Source code for tespy.components.reactors.fuel_cell

import logging

import CoolProp.CoolProp as CP
import numpy as np

from tespy.components.component import Component
from tespy.tools.data_containers import ComponentProperties as dc_cp
from tespy.tools.document_models import generate_latex_eq
from tespy.tools.fluid_properties import h_mix_pT
from tespy.tools.global_vars import molar_masses
from tespy.tools.helpers import TESPyComponentError


[docs]class FuelCell(Component): r""" The fuel cell produces power by oxidation of hydrogen. **Mandatory Equations** - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.fluid_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.mass_flow_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.reactor_pressure_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.energy_balance_func` **Optional Equations** - cooling loop: - :py:meth:`tespy.components.component.Component.zeta_func` - :py:meth:`tespy.components.component.Component.pr_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.eta_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.heat_func` - :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.specific_energy_func` Inlets/Outlets - in1 (cooling inlet), in2 (oxygen inlet), in3 (hydrogen inlet) - out1 (cooling outlet), out2 (water outlet) Image .. image:: _images/FuelCell.svg :alt: alternative text :align: center Parameters ---------- label : str The label of the component. design : list List containing design parameters (stated as String). offdesign : list List containing offdesign parameters (stated as String). design_path : str Path to the components design case. local_offdesign : boolean Treat this component in offdesign mode in a design calculation. local_design : boolean Treat this component in design mode in an offdesign calculation. char_warnings : boolean Ignore warnings on default characteristics usage for this component. printout : boolean Include this component in the network's results printout. P : float, dict, :code:`"var"` Power input, :math:`P/\text{W}`. Q : float, dict Heat output of cooling, :math:`Q/\text{W}` e : float, dict, :code:`"var"` Electrolysis specific energy consumption, :math:`e/(\text{J}/\text{m}^3)`. eta : float, dict Electrolysis efficiency, :math:`\eta/1`. pr : float, dict, :code:`"var"` Cooling loop pressure ratio, :math:`pr/1`. zeta : float, dict, :code:`"var"` Geometry independent friction coefficient for cooling loop pressure drop, :math:`\frac{\zeta}{D^4}/\frac{1}{\text{m}^4}`. Note ---- Other than usual components, the fuel cell has the fluid composition built into its equations for the feed hydrogen and oxygen inlets as well as the water outlet. Thus, the user must not specify the fluid composition at these connections! Example ------- The example shows a simple adaptation of the fuel cell. It works with water as cooling fluid. >>> from tespy.components import (Sink, Source, FuelCell) >>> from tespy.connections import Connection >>> from tespy.networks import Network >>> from tespy.tools import ComponentCharacteristics as dc_cc >>> import shutil >>> fluid_list = ['H2O', 'O2', 'H2'] >>> nw = Network(fluids=fluid_list, T_unit='C', p_unit='bar', ... v_unit='l / s', iterinfo=False) >>> fc = FuelCell('fuel cell') >>> fc.component() 'fuel cell' >>> oxygen_source = Source('oxygen_source') >>> hydrogen_source = Source('hydrogen_source') >>> cw_source = Source('cw_source') >>> cw_sink = Sink('cw_sink') >>> water_sink = Sink('water_sink') >>> cw_in = Connection(cw_source, 'out1', fc, 'in1') >>> cw_out = Connection(fc, 'out1', cw_sink, 'in1') >>> oxygen_in = Connection(oxygen_source, 'out1', fc, 'in2') >>> hydrogen_in = Connection(hydrogen_source, 'out1', fc, 'in3') >>> water_out = Connection(fc, 'out2', water_sink, 'in1') >>> nw.add_conns(cw_in, cw_out, oxygen_in, hydrogen_in, water_out) The fuel cell shall produce 200kW of electrical power and 200kW of heat with an efficiency of 0.45. The thermodynamic parameters of the input oxygen and hydrogen are given, the mass flow rates are calculated out of the given power output. The cooling fluid is pure water. >>> fc.set_attr(eta=0.45, P=-200e03, Q=-200e03, pr=0.9) >>> cw_in.set_attr(T=25, p=1, m=1, fluid={'H2O': 1, 'O2': 0, 'H2': 0}) >>> oxygen_in.set_attr(T=25, p=1) >>> hydrogen_in.set_attr(T=25) >>> nw.solve('design') >>> P_design = fc.P.val / 1e3 >>> round(P_design, 0) -200.0 >>> round(fc.eta.val, 2) 0.45 """
[docs] @staticmethod def component(): return 'fuel cell'
# %% Variables
[docs] def get_variables(self): return { 'P': dc_cp(max_val=0), 'Q': dc_cp( max_val=0, num_eq=1, deriv=self.heat_deriv, func=self.heat_func, latex=self.heat_func_doc), 'pr': dc_cp( max_val=1, num_eq=1, deriv=self.pr_deriv, func=self.pr_func, func_params={'pr': 'pr'}, latex=self.pr_func_doc), 'zeta': dc_cp( min_val=0, num_eq=1, deriv=self.zeta_deriv, func=self.zeta_func, func_params={'zeta': 'zeta'}, latex=self.zeta_func_doc), 'eta': dc_cp( min_val=0, max_val=1, num_eq=1, latex=self.eta_func_doc, deriv=self.eta_deriv, func=self.eta_func), 'e': dc_cp( max_val=0, num_eq=1, deriv=self.specific_energy_deriv, func=self.specific_energy_func, latex=self.specific_energy_func_doc) }
# %% Mandatory constraints
[docs] def get_mandatory_constraints(self): return { 'mass_flow_constraints': { 'func': self.mass_flow_func, 'deriv': self.mass_flow_deriv, 'constant_deriv': True, 'latex': self.mass_flow_func_doc, 'num_eq': 3}, 'fluid_constraints': { 'func': self.fluid_func, 'deriv': self.fluid_deriv, 'constant_deriv': True, 'latex': self.fluid_func_doc, 'num_eq': self.num_nw_fluids * 4}, 'energy_balance_constraints': { 'func': self.energy_balance_func, 'deriv': self.energy_balance_deriv, 'constant_deriv': False, 'latex': self.energy_balance_func_doc, 'num_eq': 1}, 'reactor_pressure_constraints': { 'func': self.reactor_pressure_func, 'deriv': self.reactor_pressure_deriv, 'constant_deriv': True, 'latex': self.reactor_pressure_func_doc, 'num_eq': 2}, }
# %% Inlets and outlets
[docs] def inlets(self): return ['in1', 'in2', 'in3']
[docs] def outlets(self): return ['out1', 'out2']
# %% Equations and derivatives
[docs] def comp_init(self, nw): if not self.P.is_set: self.set_attr(P='var') msg = ('The power output of a fuel cell must be set! ' 'We are adding the power output of component ' + self.label + ' as custom variable of the system.') logging.info(msg) for fluid in ['H2', 'H2O', 'O2']: try: setattr( self, fluid, [x for x in nw.fluids if x in [ a.replace(' ', '') for a in CP.get_aliases(fluid.upper()) ]][0]) except IndexError: msg = ( 'The component ' + self.label + ' (class ' + self.__class__.__name__ + ') requires that the fluid ' '[fluid] is in the network\'s list of fluids.') aliases = ', '.join(CP.get_aliases(fluid.upper())) msg = msg.replace( '[fluid]', fluid.upper() + ' (aliases: ' + aliases + ')') logging.error(msg) raise TESPyComponentError(msg) self.e0 = self.calc_e0() Component.comp_init(self, nw)
