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Summary8

Identifying optimal policies for replenishing inventory from multiple suppliers is a key problem in9

inventory management. Solving such optimization problems requires determining the quantities10

to order from each supplier based on the current inventory and outstanding orders, minimizing11

the expected ordering, holding, and out-of-stock costs. Despite over 60 years of extensive12

research on inventory management problems, even fundamental dual-sourcing problems—where13

orders from an expensive supplier arrive faster than orders from a low-cost supplier—remain14

analytically intractable (Barankin, 1961; Fukuda, 1964). Additionally, there is a growing interest15

in optimization algorithms that can handle real-world inventory problems with non-stationary16

demand (Song et al., 2020).17

We provide a Python package, idinn, which implements inventory dynamics-informed neural18

networks designed to control both single-sourcing and dual-sourcing problems. In single-sourcing19

problems, a single supplier delivers an ordered quantity to the firm within a known lead time20

(the time it takes for orders to arrive) and at a known unit cost (the cost of ordering a single21

item). Dual-sourcing problems are more complex. In dual-sourcing problems, the company22

has two potential suppliers of a product, each with different known lead times and unit costs.23

The company’s decision problem is to determine the quantity to order from each of the two24

suppliers at the beginning of each period, given the history of past orders and the current25

inventory level. The objective is to minimize the expected order, inventory, and out-of-stock26

costs over a finite or infinite horizon. idinn implements neural network controllers and inventory27

dynamics as customizable objects using PyTorch as the backend, allowing users to identify28

near-optimal ordering policies for their needs with reasonable computational resources.29

The methods used in idinn take advantage of advances in automatic differentiation (Paszke30

et al., 2019, 2017) and the growing use of neural networks in dynamical system identification31

(Chen et al., 2018; Fronk & Petzold, 2023; Wang & Lin, 1998) and control (Asikis et al., 2022;32

Böttcher et al., 2022, 2024; Böttcher, 2023; Böttcher & Asikis, 2022; Mowlavi & Nabi, 2023).33

Statement of need34

Inventory management problems arise in many industries, including manufacturing, retail,35

hospitality, fast fashion, warehousing, and energy. A fundamental but analytically intractable36

inventory management problem is dual sourcing (Barankin, 1961; Fukuda, 1964; Xin & Van37

Mieghem, 2023). idinn is a Python package for controlling dual-sourcing inventory dynamics38

with dynamics-informed neural networks. The classical dual-sourcing problem we consider is39

usually formulated as an infinite-horizon problem focusing on minimizing average cost while40

considering stationary stochastic demand. Using neural networks, we minimize costs over41
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multiple demand trajectories. This approach allows us to address not only non-stationary42

demand, but also finite-horizon and infinite-horizon discounted problems. Unlike traditional43

reinforcement learning approaches, our optimization approach takes into account how the44

system to be optimized behaves over time, leading to more efficient training and accurate45

solutions.46

Training neural networks for inventory dynamics control presents a unique challenge. The47

adjustment of neural network weights during training relies on propagating real-valued gradients,48

while the neural network outputs - representing replenishment orders - must be integers. To49

address this challenge in optimizing a discrete problem with real-valued gradient descent50

learning algorithms, we apply a problem-tailored straight-through estimator (Asikis, 2023; Dyer51

et al., 2023; Yang et al., 2022). This approach enables us to obtain integer-valued neural52

network outputs while backpropagating real-valued gradients.53

idinn has been developed for researchers, industrial practitioners and students working at the54

intersection of optimization, operations research, and machine learning. It has been made55

available to students in a machine learning course at the Frankfurt School of Finance &56

