting that

this is a result of special design, we find the average angle between the drift and readouts to be

consistent with chance, i.e. if the drift direction were simply drawn at random in the high-

dimensional feature space. Thus we cannot rule out that the ability for the readout to almost

remain constant in the presence of large drift is simply a result of the low probability of drift

occurring in a direction that significantly changes the network’s readout values in high dimen-

sions [24]. Notably, we see comparatively more drift in the readouts for some other types of

noise. For example, gradient noise causes a drift in the readouts of 18.6 degrees over 5 epochs.

Fig 6. Artificial neural networks: Additional properties of drift geometry. [a-d] Various quantities as a function of relative/absolute training time

(in epochs). Means are shown as dark lines, with 95% confidence intervals shaded behind. Raw data is scattered behind. (a) Angle between SVC

classifiers (normal vectors) as a function of the time difference. The grey dashed line is the average for the novel Hit data shown in Fig 4g. (b) Cross

classification accuracy as a function of time difference between classifier training time (Class.) and testing time (Data). (c) Difference in angle of a

stimulus group’s readout as a function of the time difference. Note the different vertical scale from (a). (d) Deviation of the angle between a stimulus

group’s drift and the respective readout from perpendicular (i.e. 90 degrees). The dashed green line is the average across time. The dotted black line is

the angle between two randomly drawn vectors in a feature space of the same dimension. (e) Fits of variance explained versus angle of drift with

respect to PC direction for regular node dropout (purple), targeted maximum variance node dropout (pink), and targeted minimum variance node

dropout (yellow). The inset shows the r-values of the respective fits. (f) Difference in response vector angle as a function of Δt. The dashed vertical line

indicates the time scale on which the node dropouts are updated (1/epoch).

https://doi.org/10.1371/journal.pcbi.1010716.g006
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Additional drift properties in ANNs. Having established that the noise from node drop-

out strongly resembles that found in our earlier data, we now use this setting to gain some

additional insights behind the potential mechanisms of representational drift.

Although we find our CNNs and experiments have comparable drift magnitude relative to

the size of their mean response vectors, the CNNs appear to have significantly more variability

due to drift compared to in-class variance than our experimental setups. For node dropout, we

find SVCs trained to distinguish data from time steps separated by Δt = 1/10 epoch achieve

perfect accuracy across trials, indicating the stimulus groups are linearly separable. SVCs

trained to distinguish even/odd examples within a single class have chance accuracy,

49.3 ± 0.8% (mean ± s.e.), similar to experiment. The CNN also exhibits a coordination of drift

between the two sub-groups of interest, whose drift vectors are separated by 40.4 ± 4.9 degrees

(mean ± s.e.). As mentioned earlier, we also continue to observe a greater-than-chance varia-

tional space overlap between said stimulus groups (S4 Fig).

Next, we would like to see if we can further pinpoint what about node dropout causes the

drift. To this end, we define a type of targeted node dropout algorithm that preferentially targets

nodes with high variation (Methods). We find that qualitatively and quantitatively, targeted

node dropout also has similar drift characteristics to the experimental data (Fig 6e and S4 Fig).

Furthermore, this results holds for a smaller number of averaged nodes dropped per dropout

pass, on average only 17 nodes per pass as compared to regular node dropout which drops

np = 42 nodes per pass. Of course, with dropout percentages used in practice on the order of

p = 0.5, the nodes that vary the most will be dropped quite frequently, so its not surprising that

we are observing similar results here. If instead we target the nodes with the smallest variation,

we do not observe a significant amount of drift or the characteristics we find in the experimen-

tal data, despite dropping the same number of nodes on average (yellow curve, Fig 6e and S4

Fig). Altogether, this suggests that it may be the dropping out of large variance/mean nodes

that causes the characteristics of drift that we are observing.

In the above noise setups, we only injected additional noise in the feature layer, including

the weights directly prior to said layer. We find that if dropout is also applied to earlier layers

within the network, qualitatively similar drift characteristics continue to be observed (S4 Fig).

However, when dropout was removed from the feature layer and applied only to an earlier

layer, the amount of drift in the feature layer dropped significantly (S4 Fig).

In this work, we have focused on drift in the regime where certain metrics are close to con-

stant as a function of Δt. As a means of verifying the transition into this regime, we can see if

drift in ANNs is different on shorter time scales. To reach a regime where drift occurs slowly

we lengthen the time scale of noise injection via node dropout by reducing the frequency of

when the network recalculates which nodes are dropped, which is usually done every forward

pass. When we do this, we observe a sharp transition in average angle between response vec-

tors as a function of Δt when it is above/below the noise-injection time scale (Fig 6f). We leave

further observations of the differences in drift properties at such timescales for future work.

3 Discussion

In this work, we have geometrically characterized the gradual change of neuronal representa-

tions over the timescale of days in excitatory neurons of the primary visual cortex. Across

experiments where mice observe images passively [32] and during an image change detection

task [33], we observe similar geometric characteristics of drift. Namely, we find neuronal rep-

resentations have a tendency to drift the most along directions opposite to those in which they

have a large variance and positive mean. This behavior has the net effect of turning over direc-

tions in neural state space along which stimulus groups vary significantly, while keeping the
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dimensionality of the representation stable. We then compared the experimentally observed

drift to that found in convolutional neural networks trained to identify images. Noise was

injected into these systems in six distinct ways. We found that node dropout, and to a lesser

extent weight dropout, induce a drift in feature space that strongly resembles the drift we

observed in both experiments.

Although weight dropout would qualitatively resemble the high noise observed at cortical

synapses [41], it is interesting to speculate how the brain would induce node dropout in the

primary visual cortex. Such an effect could arise in several different biologically plausible ways,

including broad yet random inhibition across neurons. Such inhibition could potentially

derive from chandelier cells, which broadly innervate excitatory neurons in the local cortical

circuit. Importantly, chandelier cell connectivity is highly variable onto different pyramidal

neurons [42]. Parvalbumin or somatostatin interneurons could also provide “blanket” yet vari-

able inhibition onto excitatory cells [43]. Our findings that a targeted dropout of the most

active artificial neurons induces a drift similar to uniform node dropout also suggests drift

could come from an inhibition of the most active neurons, perhaps as an attempt to reduce the

metabolic cost of the representation. Of course, the differences between node and weight drop-

out is simply a level of coordination of dropped weights. The equivalent of node dropout can

also be achieved by either (1) dropping out all incoming weights and the bias of a given node

or (2) all outgoing weights.

The ability for representational drift to occur during persistent performance was found in

the behavioral task and is consistent with previous findings [8]. To understand how the separa-

bility of representations changes under drift, we have shown that when a linear SVC is trained

to distinguish data at a given time, it can classify neuronal representations at some other time

with comparable accuracy to the SVC trained on said data. This observation was found across

both experiments and the artificial neural networks and suggests that drift in these systems

occurs in such a way so as not to significantly change the representations’ separability. In our

ANN experiments, despite a significant amount of drift due to node dropout, we found the

readouts remained relatively stable across time. Drift in these systems occurs very close to per-

pendicular to said readouts, though we did not find evidence that this was simply a result of

the high-dimensionality of neural state space where two randomly drawn vectors are close to

orthogonal. Nevertheless, the non-uniform geometric properties of drift we have observed do

not rule out the possibility of a high-dimensional “coding null space” [24], which is different

from other computational models where drift is observed to occur in all dimensions [29].

The resemblance of neuronal drift to that in artificial neural networks under dropout and

continual learning suggests several computational benefits to the presence of such noise in the

brain. It is a well known that dropout can help ANNs generalize as tool to avoid over-fitting

and improve test accuracy, so much so that this simple modification has become common-

place in many modern ANN architectures. Most commonly, the benefits of dropout are linked

to it approximately behaving as training using a large ensemble of networks with a relatively

cheap computational cost [19]. That is, since dropout forces the network to learn many equiva-

lent solutions to the same problem, the network’s ultimate state is some amalgamation of the

networks that came before it. Related to this, dropout can be interpreted as a Bayesian approxi-

mation to a Gaussian processes, suggesting it provides a robustness to overfitting because it

essentially performs an “average” over networks/weights [44]. Indeed, it has been shown that

redundant representations are found in the brain [16, 45] and such mechanisms may be why

we can maintain persistent performance in the presence of drift [24].

In addition to the aforementioned effects, dropout has also been shown to have many other

computational benefits in ANNs, many of which are easy to imagine might be useful for the

brain. To name a few, dropout has been shown to prevent a co-adaptation of neurons [19];
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impose a sparsification of weights [39]; be linked to weight regularization methods [46, 47]; be

a means of performing data augmentation [48]; and, when performed with multiplicative

Gaussian noise, facilitate the approximation of optimal representations [49]. From reinforce-

ment learning, it is known that slow changes in activity are useful for gathering exploratory

information and avoiding local minima [50].

Additionally, there are potential computational benefits of the turnover of components

directly. Similar to the aforementioned results in ANNs, it has been shown there is a connec-

tion between plasticity in the brain and Bayesian inference [50]. Many theoretical models of

the brain have explored the computational benefits of the turnover of components [50–52].