[docs] def calc_e0(self): r""" Calculate the specific energy output of the fuel cell. Returns ------- val : float Specific energy. .. math:: e0 = \frac{\sum_i {\Delta H_f^0}_i - \sum_j {\Delta H_f^0}_j } {M_{H_2}}\\ \forall i \in \text{reation products},\\ \forall j \in \text{reation educts},\\ \Delta H_f^0: \text{molar formation enthalpy} """ hf = {} hf['H2O'] = -286000 hf['H2'] = 0 hf['O2'] = 0 M = molar_masses[self.H2] e0 = (2 * hf['H2O'] - 2 * hf['H2'] - hf['O2']) / (2 * M) return e0
[docs] def eta_func(self): r""" Equation for efficiency. Returns ------- residual : float Residual value of equation. .. math:: 0 = P - \eta \cdot \dot{m}_{H_2,in} \cdot e_0 """ return self.P.val - self.eta.val * self.inl[2].m.val_SI * self.e0
[docs] def eta_func_doc(self, label): r""" Equation for efficiency. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = r'0 = P - \eta \cdot \dot{m}_\mathrm{H_2,in,3} \cdot e_0' return generate_latex_eq(self, latex, label)
[docs] def eta_deriv(self, increment_filter, k): r""" Partial derivatives for efficiency function. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ # derivative for m_H2,in: self.jacobian[k, 2, 0] = -self.eta.val * self.e0 # derivatives for variable P: if self.P.is_var: self.jacobian[k, 5 + self.P.var_pos, 0] = 1
[docs] def heat_func(self): r""" Equation for heat output. Returns ------- residual : float Residual value of equation. .. math:: 0 = \dot{Q}-\dot{m}_{in,1}\cdot \left(h_{out,1}-h_{in,1}\right) """ return self.Q.val + self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI)
[docs] def heat_func_doc(self, label): r""" Equation for heat output. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'0=\dot{Q}+\dot{m}_\mathrm{in,1}\cdot\left(h_\mathrm{out,1}-' r'h_\mathrm{in,1}\right)') return generate_latex_eq(self, latex, label)
[docs] def heat_deriv(self, increment_filter, k): r""" Partial derivatives for heat output function. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ self.jacobian[k, 0, 0] = -( self.inl[0].h.val_SI - self.outl[0].h.val_SI ) self.jacobian[k, 0, 2] = -self.inl[0].m.val_SI self.jacobian[k, 3, 2] = self.inl[0].m.val_SI
[docs] def specific_energy_func(self): r""" Equation for specific energy output. Returns ------- residual : float Residual value of equation. .. math:: 0 = P - \dot{m}_{H_2,in} \cdot e """ return self.P.val - self.inl[2].m.val_SI * self.e.val
[docs] def specific_energy_func_doc(self, label): r""" Equation for specific energy output. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = r'0=P - \dot{m}_\mathrm{H_2,in} \cdot e' return generate_latex_eq(self, latex, label)
[docs] def specific_energy_deriv(self, increment_filter, k): r""" Partial derivatives for specific energy function. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ self.jacobian[k, 2, 0] = -self.e.val # derivatives for variable P if self.P.is_var: self.jacobian[k, 5 + self.P.var_pos, 0] = 1 # derivatives for variable e if self.e.is_var: self.jacobian[k, 5 + self.e.var_pos, 0] = -self.inl[2].m.val_SI