Management, as well as in a tutorial at California State University, Northridge, showcasing57

the effectiveness of artificial neural networks in solving real-world optimization problems. In a58

previous publication (Böttcher et al., 2023), a proof-of-concept codebase was used to compute59

near-optimal solutions of dozens of dual-sourcing instances.60

Example usage61

Single-sourcing problems62

The overarching goal in single-sourcing and related inventory management problems is for63

companies to identify the optimal order quantities to minimize inventory-related costs, given64

stochastic demand. During periods when inventory remains after demand is satisfied, each65

unit of excess inventory incurs a holding cost ℎ. If demand exceeds available inventory in one66

period, the excess demand incurs an out-of-stock cost 𝑏. To solve this problem using idinn,67

we first initialize the sourcing model and its associated neural network controller. Then, we68

train the neural network controller using costs generated by the sourcing model. Finally, we69

can use the trained neural network controller to compute near-optimal order quantities that70

depend on the state of the system.71

Initialization72

We use the ‘SingleSourcingModel’ class to initialize a single-sourcing model. The single-sourcing73

model considered in this example has a lead time of 0 (i.e., the order arrives immediately after74

it is placed) and an initial inventory of 10. The holding cost, ℎ, and the out-of-stock cost, 𝑏,75

are 5 and 495, respectively. Demand is generated from a discrete uniform distribution within76

[1, 4]. We use a batch size of 32 to train the neural network, i.e., the sourcing model generates77

32 samples simultaneously. In code, the sourcing model is initialized as follows.78

import torch

from idinn.sourcing_model import SingleSourcingModel

from idinn.controller import SingleSourcingNeuralController

from idinn.demand import UniformDemand

single_sourcing_model = SingleSourcingModel(

lead_time=0,

holding_cost=5,

shortage_cost=495,

batch_size=32,

init_inventory=10,
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demand_generator=UniformDemand(low=1, high=4),

)

The cost at period 𝑡, 𝑐𝑡, is therefore79

𝑐𝑡 = ℎmax(0, 𝐼𝑡) + 𝑏max(0,−𝐼𝑡) ,

where 𝐼𝑡 is the inventory level at the end of period 𝑡. The higher the holding cost, the more80

costly it is to keep inventory positive and high. The higher the out-of-stock cost, the more81

costly it is to run out of stock when the inventory level is negative. The joint holding and82

out-of-stock costs for a period can be calculated using the get_cost() method of the sourcing83

model.84

single_sourcing_model.get_cost()

The expected output is as follows.85

tensor([[50.],86

...,87

[50.]], grad_fn=<AddBackward0>)88

In this example, this function should return 50 for each sample because the initial inventory is89

10 and the holding cost is 5. In this case, we have 32 samples because we specified a batch90

size of 32.91

For single-sourcing problems, we initialize the neural network controller using the92

SingleSourcingNeuralController class. For illustration purposes, we use a simple neural net-93

work with 1 hidden layer and 2 neurons. The activation function is torch.nn.CELU(alpha=1).94

single_controller = SingleSourcingNeuralController(

hidden_layers=[2],

activation=torch.nn.CELU(alpha=1)

)

Training95

Although the neural network controller has not yet been trained, we can still compute the96

total cost associated with its ordering policy. To do this, we integrate it with our previously97

specified sourcing model and calculate the total cost for 100 periods using get_total_cost().98

The get_total_cost() function calculates the sum of the costs over a given number of99

sourcing periods. Within each period, three events occur. First, the current inventory, 𝐼𝑡, and100

the history of past orders that have not yet arrived, i.e., the vector (𝑞𝑡−1, 𝑞𝑡−2,… , 𝑞𝑡−𝑙), are101

used as inputs for the controller to calculate the order quantity, 𝑞𝑡. Second, the previous order102

quantity 𝑞𝑡−𝑙 arrives. Third, the demand for the current period, 𝑑𝑡, is realized, resulting in a103

new inventory level, 𝐼𝑡 + 𝑞𝑡−𝑙 − 𝑑𝑡. Using the updated inventory, the cost for the individual104

period, 𝑐𝑡, is calculated according to the equation above, and the costs of each period are105

summed up as the total cost. The interested reader is referred to Böttcher et al. (2023) for106

further details.107

single_controller.get_total_cost(

sourcing_model=single_sourcing_model,

sourcing_periods=100

)