Additionally, overly rigid neural networks prevent learning and can also lead to catastrophic

forgetting [53–55]. It has also been shown that cells which recently had large activity on the

familiar dataset are more likely to be used for the novel dataset [8]. This suggests that drift may

be computationally advantageous since it allows the mouse to have continuous performance

while opening up new cells to learn new tasks/memories [8, 18, 27]. Finally, investigations of

neuron turnover during memory updating have revealed mechanisms that seem to strongly

resemble dropout-like behavior. In particular, the ‘memory allocation hypothesis’ postulates

that neurons are predisposed to encode memories by their excitability, and the excitability of

neurons is known to be modified by underlying biological fluctuations [18, 56–58]. In order to

homeostatically maintain memory ensemble sizes, neurons must then also decrease their roles

in the encoding [18], which could come from a depotentiation of competing memory ensem-

bles [59, 60]. If this depotentiation targets neurons uniformly or even preferentially targets the

most active neurons, this would mimic the dropout noise we injected into ANNs that pro-

duced a drift most similar to what we saw in the experimental datasets.

We have also found that many characteristics of drift vary quite slowly and may even

remain constant over the time scales we have considered in this work (Fig 2 and S2 Fig). We

note that this finding does not replicate other works that seem to see an accumulation in drift

for certain periods of time. The lack of evidence in our study for time-dependence over these

time-scales is not inconsistent with a slow time-dependence, as many of these other studies

also seem to have evidence of drift eventually stabilizing [8, 10–12]. Almost all works use

slightly different measures to determine similarity of representations and only a few have also

studied drift in excitatory cells of V1 [10–12]. We also note the rate of exposure to other sti-

muli is different in the experimental datasets we examine in our work than those used in other

works. For example, in the passive data we often have 3 exposures in� 9 days, with significant

exposure to other stimuli during imaging sessions, the order of which change from session to

session (Fig 1b). In the olfactory cortex, it has been shown that more frequent exposures to sti-

muli stabilize the representation [9], so the difference in stimuli exposure may be another rea-

son our results differ from other works.

We also note that short timescale/within session drift has been observed in the same dataset

in another study [11], and thus the variational space of a single session may contain contribu-

tions from said drift. We believe the fact that SVCs were able to distinguish across-session pop-

ulations at much higher rates than within-session, time-separated populations shows that

these contributions are small.

Finally we briefly highlight many open questions that arise from this work. Our study of

drift has been limited to excitatory neurons in the primary visual cortex, it would of course be

interesting to see if these geometric characteristics are present in other brain areas and neuron

types, and if so, to understand if they quantitatively differ. Given that we have found the drift

direction is stochastic yet far from uniformly random in neural state space, it would be benefi-

cial to try to understand the manifold along which drift occurs and whether or not this acts as

a “coding null space”. Additionally, in this work we have limited our study to drift on the
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timescale of days, and so this has left open a similar geometric understanding of short time-

scale drift that has been observed in several studies and compare these results to the short

time-scale drift we observed in ANNs. Lastly, given that we have found node dropout in ANN

resembles the drift we found in experiment, it would be interesting to inject equivalent noise

into more realistic network models of the brain, e.g. spiking neural networks [61], and see if

the trend continues.

4 Methods

Here we discuss methods used in our paper in detail. Various details of the geometric measures

we use throughout this work are given in Sec. 4.1. Further details of the passive and behavioral

experiments and our analysis of the data are given in Secs. 4.2 and 4.3, respectively. Details of

the artificial neural network experiments are given in Sec. 4.4. Supporting code for this work

can be found at: https://github.com/kaitken17/drift_geometry.

4.1 Feature space and geometric measures

Throughout this section, we use μ, ν = 1 . . ., n to index components of vectors in the n-dimen-

sional neural state space; i, j = 1, . . ., N to index the n-dimensional PC vectors that span a

subspace of neural state space; and I; J ¼ 1; . . . ; dDs
pe to index the PC vectors that span the var-

iational space (see below for details).

Feature and variational space. For stimulus group p in session s, we define the number of

members of said stimulus group to be ms
p. Let the n-dimensional response vector be denoted

by xs
p;a where a ¼ 1; . . . ;ms

p indexes members of said stimulus group. The mean response vec-
tor for stimulus group p in session s is then

�x s
p �

1

ms
p

X

a¼1;...;ms
p

xs
p;a : ð2Þ

The dimension of PCA on stimulus group p in session s is Ns
p � min ðms

p; nÞ. Denote the (unit-

magnitude) PCi vector by ws
p;i 2 R

Ns
p and the corresponding ratio of variance explained as 0 �

vs
p;i � 1 for i ¼ 1; . . . ;Ns

p (alternatively, wi and vi for brevity). PCs are ordered in the usual

way, such that vi� vj for i< j. We remove the directional ambiguity of the PC directions by

defining the mean response vector of the corresponding stimulus group and session to have

positive components along all PC directions. That is (suppressing explicit s and p depen-

dence),

�x � wi ¼
1

m

X

a¼1;...;m

xa � wi > 0 ; for i ¼ 1; . . . ;N: ð3Þ

If �x � wi < 0, then we simply redefine the PC vector to be wi! −wi. The dimension of the fea-

ture space representation is the “participation ratio” of the PCA variance explained ratios

Ds
p �

�PNs
p

i¼1 vs
p;i

�2

PNs
p

i¼1 ðvs
p;iÞ

2
: ð4Þ

To build some intuition for this quantity, note that Ds
p ¼ Ns

p only when vs
p;i ¼ 1=Ns

p for all

i ¼ 1; . . . ;Ns
p, i.e. the variance is evenly distributed amongst all Ns

p PC dimensions. Addition-

ally, Ds
p ¼ 1 only when vs

p;1 ¼ 1 and vs
p;i ¼ 0 for all i> 1, i.e. all the variance is in the first PC

dimension. This measure is often used as a measure of subspace dimensionality [62–64]. Also
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note this quantity is invariant up to an overall rescaling of all vi, so it would be unchanged if

one used the variance explained in each PC dimension instead of the ratio of variance

explained. In general, this quantity is not an integer. Finally, the variational space of stimulus

group p in session s is defined to be theRdDs
pe subspace spanned by the first dDs

pe PC vectors of

said stimulus group and session, span ðfws
p;IgÞ for I ¼ 1; . . . ; dDs

pe, with d�e the ceiling func-

tion. As we showed in the main text, the dimension of the feature space, Eq (4), is often a small

fraction of the neural state space, yet the variational space contains the majority of the variance

explained.

We note that recently a similar quantification of feature spaces found success in analytically

estimating error rates of few-shot learning [64].

Drift between sessions. We define the drift vector of stimulus group p from session s to

session s0 to be

ds;s0

p � �xs0
p � �xs

p : ð5Þ

Note that the ordering of indices in the superscript matter, they are (earlier session, later ses-

sion), and will be important for later definitions. For this vector to be well-defined, �xs
p and �x s0

p

must be the same dimension. This is always the case in the main text since we restrict to the

subset of neurons that are identified in the sessions that we wish to compare. If the time of ses-

sions s and s0 are respectively ts and ts0 , we define the time difference between sessions s and s0

by Dts;s0 � ts0 � ts, dropping the superscripts in the main text. Note that if a neuron is not iden-

tified in a session it could either be because (1) the cell has left the imaging field or (2) the

cell is inactive during the entire session and thus cannot be detected via calcium imaging.

Although we wish to control for the former, the two cases were not distinguished in the data-

sets analyzed in this work and thus this methodology misses neurons that are completely inac-

tive one session and active in another session.

We use the above geometric quantification for the passive data, active data, and artificial

neural networks.

1. For the passive data, p = 1, . . ., 30 corresponds to the non-overlapping one-second time-

blocks of the movie. Meanwhile, ms
p ¼ 10 for all p and s since each session has ten movie

repeats. Finally, s = 1, 2, 3 corresponds to the three different sessions over which each

mouse is imaged.

2. In the behavioral data, we have p = Hit, Miss and s = F1, F2, N1, N2. In the supplemental

figures, we also consider p = Change, No Change, see Sec. 4.3 below for details (S3 Fig). The

number of examples for each stimulus group is the number of engaged trials in a given ses-

sion, so ms
p differs over both stimulus groups and sessions.

3. For the artificial neural networks, p = cat, dog, car, . . ., the distinct classes of CIFAR-10. In

this case, s represents the different time steps during training when the feature space mea-

surements are taken. In this work we only consider s values for which the the accuracy of

the network is steady (see below for additional details). In practice, we use test sets where

ms
p ¼ 1000 for all stimulus groups p.

Geometric measures. In this work, we often use the angle between two response vectors

as a measure of similarity. This is different than the results of Ref. [11], where Pearson’s corre-

lation coefficient (see below) is used as a similarity measure between response vectors. Here

we use angle because (1) our goal is to explore geometrical characteristics of drift, and we
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believe angle is more interpretable in this context than Pearson’s correlation and (2) angle is a

rotationally invariant metric, and thus allows for comparisons independent of a mouse’s par-

ticular basis of neural state space. Note neither of these measures are sensitive to the magnitude

of the response vectors being compared. The two measures yield qualitatively similar results

(S1 Fig).