[docs] def energy_balance_func(self): r""" Calculate the residual in energy balance. Returns ------- residual : float Residual value of energy balance equation. .. math:: \begin{split} 0=&P + \dot{m}_\mathrm{out,2}\cdot\left(h_\mathrm{out,2}- h_\mathrm{out,2,ref}\right)\\ &+\dot{m}_\mathrm{in,1}\cdot\left( h_\mathrm{out,1} - h_\mathrm{in,1} \right)\\ & -\dot{m}_\mathrm{in,2} \cdot \left( h_\mathrm{in,2} - h_\mathrm{in,2,ref} \right)\\ & -\dot{m}_\mathrm{in,3} \cdot \left( h_\mathrm{in,3} - h_\mathrm{in,3,ref} - e_0\right)\\ \end{split} - Reference temperature: 298.15 K. - Reference pressure: 1 bar. """ return self.P.val - self.calc_P()
[docs] def energy_balance_func_doc(self, label): r""" Calculate the residual in energy balance. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0=&P + \dot{m}_\mathrm{out,2}\cdot\left(h_\mathrm{out,2}-' r'h_\mathrm{out,2,ref}\right)\\' + '\n' r'&+\dot{m}_\mathrm{in,1}\cdot\left( h_\mathrm{out,1} -' r'h_\mathrm{in,1} \right)\\' + '\n' r'& - \dot{m}_\mathrm{in,2} \cdot \left( h_\mathrm{in,2} -' r'h_\mathrm{in,2,ref} \right)\\' + '\n' r'& - \dot{m}_\mathrm{in,3} \cdot \left( h_\mathrm{in,3} -' r'h_\mathrm{in,3,ref} - e_0\right)\\' + '\n' r'&p_\mathrm{ref}=\unit[1]{bar},' r'\;T_\mathrm{ref}=\unit[25]{^\circ C}\\' + '\n' r'\end{split}' ) return generate_latex_eq(self, latex, label)
[docs] def energy_balance_deriv(self, increment_filter, k): r""" Partial derivatives for reactor energy balance. Parameters ---------- increment_filter : ndarray Matrix for filtering non-changing variables. k : int Position of derivatives in Jacobian matrix (k-th equation). """ # derivatives determined from calc_P function T_ref = 298.15 p_ref = 1e5 h_refh2o = h_mix_pT([1, p_ref, 0, self.outl[1].fluid.val], T_ref) h_refh2 = h_mix_pT([1, p_ref, 0, self.inl[2].fluid.val], T_ref) h_refo2 = h_mix_pT([1, p_ref, 0, self.inl[1].fluid.val], T_ref) # derivatives cooling water inlet self.jacobian[k, 0, 0] = self.outl[0].h.val_SI - self.inl[0].h.val_SI self.jacobian[k, 0, 2] = -self.inl[0].m.val_SI # derivatives water outlet self.jacobian[k, 4, 0] = (self.outl[1].h.val_SI - h_refh2o) self.jacobian[k, 4, 2] = self.outl[1].m.val_SI # derivative cooling water outlet self.jacobian[k, 3, 2] = self.inl[0].m.val_SI # derivatives oxygen inlet self.jacobian[k, 1, 0] = -(self.inl[1].h.val_SI - h_refo2) self.jacobian[k, 1, 2] = -self.inl[1].m.val_SI # derivatives hydrogen inlet self.jacobian[k, 2, 0] = -(self.inl[2].h.val_SI - h_refh2 - self.e0) self.jacobian[k, 2, 2] = -self.inl[2].m.val_SI # derivatives for variable P if self.P.is_var: self.jacobian[k, 5 + self.P.var_pos, 0] = 1
[docs] def fluid_func(self): r""" Equations for fluid composition. Returns ------- residual : list Residual values of equation. .. math:: 0 = x_\mathrm{i,in,1} - x_\mathrm{i,out,1} \forall i \in \text{network fluids}\\ 0 = \begin{cases} 1 - x_\mathrm{i,in2} & \text{i=}H_{2}O\\ x_\mathrm{i,in2} & \text{else} \end{cases} \forall i \in \text{network fluids}\\ 0 = \begin{cases} 1 - x_\mathrm{i,out,2} & \text{i=}O_{2}\\ x_\mathrm{i,out,2} & \text{else} \end{cases} \forall i \in \text{network fluids}\\ 0 = \begin{cases} 1 - x_\mathrm{i,out,3} & \text{i=}H_{2}\\ x_\mathrm{i,out,3} & \text{else} \end{cases} \forall i \in \text{network fluids} """ residual = [] # equations for fluid composition in cooling loop for fluid, x in