A sample output is as follows.108

tensor(5775221.5000, grad_fn=<AddBackward0>)109
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Not surprisingly, the very high cost indicates that the model’s performance is poor, since we are110

only using a untrained neural network, where the weights are just (pseudo) random numbers.111

We can train the neural network controller using the fit() method, where the training data is112

generated from the given sourcing model. To better monitor the training process, we specify113

the tensorboard_writer parameter to log both the training loss and the validation loss. For114

reproducibility, we also specify the seed of the underlying random number generator using the115

seed parameter.116

from torch.utils.tensorboard import SummaryWriter

single_controller.fit(

sourcing_model=single_sourcing_model,

sourcing_periods=50,

validation_sourcing_periods=1000,

epochs=5000,

seed=1,

tensorboard_writer=SummaryWriter(comment="_single_1")

)

After training, we can use the trained neural network controller to calculate the total cost for117

100 periods using our previously specified sourcing model. The total cost should be significantly118

lower than the cost associated with the untrained model.119

single_controller.get_total_cost(

sourcing_model=single_sourcing_model,

sourcing_periods=100

)

A sample output is shown below.120

tensor(820., grad_fn=<AddBackward0>)121

Order calculation122

We can then calculate optimal orders using the trained model.123

# Calculate the optimal order quantity for applications

single_controller.forward(

current_inventory=10,

past_orders=[1, 5]

)

The expected output is as follows.124

tensor([[0.]], grad_fn=<SubBackward0>)125

Dual-sourcing problems126

Solving dual-sourcing problems with idinn is similar to the workflow for single-sourcing problems127

described in the previous section. The main difference is that the cost calculation includes the128

order costs of different suppliers.129

Initialization130

To solve dual-sourcing problems, we use DualSourcingModel and DualSourcingNeuralController,131

which are responsible for setting up the sourcing model and its corresponding controller. In this132

example, we examine a dual-sourcing model characterized by the following parameters: the133

regular order lead time is 2; the expedited order lead time is 0; the regular order cost, 𝑐𝑟, is 0;134

the expedited order cost, 𝑐𝑒, is 20; and the initial inventory is 6. In addition, the holding cost,135
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ℎ, and the out-of-stock cost, 𝑏, are 5 and 495, respectively. The demand is generated from a136

discrete uniform distribution bounded on [1, 4]. In this example, we use a batch size of 256.137

import torch

from idinn.sourcing_model import DualSourcingModel

from idinn.controller import DualSourcingNeuralController

from idinn.demand import UniformDemand

dual_sourcing_model = DualSourcingModel(

regular_lead_time=2,

expedited_lead_time=0,

regular_order_cost=0,

expedited_order_cost=20,

holding_cost=5,

shortage_cost=495,

batch_size=256,

init_inventory=6,

demand_generator=UniformDemand(low=1, high=4),

)

The cost at period 𝑡, 𝑐𝑡, is138

𝑐𝑡 = 𝑐𝑟𝑞𝑟𝑡 + 𝑐𝑒𝑞𝑒𝑡 + ℎmax(0, 𝐼𝑡) + 𝑏max(0,−𝐼𝑡) ,

where 𝐼𝑡 is the inventory level at the end of period 𝑡, 𝑞𝑟𝑡 is the regular order placed in period139

𝑡, and 𝑞𝑒𝑡 is the expedited order placed in period 𝑡. The higher the holding cost, the more140

expensive it is to keep inventory positive and high. The higher the out-of-stock cost, the141

more expensive it is to run out of stock when inventory is negative. The higher the regular142

and expedited order costs, the more expensive it is to place those orders. The cost can be143

calculated using the get_cost() method of the sourcing model.144

dual_sourcing_model.get_cost(regular_q=0, expedited_q=0)

The output that is expected is as follows.145

tensor([[30.],146

...,147

[30.]], grad_fn=<AddBackward0>)148

In this example, this function should return 30 for each sample because the initial inventory is149