The angle (in degrees) between two n-dimensional vectors x and y is defined as usual,

y x; yð Þ ¼
180

p
arccos

x � y
kxk

2
kyk

2

� �

¼
180

p
arccos

Pn
m¼1

xmym
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Pn

m¼1
x2
m
Þð
Pn

n¼1
y2
n
Þ

q

0

B
@

1

C
A ; ð6Þ

where k�k2 is the L2-normalization and 0� θ� 180. Although the Pearson correlation coeffi-

cient is not used in this work, it is used in other works [11] as a quantitative measure of repre-

sentation vector similarity. For the purpose of comparison, we reproduce the expression here,

r x; yð Þ ¼

Pn
m¼1
ðxm � �xÞðym � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
Pn

m¼1
ðxm � �xÞ2Þð

Pn
n¼1
ðyn � �yÞ2Þ

q ; ð7Þ

where −1� r� 1 and �x �
P

m
xm and �y �

P
m
ym. From this expression we see the Pearson

correlation coefficient is fairly similar to the angular measure, up the arccos(�) mapping and

the centering of vector components. Note neither θ nor r are dependent upon the individual

vector magnitudes, but the former is invariant under rotations of neural state space and the lat-

ter is not.

Often it will be useful to have a metric to quantify the relation between a drift vector to an

entire subspace, namely a variational subspace. To this end, let the projection matrix into the

variational subspace of stimulus group p and session s be Ps
p. Ps

p can be constructed from the

PCs of stimulus group p in session s. Let Ws
p be the matrix constructed from the first dDs

pe

(orthonormal) PCs of stimulus group p in session s,

Ws
p ¼

h
ws

p;1;w
s
p;2; � � � ;w

s
p;dDs

pe

i
: ð8Þ

The column space of Ws
p is the variational space of stimulus group p in session s. Then the pro-

jection matrix is Ps
p ¼ ðW

s
pÞ

T
. The ratio of the drift vector that lies in the variational subspace

of stimulus group p in session s, or the drift in variation ratio, is defined to be

gs;s0
p ¼ gðP

s
p; d

s;s0

p Þ �
kPs

pd
s;s0

p k
2

2

kds;s0
p k

2

2

; ð9aÞ

¼
1

kds;s0
p k

2

2

XdD
s
pe

I¼1

ðws
p;I � d

s;s0

p Þ
2 ð9bÞ

where 0 � gs
p � 1 and the second line follows from the fact the ws

p;I form an orthonormal basis

of the variational subspace. Intuitively, this quantity tells us how much of the drift vector lies

in the variational space of stimulus group p. This is done by projecting the vector d into the

subspace, and comparing the squared L2 magnitude of the projected vector to the original vec-

tor. If the drift vector lies entirely within the subspace, gs;s0
p ¼ 1. Meanwhile, if the drift vector

is orthogonal to the subspace, gs;s0
p ¼ 0.
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Finally, it will be useful to compare two variational subspaces to one another. To this end,

we define the variational space overlap of stimulus group p between sessions s and s0 to be

Gs;s0
p �

1

min ðdDs
pe; dDs0

p eÞ

XdD
s0
p e

J¼1

g Ps
p;w

s0
p;J

� �
; ð10aÞ

¼
1

min ðdDs
pe; dDs0

p eÞ

XdD
s
pe

I¼1

XdD
s0
p e

J¼1

ðws
p;I � w

s0
p;JÞ

2
; ð10bÞ

where 0 � Gs;s0
p � 1 and in the second line we have used the fact the ws

p;I are an orthonormal

basis. Similar measures of subspace similarity are explored in Refs. [65, 66]. There it is also

argued such measures are rotationally invariant to the orthonormal basis spanning either of

the subspaces.

From the first line, we see Gs;s0
p is simply a sum of the drift in variation ratio, Eq (9), of each

basis vector of the variational space of session s0 relative to the variational space of s, weighted

by the size of the smaller of the two variational spaces. From the second line, we see this mea-

sure is equivalent to a sum of the pairwise squared dot products between the PCs of the two

variational subspaces, again weighted by the dimension of the smaller subspace. Additionally,

from the second line it is clear that Gs;s0
p ¼ Gs0 ;s

p . It is straightforward to show Gs;s0
p ¼ 1 if one var-

iational space is a subspace of (or equal to) the other variational space. Additionally, Gs;s0
p ¼ 0 if

the two subspaces are orthogonal. As another example, if both variational subspaces were

of dimension 6, and they shared an R3 subspace but were otherwise orthogonal, then

Gs;s0
p ¼ 3=6 ¼ 0:5. In the S1 Appendix, we show this metric is also invariant under changes in

the orthonormal basis spanning the subspaces. A quick way to argue this invariance is to notice

in the definition of Gs;s0
p , Eq (10a), the magnitude of the projection of ws0

p;J to the subspace s is

invariant under the rotation of the orthonormal basis of s. Additionally, from Eq (10b), Gs;s0
p is

symmetric with respect to the subspaces s and s0, so if it is invariant under rotations of s this

must also be true for s0.

4.2 Passive data details

We refer to the Allen Brain Observatory dataset [32] as the “passive data” throughout this

work. The dataset can be found at https://portal.brain-map.org/explore/circuits/visual-coding-

2p along with significantly more details about its collection.

The passive data comes from experiments where mice are continually shown a battery of

stimuli consisting of gratings, sparse noise, images, and movies over several sessions. Over

three separate sessions, the neuronal response of the head-fixed mice is recorded using in vivo

2-photon calcium imaging. In this work we are solely concerned with the mices’ response to

the stimuli called “Natural Movie One”, consisting of a 30 second natural-image, black and

white clip from the movie Touch of Evil [67]. In each of the three sessions, the mouse is shown

the 30-second clip 10 times in a row (five minutes total), for a total of 30 repeats across the

three sessions. The sessions are separated by a variable time for each mouse, the vast majority

of which are conducted on different days. Prior to the three imaging sessions, the mice were

subject to a 2-week training procedure during which they were exposed to all visual stimuli to

habituate them to the experimental setup.
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In this work, we only analyzed mice from transgenic Cre lines where excitatory neurons were

targeted (Table 1). The excitatory Cre line “Cux2-CreERT2” was omitted since it was observed

to have several outliers compared to the rest of the lines. The cortical layers in which the fluores-

cence cells are present can change with Cre line, but are always within cortical layers 2/3, 4, 5,

and/or 6. We omitted mouse data that had<10 shared cells amongst the three sessions (2 mice)

as well as data where two sessions were taken on the same day (3 mice). In total, this left data

from 73 mice for analysis. Sessions 1, 2, and 3 are temporally ordered so that t1 < t2 < t3.

To verify between-session drift is distinct from within-session drift, we trained an SVC to

distinguish members of a given stimulus group from one session to another or within the

same session. That is, we labeled the response vectors of a given stimulus group by what ses-

sions it is from for between-session drift. For within-session drift, we use two types of divisions

to determine the labels of the individual response vectors, we either divide the trials into the

first/second half of the session or by whether their trial number is even or odd. An SVC is then

trained on each of these sets of response vectors and their labels using 5-fold cross validation.

Accuracy data is then averaged across all mice and all stimulus groups. Decoder performance

does not appear to improve with longer session gaps: for sessions 1 and 2 the SVCs were able

to distinguish the sessions with 68 ± 9% accuracy, for 2 and 3 68 ± 8%, and for 1 and 3 69 ± 9%

(mean ± s.e.).

For the plots as a function of Δt, we omit Δt time scales where the data is too sparse. Specifi-

cally, we require each Δt value to have at least 5 examples of drift. This results in the omission

of some outlier Δt values that are quite large (e.g. 22 days), but in total only removes 10 out of

219 distinct instances of drift, representing < 5% of the data.

Response vectors were averaged over 1-second blocks to allow for direct comparison to

other work that analyzed drift in the same dataset [11].

Fig 2 details. Fig 2a was generated by projecting the response vectors for two stimulus

groups onto the first two PC components of the first group. Similarly, Fig 2b was generated by

projecting the response vectors for a given stimulus group from two different sessions onto

the first two PC components of the group in the first session. Fig 2c simply consists of the

pairwise angle between the response vectors of the first five movie repeats for an exemplar

mouse. Since each repeat consists of 30 response vectors, in total there are (5 × 30)2 points

shown. Fig 2d is generated by first finding the mean response vector, �xs
p, for each stimulus

group p = 1, . . ., 30. We then compute the pairwise angle within the session and between ses-

sions, yð�xs
p; �x

s0
p Þ for s, s0 = 1, 2, 3.

Table 1. Passive data Cre line details.

Cre line Cortical layers Number of mice

Emx1-IRES-Cre 2/3, 4, 5 10

Fezf2-CreER 5 4

Nr5a1-Cre 4 7

Ntsr1-Cre_GN220 6 5

Rbp4-Cre_KL100 5 6

Rorb-IRES2-Cre 4 7

Scnn1a-Tg3-Cre 4 8

Slc17a7-IRES2-Cre 2/3, 4, 5 20

Tlx3-Cre_PL56 5 6

Cre-lines, cortical layers, and number of mice for the passive data

https://doi.org/10.1371/journal.pcbi.1010716.t001
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Fig 2e was generated using the same mean response vectors for each stimulus group, where

now the pairwise angle between the mean response vectors belonging to the same group are

computed. This is done for all 30 stimulus group and then the average of all between-session

angles is computed, i.e.