self.inl[0].fluid.val.items(): residual += [x - self.outl[0].fluid.val[fluid]] # equations to constrain fluids to inlets/outlets residual += [1 - self.inl[1].fluid.val[self.O2]] residual += [1 - self.inl[2].fluid.val[self.H2]] residual += [1 - self.outl[1].fluid.val[self.H2O]] # equations to ban other fluids off inlets/outlets for fluid in self.inl[1].fluid.val.keys(): if fluid != self.H2O: residual += [0 - self.outl[1].fluid.val[fluid]] if fluid != self.O2: residual += [0 - self.inl[1].fluid.val[fluid]] if fluid != self.H2: residual += [0 - self.inl[2].fluid.val[fluid]] return residual
[docs] def fluid_func_doc(self, label): r""" Equations for fluid composition. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0 = &x_\mathrm{i,in,1} - x_\mathrm{i,out,1}\\' + '\n' r'0 = &\begin{cases}' + '\n' r'1 - x_\mathrm{i,out,2} & \text{i=}H_{2}O\\' + '\n' r'x_\mathrm{i,out,2} & \text{else}\\' + '\n' r'\end{cases}\\' + '\n' r'0 =&\begin{cases}' + '\n' r'1 - x_\mathrm{i,in,2} & \text{i=}O_{2}\\' + '\n' r'x_\mathrm{i,in,2} & \text{else}\\' + '\n' r'\end{cases}\\' + '\n' r'0 =&\begin{cases}' + '\n' r'1 - x_\mathrm{i,in,3} & \text{i=}H_{2}\\' + '\n' r'x_\mathrm{i,in,3} & \text{else}\\' + '\n' r'\end{cases}\\' + '\n' r'&\forall i \in \text{network fluids}' + '\n' r'\end{split}') return generate_latex_eq(self, latex, label)
[docs] def fluid_deriv(self): r""" Calculate the partial derivatives for cooling loop fluid balance. Returns ------- deriv : ndarray Matrix with partial derivatives for the fluid equations. """ # derivatives for cooling fluid composition deriv = np.zeros(( self.num_nw_fluids * 4, 5 + self.num_vars, self.num_nw_vars)) k = 0 for fluid, x in self.inl[0].fluid.val.items(): deriv[k, 0, 3 + k] = 1 deriv[k, 3, 3 + k] = -1 k += 1 # derivatives to constrain fluids to inlets/outlets i = 0 for fluid in self.nw_fluids: if fluid == self.H2O: deriv[k, 4, 3 + i] = -1 elif fluid == self.O2: deriv[k + 1, 1, 3 + i] = -1 elif fluid == self.H2: deriv[k + 2, 2, 3 + i] = -1 i += 1 k += 3 # derivatives to ban fluids off inlets/outlets i = 0 for fluid in self.nw_fluids: if fluid != self.H2O: deriv[k, 4, 3 + i] = -1 k += 1 if fluid != self.O2: deriv[k, 1, 3 + i] = -1 k += 1 if fluid != self.H2: deriv[k, 2, 3 + i] = -1 k += 1 i += 1 return deriv
[docs] def mass_flow_func(self): r""" Equations for mass conservation. Returns ------- residual : list Residual values of equation. .. math:: O_2 = \frac{M_{O_2}}{M_{O_2} + 2 \cdot M_{H_2}}\\ 0=O_2\cdot\dot{m}_\mathrm{H_{2}O,out,1}- \dot{m}_\mathrm{O_2,in,2}\\ 0 = \left(1 - O_2\right) \cdot \dot{m}_\mathrm{H_{2}O,out,1} - \dot{m}_\mathrm{H_2,in,1} """ # calculate the ratio of o2 in water o2 = molar_masses[self.O2] / ( molar_masses[self.O2] + 2 * molar_masses[self.H2]) # equation for mass flow balance cooling water residual = [] residual += [self.inl[0].m.val_SI - self.outl[0].m.val_SI] # equations for mass flow balance of the fuel cell residual += [o2 * self.outl[1].m.val_SI - self.inl[1].m.val_SI] residual += [(1 - o2) * self.outl[1].m.val_SI - self.inl[2].m.val_SI] return residual
[docs] def mass_flow_func_doc(self, label): r""" Equations for mass conservation. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'O_2 = &\frac{M_{O_2}}{M_{O_2} + 2 \cdot M_{H_2}}\\' + '\n' r'0=&O_2\cdot\dot{m}_\mathrm{H_{2}O,out,1}-' r'\dot{m}_\mathrm{O_2,in,2}\\' + '\n' r'0 =&\left(1 - O_2\right) \cdot \dot{m}_\mathrm{H_{2}O,out,2}-' r'\dot{m}_\mathrm{H_2,in,3}\\' + '\n' r'\end{split}' ) return generate_latex_eq(self, latex, label)