6, the holding cost is 5, and there is neither a regular nor an expedited order. In this case, we150

have 256 samples because we specified a lot size of 256.151

For dual-sourcing problems, we initialize the neural network controller using the152

DualSourcingNeuralController class. We use a simple neural network with 6 hid-153

den layers. The number of neurons in each layer is 128, 64, 32, 16, 8, and 4, respectively. The154

activation function is torch.nn.CELU(alpha=1).155

dual_controller = DualSourcingNeuralController(

hidden_layers=[128, 64, 32, 16, 8, 4],

activation=torch.nn.CELU(alpha=1)

)

Training156

Similar to the single-sourcing case, the cost over all periods can be calculated using the157

controller’s get_total_cost() method. The inputs to the controller are the inventory level,158

𝐼𝑡, and the history of past orders. However, since there are now two suppliers in the system,159

we need to include the order history of both suppliers. Therefore, the inputs for the past orders160
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should be written as (𝑞𝑟𝑡−1,… , 𝑞𝑟𝑡−𝑙𝑟 , 𝑞
𝑒
𝑡−1,… , 𝑞𝑒𝑡−𝑙𝑒). The cost for each period is calculated161

in a similar way as in single-sourcing models: past orders arrive, new orders are placed, and162

demand is realized. Then the costs for each period are summed to calculate the total cost.163

The interested reader is referred to Böttcher et al. (2023) for more details.164

dual_controller.get_total_cost(

sourcing_model=single_sourcing_model,

sourcing_periods=100

)

A sample output is as follows.165

tensor(5878623., grad_fn=<AddBackward0>)166

In the same way as in the previous section, we can train the neural network controller using167

the fit() method.168

from torch.utils.tensorboard import SummaryWriter

dual_controller.fit(

sourcing_model=dual_sourcing_model,

sourcing_periods=50,

validation_sourcing_periods=1000,

epochs=1000,

tensorboard_writer=SummaryWriter(comment="_dual_1234"),

seed=1234

)

After training, we can again use the trained neural network controller to calculate the total169

cost. The total cost should be significantly lower than the cost associated with the untrained170

model.171

dual_controller.get_total_cost(

sourcing_model=dual_sourcing_model,

sourcing_periods=100

)

The following is a sample output.172

tensor(1940.0391, grad_fn=<AddBackward0>)173

Order calculation174

Then we can use the trained network to compute near-optimal orders.175

# Calculate the optimal order quantity for applications

regular_q, expedited_q = dual_controller.forward(

current_inventory=10,

past_regular_orders=[1, 5],

past_expedited_orders=[0, 0],

)

Other utility functions176

The idinn package provides several utility functions for both the SingleSourcingModel and177

DualSourcingModel class.178

To further examine the controller’s performance in the specified sourcing environment, users179

can plot the inventory and order histories.180
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# Simulate and plot the results

dual_controller.plot(

sourcing_model=dual_sourcing_model,

sourcing_periods=100

)

In addition to random demands generated by uniform distributions, users can also provide181

demands in the format of python lists, numpy arrays and torch tensors. For example, the182

following code generates demands with values 1, 2,…, 10 that repeat every 10 periods.183

from idinn.demand import CustomDemand

dual_sourcing_model = DualSourcingModel(

regular_lead_time=2,

expedited_lead_time=0,

regular_order_cost=0,

expedited_order_cost=20,

holding_cost=5,

shortage_cost=495,

batch_size=256,

init_inventory=6,

demand_generator=CustomDemand(

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

),

)

The idinn package also provides functions for saving and loading model checkpoints. To save184

and load a given model, one can use the save() and load() methods, respectively.185

# Save the model

dual_controller.save("optimal_dual_sourcing_controller.pt")

# Load the model

dual_controller_loaded = DualSourcingNeuralController(

hidden_layers=[128, 64, 32, 16, 8, 4],

activation=torch.nn.CELU(alpha=1),

)

dual_controller_loaded.init_layers(

regular_lead_time=2,

expedited_lead_time=0,

)

dual_controller_loaded.load("optimal_dual_sourcing_controller.pt")
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