�ys;s0 �
1

30

X30

p¼1

yð�xs
p; �x

s0
p Þ ; s 6¼ s0 : ð11Þ

This quantity is plotted with its corresponding Δt and then fitted using linear regression. Error

bars for all linear regression plots throughout this work are generated by computing the 95%

confidence intervals for the slope and intercept separately, and then filling in all linear fits that

lie between the extreme ends of said intervals. Fig 2f, 2g and 2h are all computed similarly, the

drift metric for a given division is computed and then, for each mouse and separate instance of

drift, the quantity is averaged over all 30 stimulus groups. In particular, the quantities plotted

in Fig 2f, 2g and 2h are respectively

�ds;s0 �
1

30

X30

p¼1

kds;s0

p k2

k�x s
pk2

; ð12aÞ

DDs;s0 �
1

30

X30

p¼1

Ds0
p � Ds

p

� �
; ð12bÞ

�gs;s0 �
1

30

X30

p¼1

gs;s0
p ; ð12cÞ

as a function of Δt between the earlier session s and later session s0, see Sec. 4.1 above for defini-

tions of the quantities on the right-hand side of these expressions. Note the distinction of s and

s0 matter for these quantities. Finally, for Fig 2h the chance percentage for drift randomly ori-

ented in neural state space was computed analytically. For a randomly oriented drift vector

projected onto a dDs
pe dimensional subspace, gs;s0

p ¼ dD
s
pe=n. This quantity was averaged over

stimulus groups and the three distinct drifts, before the average and standard error was com-

puted across mice.

Fig 3 details. The scatter plots in Fig 3a, 3b and 3c are averaged over p and plotted for

each mouse and all three session-to-session drifts, i.e. 1! 2, 2! 3, and 1! 3, as a function

of the corresponding vi. Any plot data with vi� 10−5 was omitted. For Fig 3a, 3b and 3c, they

are respectively

ds;s0
i �

1

30

X30

p¼1

ds;s0

p � w
s
p;i ; ð13aÞ

ys
i �

1

30

X30

p¼1

y ds;s0

p ;w
s
p;i

� �
; ð13bÞ

�vs;s0
i �

1

30

X30

p¼1

~vs;s0
p;i ; ð13cÞ

where ~vs;s0
p;i is the percent of variance explained of stimulus group p in session s0 along the ith
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PC dimension of stimulus group p in session s (i.e., ws
p;i). We found linear fits on the variance

explained versus drift magnitude and PC-drift angle were better using a linear variance

explained scale versus logarithmic variance explained scale.

For Fig 3d, we computed the Gs;s0
p , Eq (1), between the pair of variational spaces of the three

possible pairs of sessions. This was done for each stimulus group p and mouse, then the raw

mouse data for each pair of sessions is the average value of Gs;s0
p across all p. The average

and ± s.e. bars were then computed across all mice. To generate the data in Fig 3e and 3f, we

trained a linear SVC to distinguish the stimulus groups belonging to the first and last 1-second

time-blocks of the movie. The first and last 1-second time-blocks were chosen to avoid any

temporal correlation in the similarity of the movie scenes. For each mouse and each session,

we trained our SVCs using 10-fold cross validation with an L2 penalty. The SVCs achieve an

accuracy well above chance, 79 ± 15% (mean ± s.e.). For all folds belonging to sessions s and s0,
pairwise angles between their normal vectors were determined using Eq (6) before averaging

over all 10 folds.

Finally, we wanted to investigate if there was something special about the orientation of the

SVCs between sessions that allowed them to have large angular separation by still high cross-

classification accuracy. To this end, we tested their accuracy relative to random rotations of

SVCs. For a given pair of sessions s and s0, we found the angle between the normal vectors of

their respective SVCs. Using said angle, we generated a random rotation direction in neural

state space and rotated the weights of the SVC of session s0 by the same angle. Let the accuracy

of the SVC trained on data from session s, classifying the data from session s0, be denoted by

as;s0 . We define the relative cross correlation accuracy to be the accuracy of the cross-classifica-

tion relative to the accuracy of classifier trained on the data, i.e.

as;s0
rel: �

as;s0

as0 ;s0
: ð14Þ

By definition, as;s
rel: ¼ 1. We computed the relative cross correlation accuracy (again using

10-fold cross validation) of the randomly rotated SVC relative to that of session s0 and did this

for 10 separate random rotations (where the angle is fixed, but the rotation direction varies).

In practice, we found these randomly rotated SVCs only had slightly lower accuracy than the

SVCs actually trained on the separate sessions (shown as “–” marks in Fig 3f). The plot shown

in Fig 3g was generated in the exact same manner of randomly rotating SVCs, but now the

angle is a set value instead of it being equal to the angle between respective sessions’ SVCs.

Note the cross-classification accuracy does not drop to 0 when the SVC is rotated 180 degrees

(i.e. completely flipped) because, in general, the SVCs do not achieve 100% classification accu-

racy, so even the flipped SVC gets some examples correct (additionally, we are not changing

the bias term).

4.3 Behavioral data details

Significantly more details on this dataset can be found in the technical whitepaper, see

Ref. [33]. Here we provide a brief experimental overview for completeness. The dataset can be

found at https://portal.brain-map.org/explore/circuits/visual-behavior-2p.

A mouse continually shown images from a set of eight natural images. Each sessions consist

of several trials in which the flashed images change once or remain the same. Each trial con-

sists of several 750 ms time-blocks that start with a single image shown for for 250 ms followed

by grey screen for 500 ms (Fig 4b). The same image is shown several times at the start of a trial

before an image change may occur. Specifically, for a trial in which the image changes, the
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image change occurs between 4 and 11 time-blocks (equivalently, image flashes) into the trial.

The number of flashes before a change are drawn from a Poisson distribution, so an image

change after only 4 flashes occurs most frequently.

The general session schedule for in vivo 2-photon imaging consists of two active sessions

separated by one passive session. In the passive sessions, whose data is omitted from this work,

the mouse is automatically rewarded during any image change. After two active sessions and

one passive session, the mouse is shown a novel set of eight images, under the same conditions.

Notably, the set of eight “familiar” and “novel” images can be flipped for different mice.

Hit trials consist of trials where a mouse correctly responds to a lick within the “response

window”, between 150ms and 750ms after an image change. Miss trials are also image change

trials, but where the mouse does not correctly respond. Across all sessions, we filter for mouse

engagement, which is defined in the experimental white paper [33] to be a rolling average of 2

rewards per minute. Any trials (Hit or Miss) in which the mouse is not engaged are omitted.

See Table 2 for a summary of trial counts.

As mentioned in the main text, to construct response vectors, neuronal responses are col-

lected as mean vectors within the window between 150ms and 750ms after an image change.

This window was chosen so as to match the “response window” where the mouse can respond

with a lick [33]. Since the image flashes last 250ms, this window generally captures the mouse’s

neuronal response to both the image change as well as the reaction to the image turning off

[33]. For each of the n cells imaged in the given session, we average the dF/F values in this time

window to construct an n-dimensional response vector representing the neuronal response to

the given trial.

A subset of the mice were imaged using multiplane imaging techniques, allowing excitatory

cells outside of the primary visual cortex to also be imaged. For such mice, we only included

data from cells in the primary visual cortex.

Mice included in both the feature and novel data were filtered under several quality control

conditions. Several mice had testing schedules that did not match that pattern shown in Fig

4b, namely sessions in the order: F1, familiar passive, F2, N1, novel passive, N2. We omitted

mice where a familiar/novel session was missing in either one of the paired imaging sessions.

Occasionally, mice had no passive session separating either F1 and F2 or N1 and N2, but said

mice were not omitted. Finally, we filtered for a minimum number of engaged trials,� 10

(across both Hit and Miss trials), and also a minimum number of shared cells across sessions,

� 30. Altogether, this resulted in 28 mice for the familiar data and 23 mice for the novel data.

Analogous plots for what we refer to as the “Change” and “No Change” stimulus groups are

shown in S3 Fig. The Change stimulus group consists of aggregate of all Hit and Miss neuronal

responses, once again averaged between the time window of 150 and 750 ms immediately fol-

lowing an image change. The No Change stimulus group consists of neuronal responses aver-

aged between the same time window but immediately following an image flash where the

image did not change from the previous flash. More specifically, no change responses were

Table 2. Shared cell and engaged trial count for behavioral data.

Session Shared Cells Hit Trials Miss Trials Change Trials No Change Trials

F1 126 (84–165) 114 (96–143) 44 (30–53) 161 (137–180) 325 (267–365)

F2 98 (64–120) 30 (18–46) 128 (110–150) 258 (190–289)

N1 118 (76–192) 121 (95–135) 32 (26–34) 148 (125–166) 297 (232–324)

N2 99 (73–137) 32 (20–41) 141 (104–160) 268 (212–342)

All numbers are: median (Q1-Q3) over nmice = 28 and 23 for the familiar and novel data, respectively.

https://doi.org/10.1371/journal.pcbi.1010716.t002
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collected only in (engaged) Hit and Miss trials prior to the image change, but only after at least

three image flashes had occurred. This was done so the distribution of the number of image

flashes prior to a neuronal response was similar between the Change and No Change data.