[docs] def mass_flow_deriv(self): r""" Calculate the partial derivatives for all mass flow balance equations. Returns ------- deriv : ndarray Matrix with partial derivatives for the mass flow equations. """ # derivatives for mass flow balance in the heat exchanger deriv = np.zeros((3, 5 + self.num_vars, self.num_nw_vars)) deriv[0, 0, 0] = 1 deriv[0, 3, 0] = -1 # derivatives for mass flow balance for oxygen input o2 = molar_masses[self.O2] / ( molar_masses[self.O2] + 2 * molar_masses[self.H2]) deriv[1, 4, 0] = o2 deriv[1, 1, 0] = -1 # derivatives for mass flow balance for hydrogen input deriv[2, 4, 0] = (1 - o2) deriv[2, 2, 0] = -1 return deriv
[docs] def reactor_pressure_func(self): r""" Equations for reactor pressure balance. Returns ------- residual : list Residual values of equation. .. math:: 0 = p_\mathrm{in,2} - p_\mathrm{out,2}\\ 0 = p_\mathrm{in,3} - p_\mathrm{out,2} """ return [ self.outl[1].p.val_SI - self.inl[1].p.val_SI, self.outl[1].p.val_SI - self.inl[2].p.val_SI]
[docs] def reactor_pressure_func_doc(self, label): r""" Equations for reactor pressure balance. Parameters ---------- label : str Label for equation. Returns ------- latex : str LaTeX code of equations applied. """ latex = ( r'\begin{split}' + '\n' r'0 = & p_\mathrm{in,2} - p_\mathrm{out,2}\\' + '\n' r'0 = & p_\mathrm{in,3} - p_\mathrm{out,2}\\' + '\n' r'\end{split}') return generate_latex_eq(self, latex, label)
[docs] def reactor_pressure_deriv(self): r""" Calculate the partial derivatives for combustion pressure equations. Returns ------- deriv : ndarray Matrix with partial derivatives for the pressure equations. """ deriv = np.zeros((2, 5 + self.num_vars, self.num_nw_vars)) # derivatives for pressure oxygen inlet deriv[0, 1, 1] = -1 deriv[0, 4, 1] = 1 # derivatives for pressure hydrogen inlet deriv[1, 2, 1] = -1 deriv[1, 4, 1] = 1 return deriv
[docs] def calc_P(self): r""" Calculate fuel cell power output. Returns ------- P : float Value of power output. .. math:: \begin{split} P = & +\dot{m}_{in,2} \cdot \left( h_{in,2} - h_{in,2,ref} \right)\\ & + \dot{m}_{in,3} \cdot \left( h_{in,3} - h_{in,3,ref} - e_0 \right)\\ & - \dot{m}_{in,1} \cdot \left( h_{out,1} - h_{in,1} \right)\\ & - \dot{m}_{out,2} \cdot \left( h_{out,2} - h_{out,2,ref} \right)\\ \end{split} Note ---- The temperature for the reference state is set to 25 °C, thus the produced water must be liquid as proposed in the calculation of the minimum specific energy for oxidation: :py:meth:`tespy.components.reactors.fuel_cell.FuelCell.calc_e0`. The part of the equation regarding the cooling water is implemented with negative sign as the energy for cooling is extracted from the reactor. - Reference temperature: 298.15 K. - Reference pressure: 1 bar. """ T_ref = 298.15 p_ref = 1e5 # equations to set a reference point for each h2o, h2 and o2 h_refh2o = h_mix_pT([1, p_ref, 0, self.outl[1].fluid.val], T_ref) h_refh2 = h_mix_pT([1, p_ref, 0, self.inl[2].fluid.val], T_ref) h_refo2 = h_mix_pT([1, p_ref, 0, self.inl[1].fluid.val], T_ref) val = ( self.inl[2].m.val_SI * ( self.inl[2].h.val_SI - h_refh2 - self.e0 ) + self.inl[1].m.val_SI * (self.inl[1].h.val_SI - h_refo2) - self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI ) - self.outl[1].m.val_SI * (self.outl[1].h.val_SI - h_refh2o) ) return val