Response vectors for these two stimulus groups are also averaged over the same 600 ms

response window.

Fig 4 details. Many of the plots in Fig 4 were generated analogously to those in Fig 3, so

refer to Sec. 4.2 above for details. A notable exception is that, due to the comparatively large

stimulus group sizes, drift data from the two groups was not averaged over as it was across the

30 stimulus groups in the passive data. The performance metrics shown in Fig 4c, 4d and 4e

are only for the Hit stimulus group, see S3 Fig for other groups. Once again, linear fits on the

variance explained versus drift magnitude and PC-drift angle were better using a linear vari-

ance explained scale versus logarithmic variance explained scale. The performance metrics

shown in Fig 4f make use of an experimentally-defined performance metric, d0, averaged

across all engaged trials, see Ref. [33] for additional details. Specifically,

d0 � F� 1ðRHÞ � F
� 1ðRFÞ ð15Þ

where F−1(�) is the inverse cumulative Gaussian distribution function and RH and RF are the

running Hit and False Alarm rates, respectively. Finally, Fig 4g and 4h were generated analo-

gously to Fig 3e and 3f, respectively.

S2 Fig details. For S2(b) Fig, variational space overlaps were computed between two stim-

ulus groups using Eq (10). Values for randomly oriented variational spaces were analytically

approximated to be Gs;s0
p ¼ maxðdDs

pe; dD
s0
p eÞ=n. To arrive at this expression, without loss of

generality take the smaller of the two subspace to span the first D directions of neural state

space. We can construct the larger subspace, with dimension D0, by randomly drawing D0 unit

vectors in neural state space sequentially, ensuring they remain orthogonal. The first of these

has an average γ of D/n with respect to the smaller neuronal subspace. Since the second basis

vector must be drawn from the subspace orthogonal to the first, it has an average γ of D/(n
− 1). This process repeats to the last basis vector, with γ = D/(n − D0). In practice, since n� D0,
we neglect the numerical difference and simply approximate γ for all D0 basis vectors to simply

be D/n. Then, summing together each γ and dividing by the D, we arrive at our aforemen-

tioned expression.

4.3.1 Behavior control. It is well known that behavior can influence neuronal responses

and their stability [15, 26, 68]. In this section, we discuss additional checks that were per-

formed on the behavioral data to ensure that the properties of representational drift that we

observe cannot be explained by the behavior of the mice. The influence of behavior on the pas-

sive data has been analyzed previously in Ref. [11], where they found behavioral metrics such

as running speed and pupil area could not explain the drift they observed. Additionally, recent

work has highlighted behavioral contributions to within-session drift, i.e. drift on the order of

hours [25]. Notably, here we are concerned with drift on longer time scales (days) and pur-

posely analyzes data that is averaged over entire sessions in an attempt to remove any latent

effects such as behavioral dependence.

We will be specifically concerned with the behavioral metrics of running speed, pupil area,

and eye position throughout this section. All three of these metrics were available for all but

one mouse that was used only in the familiar analysis.

Since we are only concerned with the mice’s representations during the response window

of Hit and Miss trials during which they are engaged with the task (see above), we similarly fil-

ter the behavioral metrics to these subsets of time points. Additionally, behavioral metrics are

averaged over the response windows in the same way as the response vectors. Altogether, this
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yields a single quantity for the three behavioral metrics for each Hit and Miss trial (S7(a) Fig).

Filtering to the subset of engaged response windows and also averaging within the response

window yields a more narrow distribution of the behavior metrics compared to the raw data

across the entire session (S7(b) Fig).

To begin, we investigated how much the behavioral metrics could explain the size of the

response vector. For each mouse, we fitted the magnitude of the response vector of a given

trial using a 4d linear regression (the three behavioral metrics, with eye position being two

numbers) and indeed found significant evidence that said metrics influence the response vec-

tors for some of the mice (F-test, S7(c) and S7(f) Fig). As mentioned above, the fact that behav-

ior can influence neuronal responses is well known [15, 26, 68], but what is important for our

purposes is that differences in behavior are not influencing the characteristics of drift we are

observing in this work. To confirm that there is no significant difference in the behavior of

mice across sessions, we trained an SVC to distinguish sessions F1 and F2 from the average

behavioral metrics of the corresponding session. Specifically, we used 10-fold cross validation

and further averaged over 10 shuffles of the data and found the SVC achieved chance accuracy,

47.3 ± 2.0% (mean ± s.e.). Similarly, for distinguishing N1 and N2, we found 48.9 ± 2.2% accu-

racy (mean ± s.e.).

To understand the differences in behavior across session, let bI be one of the four numbers

representing the behavior of session I, we define the normalized behavior difference as

bF2 � bF1
1

2
jbF1j þ jbF2jð Þ

; ð16Þ

and defined similarly for the novel session. For running speed, pupil area, and x-y eye position,

we find the average normalized behavioral difference to be close to zero across all mice (S7(d)

and S7(g) Fig). Finally, for each mouse, we can investigate if its change in behavior across ses-

sions explains the size of the drift observed. For example, using 1d linear regression, the change

in mean run speed across session does not help explain the amount of drift we observe (S7(e)

and S7(h) Fig). Furthermore, fitting the drift to all four behavior metrics, we find the Hit and

Miss trial drift we observe has p = 0.315 and 0.069, respectively for the familiar data, and for

the novel data we find p = 0.201 and 0.261, respectively (4d linear regression, F-test).

4.3.2 Additional data quality control. In order to verify that the behavioral data can reli-

ably be compared across distinct imaging sessions, in this section we describe several addi-

tional quality control metrics that were performed on said data. We systematically show that

several variances in day-to-day collection do not explain the drift characteristics we observe in

the data. In particular, this section analyzes the region of interest (ROI) masks used to identify

cells within a given session and also across sessions. Each cell in each session has an associated

ROI mask that consists of binary values identifying where in the imaging plane luminescence

was detected in the given session. More details about the ROI masks and the data processing

that went into defining them can be found in the technical whitepaper [33].

To quantify the matching of a given ROI mask between two sessions, we introduce two

metrics that can be computed for each cell that is matched across sessions. Let Ms(c) represent

the number of nonzero values in the ROI mask of cell c in session s. To quantify how much the

area of the ROI mask changes between sessions, we define the normalized area difference, A, of

cell c to be

As;s0 ðcÞ �
Ms0 ðcÞ � MsðcÞ

MsðcÞ
: ð17Þ
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We will always take s to be the earlier session, i.e. s = F1 or N1. Note that A is positive (nega-

tive) when the later (earlier) session has more pixels.

In addition to area difference, we want a metric for how similar the shape of a cell’s ROI

masks are between session. If we flatten the ROI masks into vectors, the normalized dot prod-

uct between the resulting vectors can capture their similarity. However, we must compensate

for the fact that the absolute X-Y location of a given cell in the imaging plane can change

between the sessions. To this end, we scan the two masks over one another by iterating over a

(pixel-valued) offset of (x, y) and seeing how this changes the alignment. Let ms
x;yðcÞ be the flat-

tened ROI mask of cell c in session s with an offset of (x, y). Define the maximum alignment, σ,

to be

ss;s0 ðcÞ � max
ðx;yÞ

ms
x;yðcÞ �m

s0
0;0
ðcÞ

kms
x;yðcÞk2kms0

0;0
ðcÞk2

: ð18Þ

Note that we are only offsetting one mask from the other (the dot product would not change if

we offset both masks the same amount). Since the components of a given m consist of only

binary values, the maximum alignment obeys 0� σ� 1.

With metrics to quantify how well each cell is matched between sessions, we investigated

whether certain regions of the imaging plane were more poorly matched between sessions

than others. This could occur if, for example, the imaging plane of the later session were tilted

slightly relative to its location in the earlier session. To do so, we plotted the normalized area

differences of cells as a function of their location in the imaging plane (S8(a) Fig). Across all

mice and for both the familiar and novel drift, we then fitted the data using a 2d linear regres-

sion and used an F-test to determine that the fitted values did not differ significantly from a

flat plane (S7(k) and S8(g) Figs). This same procedure was repeated for each cell’s maximum

alignment between sessions (S8(b) Fig), also finding no significant evidence of a trend toward

one direction in the plane (S8(h) and S8(l) Fig). We took this to mean, across all mice used in

computing drift metrics, there was no significant trend of one particular region of the imaging

planes being more poorly matched than other regions.

Next, we aimed to check if certain drift characteristics could be explained by how well cells

were matched across sessions, as measured by the previously introduced measures. We plotted

the amount of drift in a given cell (both in true value and magnitude) as a function of its nor-

malized area difference (S8(c) and S8(d) Fig). Again, we fit this data using linear regression

and found no significant evidence of drift varying as a function of this metric across mice

and sessions (S8(i) and S8(m) Fig). A similar check as a function of maximum alignment also

yielded no trend. Additionally, we plotted drift (again in true value and magnitude) as a func-

tion of the cell’s location in the imaging plane (S8(e) and S8(f) Fig). This was meant to investi-

gate if any particular part of the imaging plane exhibited a statistically significant amount of

drift. Analyzing the 2d linear regression fit, we again found no significant evidence of drift

being biased toward one particular part of the plane (S8(j) and S8(n) Fig). Of course, absence

of a significant result is not a conclusive proof of absence, but beyond the lack of significance,

visually there does not appear to be a consistent relation between location in the imaging plane

and cell matching, location in the imaging plane and drift, and quality of cell matching from

session to session and the amount of drift.

We then checked if the quality of cell matching for all matched cells belonging to a given

mouse could explain the amount of drift seen in said mouse across sessions. To do so, we plot-

ted the magnitude of drift (normalized by the number of cells imaged) as a function of both

the average magnitude of normalized area difference (S9(a) and S9(c) Fig) as well as the aver-

age alignment (S9(b) and S9(d) Fig). Fitting said data using linear regression, we again found
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no trend showing that the amount of drift observed, as measured by its magnitude, could be

explained by the overall cell matching quality of the mouse.

Finally, we investigated if the qualitative results of drift geometry would change if we only

kept cells that were “very-well-matched” between sessions. We defined a cell c to be well-

matched if As;s0 ðcÞ < 0:15 and ss;s0 ðcÞ > 0:85. This criterion was quite strict and results in a

large proportion of the matched cells being thrown out across mice (S9(e) and S9(i) Fig).

Using the same pipeline we previously used to compute several important drift geometric

characteristics, we find the very same qualitative properties are present in the drift when only

the well-matched cells are included (S9(f)–S9(h) and S9(j)–S9(l) Fig).

4.3.3 Robustness of response vector. To test the robustness of the mean response vectors

used in this dataset, we a subset of trials and computed how much this caused the response

vector to change. Let �x be the true mean response vector and let �x 0 be the mean response vector

once half of the members of the stimulus group are removed. We define the change in the

mean response vector to be D�x � k�x � �x 0k2=k�xk2. For the novel data, removing either the

even or odd Hit trials yields on average D�x ¼ 0:21 (for the familiar, D�x ¼ 0:26). Since we

found the size of the drift to be comparable size of the mean response vectors (S2(e) and S2(f)

Fig), this means the instability from removing half of the trials is small compared to the size of

the drift vector. As expected, since there are significantly fewer Miss trials (generally 1/4 to 1/3

the amount compared to Hit trials, see Table 2) we find D�x to be much higher, 0.43 for both

the familiar and novel data.

4.4 Artificial neural networks details

We train convoluational neural networks on the CIFAR-10 dataset [38]. We take the feature

space to be the (post-activation) values of the penultimate fully connected layer in both setups.

Our CNNs were trained with an L2 regularization of 1 × 10−3 and stochastic gradient

descent with a constant learning rate of η = 1 × 10−3 and a momentum of 0.9. The CNN archi-

tecture used is shown in detail in S4 Fig, briefly its layers are

2d conv; pool! 2d conv; pool! fully connected; ReLU! fully connected; ReLU! linear readout :

All networks were trained until a steady accuracy was achieved. Across all networks, we

observed an accuracy significantly higher than guessing, within the range of 60% to 70%.

Training is done using a batch size of 64.

All types of noise are redrawn every forward pass, unless otherwise stated. Additive and

multiplicative node dropout are applied directly to the feature layer preactivations. Additive

gradient and weight dropout are applied only to the weight layer feeding into the feature layer,

i.e. the 120 × 84 weights. Node dropout is applied to the 84 nodes in the feature layer.

Unless otherwise stated, feature space data was collected for 10 epochs at a rate of 10 times

per epoch. Features space values are collected for a test set, consisting of 1000 examples of each

class. Said samples are shuffled and passed through the network over 10 forward passes, during

which the noise of interest (e.g. dropout) is still applied, but notably it is still recalculated dur-

ing each forward pass. This is done to collect feature space representation under several differ-

ent random draws of noise, so as not to bias the feature space representations toward a

particular draw of the random noise. Note the weights of the network are not updated during

these forward passes, so the network is not “drifting”. In practice, only feature space values for

a two-class subset (frogs and birds) were saved, each consisting of 1000 examples of each class

(but distributed over 10 forward passes).

For node dropout and additive Gaussian noise, to ensure our results were not dependent

on the feature layer size, we trained additional architectures with both larger and smaller
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feature layers (sizes 126 and 56, respectively). Although we observed minor quantitative differ-

ences, the overall qualitative features of drift we observed were unchanged in these setups. For

node dropout, we also investigated “drift” in the feature space representations from simply

redrawing the dropped weights. Since the exact draw of dropout noise indeed affects the fea-

ture space representation, this does result in a change in the representations. Notably however,

we found that the drift is distinct from that due to dropout in a continual learning setting and

does not resemble the experimental data nearly as well.

Hyperparameter scan details. To determine noise injection hyperparameters and gener-

ate the data shown in Fig 5a, we conducted scans over values of σ and p for each of the five

types of noise. For node and weight dropout, we scanned over p values from 0.1 to 0.9 (in steps

of 0.1). For additive node, additive gradient, and multiplicative type noise, we scanned over σ
values of 10−3 to 101. Each network was trained until overfitting started to occur and the fea-

ture space representations from all 10 classes of CIFAR-10 were used to determine best fit met-

rics to the noise.

To evaluate the fit of our CNN models to the experimental data, we look across the four fol-

lowing criterion:

1. The percentage of drift’s magnitude that lies in variational space, and its constancy in Δt.

2. Drift’s trend of lying more and more obtuse from the largest PC dimensions, as a function

of Δt. Note we condition this metric on the fact that this is well fit by a linear relationship,

as it is in the experimental data, penalizing models whose r value is low even if the slope

matches experiment well.

3. Drift’s tendency to lead to a flow of variance explained out of the top PC directions. Similar

to the previous metric, we also condition this on a good linear fit.

4. Angle difference between SVC classifiers and the relative classification accuracy.

To quantify these four criterion, we evaluate the following sum of Z-score magnitudes

Ztotal ¼ jZðb�gÞj þ jZða�gÞj
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1:

þ ~Zða�y ; r�yÞ|fflfflfflfflffl{zfflfflfflfflffl}
2:

þ ~Zða�v ; r�vÞ|fflfflfflfflffl{zfflfflfflfflffl}
3:

þ jZðDySVCÞj þ jZðarelÞj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
4:

;
ð19Þ

where Z(�) is the Z-score of ANN metric relative to the experimental data,

ZðxÞ ¼ ðmANN
x � mexp:

x Þ=s:e:
exp:
x , and ~Z are the Z-scores of the second and third metrics condi-

tioned on good fits,

~Z a; rð Þ �
2j½ZðrÞ�0j j½ZðrÞ�0j > jZðaÞj ;

j½ZðrÞ�0j þ jZðaÞj otherwise :

8
<

:
ð20Þ

We use [�]0 to denote a clipping of the Z-score to be at most 0, so we do not penalize models

that are better fits than the experimental data. Note the Z-score of the slope of the linear fit

only contributes if its Z-score is smaller than that of the Z-score of the r-value.

We compute Ztotal relative to the passive data, since that dataset has significantly more mice

and thus sharper fits on all the parameters. Z-scores on the familiar/novel behavioral data are

in general quite low and continue to be best fit by dropout-type noise, although the exact val-

ues of best fit for p and σ differ slightly.

Each of the four metrics contributes two Z-scores to this expression. Note we omit measur-

ing model performance using metrics that vary significantly between the experimental data-

sets, for instance, the size of the drift magnitude relative means. We found that our overall
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conclusion, that node and weight dropout best match the experimental data, were not sensitive

if we included the aforementioned metrics to evaluate performance.

Additional Fig 5 details. With the exception of the hyperparameter scans, the rest of the

ANN data in this figure was averaged over 10 separate initializations. Although training/testing

were conducted over all 10 classes of CIFAR-10, plots here are for a single class, frogs. We

found the qualitative characteristics of different classes to be the same, and the quantitative val-

ues did not vary significantly. Fig 5b and 5c were generated analogously to the Δt fits of Fig 2f

and 2h, respectively (see above). Similarly, Fig 5d, 5e and 5f (as well as their node dropout ana-

logs) were generated analogously to Fig 3a, 3b and 3c, without the averaging over stimulus

groups.