[docs] def initialise_fluids(self): # Set values to pure fluid on gas inlets and water outlet. self.inl[1].fluid.val[self.O2] = 1 self.inl[2].fluid.val[self.H2] = 1 self.outl[1].fluid.val[self.H2O] = 1 self.inl[1].source.propagate_fluid_to_source( self.inl[1], self.inl[1].source) self.inl[2].source.propagate_fluid_to_source( self.inl[2], self.inl[2].source) self.outl[1].target.propagate_fluid_to_target( self.outl[1], self.outl[1].target)
[docs] def initialise_source(self, c, key): r""" Return a starting value for pressure and enthalpy at inlet. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. .. math:: val = \begin{cases} 5 \cdot 10^5 & \text{key = 'p'}\\ h\left(T=293.15, p=5 \cdot 10^5\right) & \text{key = 'h'} \end{cases} """ if key == 'p': return 5e5 elif key == 'h': flow = c.get_flow() T = 20 + 273.15 return h_mix_pT(flow, T)
[docs] def initialise_target(self, c, key): r""" Return a starting value for pressure and enthalpy at outlet. Parameters ---------- c : tespy.connections.connection.Connection Connection to perform initialisation on. key : str Fluid property to retrieve. Returns ------- val : float Starting value for pressure/enthalpy in SI units. .. math:: val = \begin{cases} 5 \cdot 10^5 & \text{key = 'p'}\\ h\left(T=323.15, p=5 \cdot 10^5\right) & \text{key = 'h'} \end{cases} """ if key == 'p': return 5e5 elif key == 'h': flow = c.get_flow() T = 50 + 273.15 return h_mix_pT(flow, T)
[docs] def propagate_fluid_to_target(self, inconn, start): r""" Propagate the fluids towards connection's target in recursion. Parameters ---------- inconn : tespy.connections.connection.Connection Connection to initialise. start : tespy.components.component.Component This component is the fluid propagation starting point. The starting component is saved to prevent infinite looping. """ if inconn == self.inl[0]: outconn = self.outl[0] for fluid, x in inconn.fluid.val.items(): if (outconn.fluid.val_set[fluid] is False and outconn.good_starting_values is False): outconn.fluid.val[fluid] = x outconn.target.propagate_fluid_to_target(outconn, start)
[docs] def propagate_fluid_to_source(self, outconn, start): r""" Propagate the fluids towards connection's source in recursion. Parameters ---------- outconn : tespy.connections.connection.Connection Connection to initialise. start : tespy.components.component.Component This component is the fluid propagation starting point. The starting component is saved to prevent infinite looping. """ if outconn == self.outl[0]: inconn = self.inl[0] for fluid, x in outconn.fluid.val.items(): if (inconn.fluid.val_set[fluid] is False and inconn.good_starting_values is False): inconn.fluid.val[fluid] = x inconn.source.propagate_fluid_to_source(inconn, start)
[docs] def calc_parameters(self): r"""Postprocessing parameter calculation.""" self.Q.val = - self.inl[0].m.val_SI * ( self.outl[0].h.val_SI - self.inl[0].h.val_SI) self.pr.val = self.outl[0].p.val_SI / self.inl[0].p.val_SI self.e.val = self.P.val / self.inl[2].m.val_SI self.eta.val = self.e.val / self.e0 i = self.inl[0].get_flow() o = self.outl[0].get_flow() self.zeta.val = ( (i[1] - o[1]) * np.pi ** 2 / ( 4 * i[0] ** 2 * (self.inl[0].vol.val_SI + self.outl[0].vol.val_SI) ) )