Fig 6 details. SVCs are trained with 10-fold cross validation using the same parameters

used on the experimental data above, but now on the feature space representations of the two-

class subset of CIFAR-10. Once again, the angle between SVCs is the angle between their nor-

mal vectors and cross classification accuracy is defined as in Eq (14) above. To produce Fig 6a,

we computed the pairwise alignment between all SVCs within a window of 10 epochs and

averaged this quantity over 10 initializations. Fig 6b used the same pairing but computed the

cross classification accuracy, Eq (14), between all pairs. Note the time difference can be nega-

tive here because the data could be at a later time than when the classifier was trained. Fig 6c

used the same pairing scheme as well, but instead computed the angle between the readout

vectors for each class, and then averaged the quantities across classes. For Fig 6d, for a given

class, we computed the stimulus group’s drift relative to the direction of its corresponding

readout vector. The drift of a stimulus group compared to the other group’s readout looked

similar. The chance percentage was computed by generating two random vectors in a space

the same as as the feature space (n = 84) and computing their average deviation from perpen-

dicular. Our previous findings indicate that the direction of drift is far from completely ran-

dom in neural state space. However, they are not inconsistent with drift occurring in a high-

dimensional space. The chance percentage shown in Fig 6d changes little if we restrict the drift

direction to be constrained along many directions.

The targeted node dropout results in Fig 6e as well as in S4 Fig were generated by preferen-

tially targeted particular nodes during dropout. Let Pμ for μ = 1, . . ., n be the probability of

dropping a particular node in the feature layer during each forward pass. For the regular node

dropout in this figure, which is identical to the node dropout data in Fig 5, we simply have Pμ

= p = 0.5 for all μ = 1, . . ., n. To compute targeted dropout, 10 times per epoch we collected the

feature space representations of the test set. Across the test set, we compute the variance for

each node and use this to compute the ratio to total variance for each node, 0� vμ� 1 (this is

similar to the ratio of variance explained of PC dimensions, vi). Using this ratio of total vari-

ance for each node, 10 times per epoch we update the Pμ. For targeting nodes of maximum var-

iance, we use the expression

Pm ¼ ½Avm�
1

0
; ð21Þ

where A� 0 controls the strength of the dropout and ½��
1

0
clips the value between 0 and 1. For

A = 1, on average only a single node is dropped, since ∑μ vμ = 1. Meanwhile, to target the nodes

of minimum variance, we used

Pm ¼ A
ðvm þ �Þ

� 1

Pn
n¼1
ðvn þ �Þ

� 1

" #1

0

; ð22Þ

where � = 10−5 sets a lower threshold for the smallest variance ratio. For the aforementioned
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figures, A = 20 and 42 for the maximum and minimum targeted node dropout data, respec-

tively. This results in an average number of nodes dropped of�17 per forward pass for the

maximum targeted nodes and 42 for the minimum node targeting (note the latter of these

quantities is the same number that would be dropped under regular node dropout with

p = 0.5, since pn = 42). Targeted node results were averaged over 5 initializations.

To generate the plot in Fig 6f, we lowered the frequency of the recalculation of what nodes

are dropped to once per epoch (down from once for every forward pass). All other training

parameters of the network are identical to the node dropout case in the main text. Since we

sample the feature space 10 times per epoch, this means the sampling rate of the feature space

is smaller than the noise update scale. This data was computed over 5 network initializations.

Supporting information

S1 Fig. Passive data: Additional results and correlation plots. (a) Variance explained versus

mean value along the corresponding PC direction, normalized by L2 magnitude of the mean

response vector. Note all mean values are positive by definition of the PC’s direction. [b-d]

Plots equivalent to Fig 5c, 5d and 5e, but instead of angle as a measure of similarity, here we are

using Pearson’s correlation coefficient, Eq (7). These plots are provided to show a similarity of

angle between response vectors (used in the main text) with the metric used in Ref. [11]. (b)

Correlation within-session and across the first five movie repeats between response vectors. (c)

Correlation between mean response vectors across the three session. (d) Correlation as a func-

tion of time between sessions, Δt. Again, we note this decrease is quite small as a function of

time (< .01/day). [e-f] SVC metrics as a function of time difference between sessions. These

plots are analogous to Fig 3e and 3f, just plotted as a function of Δt instead of by session num-

ber. Once again, note both of these metrics are relatively stable as a function of the time differ-

ence. (e) Angle between SVC classifiers. (f) Relative cross classsification accuracy. Note the time

difference here can go negative beause the classifier could be trained on a sesssion earlier than

the data it is tested on (and unlike the angle between classifiers, in general arel.(−t) 6¼ arel.(t)).
(JPG)

S2 Fig. Behavior data: Additional results and drift metrics as a function of Δt. (a) Variance

explained versus mean value along corresponding PC direction, normalized by L2 magnitude

of mean response vector. Note all mean values are positive by definition of the PC’s direction.

(b) Variational space overlap, Γ of Eq (10), between the Hit and Miss stimulus groups for each

session. Pink/yellow light dots show raw data, pink/yellow dark dots/lines show average ± s.e.

Grey dots/lines show average ± s.e. of two randomly oriented variational spaces of same

dimensions. Notably, the two stimulus groups overlap significantly more than chance. (c)

Magnitude of drift as a function of the earlier session’s variance explained, but unlike Fig 4c

the magnitude is not normalized by the full L2 magnitude of the drift. This plot is meant to

show the comparatively larger drift of the novel sessions (darker dots/lines) relative to the

familiar sessions (lighter dots/lines). [d-k] Various metrics as a function of the time between

earlier and later session, Δt, for both Hit and Miss trials, across all mice. The middle and bot-

tom rows correspond to the familiar and novel data, respectively. Colored curves are linear

regression fits with the shaded region showing all fits within the 95% confidence intervals of

the slope and intercept. Darker/lighter colored lines/points correspond to Hit and Miss trials,

respectively. Dotted lines are best fits for class-averaged data. (d, h) Average angle between

response vectors (Methods). (e, i) Average magnitude of drift relative to magnitude of mean

response vector. (f, j) Average ratio of participation ratio from later session to earlier session.

Note this differs from the analogous plot for the passive and ANN data in that we are taking

the ratio rather than the difference. We found ratio to be a better measure given the significant
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variance in size of variational/neural state spaces for the behavioral data. (g, k) Average drift

magnitude within earlier session’s variational space, ratio relative to full drift magnitude.

(JPG)

S3 Fig. Behavioral data: Miss, Change, and No Change stimulus group geometries and

Change versus No Change classification. [a-i] Various drift metrics of Miss (first row),

Change (second row), and No Change (third row) trials and their dependence on PC dimen-

sion of the earlier session’s variational space. Dark colors correspond to drift between familiar

sessions, while lighter colors are those between novel sessions. Metrics are plotted as a function

of the stimulus group PC’s ratio of variance explained, vi. Colored curves are linear regression

fits. (a, d, g) Magnitude of drift along PC direction relative to full (L2) magnitude of drift. (b,

e, h) Angle of drift with respect to PC direction. (c, f, i) Post-drift variance explained along PC

direction (dotted line is equality). Linear regression fit to log(var. exp). [j-k] Various SVC met-

rics as a function of session(s) for the Change/No Change stimulus groups. Dark solid dots/

lines show average values with ± s.e. Light colored dots/lines show raw mice data. (j) Angle

between SVC normal vectors. (k) Relative cross classification accuracy, Eq (14), as a function

of test data session and trained data session.

(JPG)

S4 Fig. Artificial neural networks: Additional results. (a) Visualization of convolutional neu-

ral network architecture. (b) Accuracy as a function of epoch for SGD and all five types of

noise. Note, for each of the six plots, t = 0 is chosen to be the point where the network has rela-

tively steady accuracy, and does not necessarily correspond to the same epoch across noise

types. (c) Average change in the variational space dimension, D, from later session to earlier

session as a function of Δt. [d-g] Additional results for node dropout, with p = 0.5. (d) Vari-

ance explained versus mean value along corresponding PC direction, normalized by L2 magni-

tude of mean response vector. (e) Variational space overlap, Γ of Eq (10), between the two

stimulus groups (frogs and birds) as a function of time (after steady accuracy is achieved) for

node dropout with p = 0.5. Light pink dots show raw data for each trial, dark line/fill is

mean ± s.e. Grey dots/lines show raw data and mean ± s.e. of two randomly oriented varia-

tional spaces of same dimensions. (f) Variational space overlap as a function of time difference.

Green shows Γ between same stimulus group, blue shows between two different stimulus

groups, yellow shows chance percentage. Between the two classes, overlap is largest for Δt = 0,

before reaching a steady value that is still larger than chance. (g) Angle between drift vectors as

a function of time difference between initial sessions. Green shows between same stimulus

group, blue shows between two different groups. [h-j] Various plots for targeted node dropout.

Regular node dropout, with p = 0.5, is plotted in purple. Maximum and minimum variance

targeted node dropout, Eqs (21) and (22), are plotted in pink and yellow, respectively. (h)

Average magnitude of drift relative to magnitude of mean response vector as a function of Δt.
(i) As a function of the variance explained of the earlier session, magnitude of drift along cor-

responding PC direction, normalized by full (L2) magnitude of drift. (j) Post-drift variance

explained along PC directions, plotted as a function of the earlier session’s corresponding vari-

ance explained. [k-m] Various plots for node dropout applied to other areas of the network.

With “FC1” the fully connected layer before the feature layer (S4 Fig (a)), in purple, red, and

teal, we have node dropout on only the feature layer (as in main text), both FC1 and feature

layer, and FC1 only, respectively. All plots are averaged over at least 5 initializations. (k) Mag-

nitude of drift as a function of Δt. (l) PC-drift angle as a function of variance explained. (m)

Variance explained after drift as a function of variance explained of earlier session.

(JPG)
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S5 Fig. Artificial neural networks: Geometry of drift for various types of noise. Various

drift metrics and their dependence on PC dimension of the earlier session’s variational space.

Metrics are plotted as a function of stimulus group PC’s ratio of variance explained, vi. Colored

curves are linear regression fits. Grey curves are behavioral data fits from the novel sessions

shown in Fig 4c, 4d and 4e. Noise hyperparameters are chosen to be best fits to experimental

data across hyperparameter scans, see Fig 5a. Note equivalent plots for additive node and node

dropout are in Fig 5 of the main text. (First column) Magnitude of drift along PC direction

relative to full (L2) magnitude of drift. (Second column) Angle of drift with respect to PC

direction. (Third column) Post-drift variance explained along PC direction (dotted line is

equality). Linear regression fit to log(var. exp.). (First row) Fits for only SGD and all five types

of noise. Insets show r-values of fits. (Second row) Only SGD. (Third row) Additive gradient

noise with σ = 3.0. (Fourth row) Weight dropout with p = 0.6. (Fifth row) Multiplicative node

with σ = 1.0.

(JPG)

S6 Fig. Artificial neural networks: Drift geometry plotted as a function of PC dimension.

Various drift metrics and their dependence on PC dimension of the earlier session, rather than

its’s variational space, which is used throughout the main text. Solid dark line and shading rep-

resent mean ± s.e. for each PC. Raw data is scattered behind as points. (First and third col-

umn) Magnitude of drift along PC direction relative to full (L2) magnitude of drift. (Second

and fourth column) Angle of drift with respect to PC direction. Noise hyperparameters are

chosen to be best fits to experimental data across hyperparameter scans, see Fig 5a. [a-b] Pas-

sive data. [c-d] Behavioral Hit data, with darker/lighter lines/shading the familiar and novel

sessions, respectively. Note raw data is not scattered for clarity. [e-f] ANN with only noise due

to SGD. [g-h] Additive node with σ = 0.1. [i-j] Additive gradient with σ = 3.0. [k-l] Node drop-

out with p = 0.5. [m-n] Weight dropout with p = 0.6. [o-p] Multiplicative node with σ = 1.0.

(JPG)

S7 Fig. Behavioral data: Behavior quality control. [a,b] Behavior data from an exemplar

mouse (specifically from a familiar session). (a) Run speed versus time for a sample time slice.

Light purple shows raw data, dark purple points shows data during engaged Hit or Miss trials,

and orange stars show average run speed for each Hit or Miss trial. (b) Distribution of run

speeds over entire session. Purple shows raw data, orange shows average over each Hit or Miss

trial. [c-e] Familiar sessions behavior control. (c) Histogram of p-values from F-test to see if

the four behavioral metrics (run speed, pupil area, x and y eye position) could explain size of

response vectors, across all mice used in familiar data. Red and blue shown Hit and Miss stim-

ulus groups, respectively. Two dotted vertical lines mark the 0.01 and 0.05 significance levels.

These are the p-values for individual tests, such that one out of 20 (100) are expected to below

0.05 (0.01) by chance. (d) Normalized behavioral differences, see Eq (16), between F1 and F2

sessions for run speed (RS), pupil area (PA), and x and y eye position (EX, EY). Large dots are

means across all mice, with individual mice data scatter behind. (e) Scatter plots of normalized

drift magnitude, kdk
2
=
ffiffiffi
n
p

, as a function of change in mean run speed for mice used in familiar

data. Dark lines show linear fits to data and respective p-values of Wald tests to see if slopes are

significantly different from flat are shown. Red and blue shown Hit and Miss stimulus groups,

respectively. [f-h] Novel sessions behavior control. (f) Same as (c), for novel sessions. (g) Same

as (d), for N1 and N2 sessions. (h) Same as (e), for novel sessions.

(JPG)

S8 Fig. Behavioral data: Quality control checks on cell matching. [a-f] Results from an

exemplar mouse’s drift (specifically from novel Hit population drift when relevant). (a)
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Normalized area difference of ROI masks, Eq (17), as a function of the later session’s X-Y loca-

tions in the imaging plane. P-value shown is from F-test to see if planar fit to data is signifi-

cantly different from flat. (b) Maximum alignment between ROI masks, Eq (18), as a function

of the later session’s X-Y location. P-value from same type of test used in (a). (c) Scatter plot of

each cell’s drift as a function of the cell’s normalized area difference. Dark line is a linear fit

with shaded area representing mean ±2 s.e., p-value from Wald Test to see if slope of fit is sig-

nificantly different from flat. (d) Same as (c), but magnitude of a cell’s drift. (e) Each cell’s drift

as a function of the later session’s X-Y locations. P-value from same type of test used in (a). (f)

Same as (e), but magnitude of a cell’s drift. [g-j] Histogram of p-values of the same tests shown

in (a), (b), (c), and (e), respectively, across all mice used in familiar data. Two dotted vertical

lines mark the 0.01 and 0.05 significance levels. These are the p-values for individual tests,

such that one out of 20 (100) are expected to below 0.05 (0.01) by chance. (g, h) Dark values

represent data from single-plane imaging while lighter bars are individual imaging planes

from multi-plane data (data is stacked). (i, j) Orange and teal bar plots (not stacked) represent

data from the Hit and Miss population drifts, respectively. [k-n] Same as [g-j], but for the all

mice used in the novel data.

(JPG)

S9 Fig. Behavioral data: Quality control checks on cell matching. [a-f] Results from an

exemplar mouse’s drift (specifically from novel Hit population drift when relevant). (a) Nor-

malized area difference of ROI masks, Eq (17), as a function of the later session’s X-Y locations

in the imaging plane. P-value shown is from F-test to see if planar fit to data is significantly dif-

ferent from flat. (b) Maximum alignment between ROI masks, Eq (18), as a function of the

later session’s X-Y location. P-value from same type of test used in (a). (c) Scatter plot of each

cell’s drift as a function of the cell’s normalized area difference. Dark line is a linear fit with

shaded area representing mean ±2 s.e., p-value from Wald Test to see if slope of fit is signifi-

cantly different from flat. (d) Same as (c), but magnitude of a cell’s drift. (e) Each cell’s drift as

a function of the later session’s X-Y locations. P-value from same type of test used in (a). (f)

Same as (e), but magnitude of a cell’s drift. [g-j] Histogram of p-values of the same tests shown

in (a), (b), (c), and (e), respectively, across all mice used in familiar data. Two dotted vertical

lines mark the 0.01 and 0.05 significance levels. These are the p-values for individual tests,

such that one out of 20 (100) are expected to below 0.05 (0.01) by chance. (g, h) Dark values

represent data from single-plane imaging while lighter bars are individual imaging planes

from multi-plane data (data is stacked). (i, j) Orange and teal bar plots (not stacked) represent

data from the Hit and Miss population drifts, respectively. [k-n] Same as [g-j], but for the all

mice used in the novel data.

(JPG)

S1 Appendix. Variational space overlap rotational invariance. Here we argue that Gs;s0
p ,

defined in Eq (10), is invariant with respect to rotations of the orthonormal bases used to span

the variational spaces of s and s0.
(PDF)
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17. Káli S, Dayan P. Off-line replay maintains declarative memories in a model of hippocampal-neocortical

interactions. Nature neuroscience. 2004; 7(3):286–294. https://doi.org/10.1038/nn1202 PMID:

14983183

18. Mau W, Hasselmo ME, Cai DJ. The brain in motion: How ensemble fluidity drives memory-updating and

flexibility. Elife. 2020; 9:e63550. https://doi.org/10.7554/eLife.63550 PMID: 33372892

19. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neural networks by

preventing co-adaptation of feature detectors. arXiv preprint arXiv:12070580. 2012;.

20. Attardo A, Fitzgerald JE, Schnitzer MJ. Impermanence of dendritic spines in live adult CA1 hippocam-

pus. Nature. 2015; 523(7562):592–596. https://doi.org/10.1038/nature14467 PMID: 26098371

21. Attardo A, Lu J, Kawashima T, Okuno H, Fitzgerald JE, Bito H, et al. Long-term consolidation of ensem-

ble neural plasticity patterns in hippocampal area CA1. Cell reports. 2018; 25(3):640–650. https://doi.

org/10.1016/j.celrep.2018.09.064 PMID: 30332644

22. Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a virtual-navigation

decision task. Nature. 2012; 484(7392):62–68. https://doi.org/10.1038/nature10918 PMID: 22419153

23. Chambers AR, Rumpel S. A stable brain from unstable components: Emerging concepts and implica-

tions for neural computation. Neuroscience. 2017; 357:172–184. https://doi.org/10.1016/j.

neuroscience.2017.06.005 PMID: 28602920

24. Rule ME, O’Leary T, Harvey CD. Causes and consequences of representational drift. Current opinion in

neurobiology. 2019; 58:141–147. https://doi.org/10.1016/j.conb.2019.08.005 PMID: 31569062

25. Sadeh S, Clopath C. Contribution of behavioural variability to representational drift. bioRxiv. 2022;.
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