Functions of the TexTOM module

Moritz Frewein

January 17, 2025

Contents

1__Introduction|
[L.I Texture Tomography|

12 Configuration|

|3 Handling of the TexTOM software|

4 Workflow!
4.1 Data acquisition] e

4.2 Data integration| Lo e
[A3 Alignment]

lcheck statel
[miegrate].
[Egn_datal

check_alignment_consistency|
lcheck_alignment_projection| oL oo

lcheck fit_averagel e 14

[check fit randoml e 14
Checkresiduald o o o 14
lcheck_projections_average| L 15

|check_projections_residuals|. oo oo 15
[check_projections_orientations] 15

15
16
[show volumd 16
FROWSTOOIDN - - -« v o v oo e e 16

[fhow_volumelpll 17
[Fhow histogram| L 17

Ishow _correlations| e 18
Bhowvoxel odfl 18
[show_voxel_polefigure|.o o oo 18
Feconstruct T Fulll .« . o o o o e 19
Baveresulfslo 19
Ookxdmfl 20
Metoesults o o e e 20
DoadTesulfs] o v v o e e e 20
st results foaded|. 20

Bavelmages| 20
[ortintegrated files| 21

1 Introduction

1.1 Texture Tomography

Texture tomography is a way of inverting X-ray tensor tomography data into local orientation
distribution functions (ODF) of diffracting crystallites. It relies on a priori-knowledge of the crys-
tal structure a from there models diffraction patterns. For parameter optimisation it refines the
coefficients of basis functions constructing the ODF. This approach is particularly suited for poly-
crystalline samples with relatively wide distributions such as biomineralized tissue.

For a detailled description of mathematical model and the experimental procedure refer to
Frewein, M. P. K., Mason, J., Maier, B., Colfen, H., Medjahed, A., Burghammer, M., Allain, M. &
Griinewald, T. A. (2024). TUCrJ, 11, 809-820. https://doi.org/10.1107/52052252524006547

and references therein.

1.2 Installation

TexTOM was written and tested in Python 3.11 and in principal requires only a python installation
(3.9 to 3.12) and a terminal. It can be used via scripts, jupyter notebooks or in iPython mode
through the terminal.

The TexTOM core for reconstructions currently depends on the packages Scipy, Numba, H5py
and Orix. The recommended installation using the full pipeline, including also data integration and
sample alignment requires the installation of pyFAI and Mumott.

We recommend creating a virtual venv or conda environment and installing the package via pip:

python -m venv ~/.venv/textom
source ~/.venv/textom/bin/activate

or

conda create --name textom python=3.11
conda activate textom

then
pip install textom

It can also be built from source: https://gitlab.fresnel.fr/textom/textom/|

To start TexTOM in iPython mode, make sure your environment is activate and type textom.
All TexTOM core functions will be available in the namespace.

You can also import them into a script or jupyter notebook:

from textom import *

https://gitlab.fresnel.fr/textom/textom/

2 Configuration

After installing or updating TexTOM, we recommend opening the configuration file primarily to
set how many CPUs your machine has for data processing. Type textom_config in your terminal
and it will open the config file in your standard text editor. A standard config file will look like the
following:

import numpy as np # don’t delete this line
g L s S s s S s S s s

Define how many cores you want to use
n_threads = 8

Choose if you want to use a GPU for integration and alignment
use_gpu = True

Choose your precision
recommended np.float64 for double or np.float32 for single precision
data_type = np.float32

After making your changes, you can save the file and close it. If you plan to use a GPU for
integration, you need to additionally install OpenCL, check the pyFAI documentation for further

information (sec. [4.2)).

3 Handling of the TexTOM software

TexTOM is conceived as a commandline software in iPython. Its high-level library (section [5)) is
aimed to be usable without advanced knowledge in python programming. Part of its user-interface
consist of files created in the

4 Workflow

4.1 Data acquisition

Recording data for texture tomography is a great challenge and can only be done at appropriate
synchrotron beamlines. This package contains a few scripts for the experiments but we recommend
contacting a beamline scientist experienced in tensor/texture tomography or 3D-XRD in order to
create acquisition scripts suitable for the beamline.

4.2 Data integration

The first step in data processing is integration, i.e. azimutal rebinning (”caking”) of the 2D-
carthesian detector images. Here we rely on the pyFAI package (https://pyfai.readthedocs.io)).
This part already requires good knowledge of your data, as you do not want to miss any peaks when
choosing the integration range. We recommend to do a test-integration during the experiment, to
set up the correct .poni-file which is needed for the integration. This file defines the geometry of
the experiment and can be created using the command pyFAI-calib. Make sure to also collect the
correct detector mask and optionally files for flatfield and darkcurrent correction.

To start the integration, in your terminal navigate to a directory which will further contain all
textom analysis data (further labelled sample_dir).

cd /path/to/textom/sample_dir

Then start textom by typing textom in your terminal. You can start the integration using the
command integrate(), upon which a file containing all necessary parameters will open:

HERHHHHHHEEE Input #HHEFHHEREHEES
path_in = ’path/to/your/experiment/overview_file.h5’
h5_proj_pattern = ’mysamplex*.1’

h5_data_path = ’measurement/eiger’

h5_tilt_angle_path = ’instrument/positioners/tilt’ # tilt angle
h5_rot_angle_path = ’instrument/positioners/rot’ # rotation angle
h5_ty_path = ’measurement/dty’ # horizontal position

h5_tz_path = ’measurement/dtz’ # vertical position

h5_nfast_path = None # fast axis number of points, None if controt
h5_nslow_path = None # slow axis number of points, None if controt
h5_ion_path = ’measurement/ion’ # photon counter if present else None

Integration mode
mode = 2 # 1: 1D, 2: 2D, 3: both

https://pyfai.readthedocs.io

parallelisation
n_tasks = 8
cores_per_task = 16

Parameters for pyFAI azimuthal integration

rad_range = [0.01, 37] # radial range

rad_unit = ’q_nm"-1’ # radial parameter and unit (’q_nm~-1’, ’’2th_deg’, etc)
azi_range = [-180, 180] # azimuthal range in degree

npt_rad = 100 # number of points radial direction

npt_azi = 120 # number of points azimuthal direction

npt_rad_1D = 2000 # number of points radial direction
int_method=(’bbox’,’csr’,’cython’) # pyFAI integration methods
poni_path = ’path/to/your/poni_file.poni’

mask_path = ’path/to/your/mask.edf’

polarisation_factor= 0.95 # polarisation factor, usually 0.95 or 0.99
flatfield_correction = None

solidangle_correction = True

darkcurrent_correction = None

HERHH B HRRHH R AR

The first part contains information about your data. We assume that these are stored in .h5 files as
common practice at the ESRF. The first line is the overview file that contains links to all datasets.
In the second line you can specify which files should be integrated using a pattern with a * serving
as a placeholder for other characters. In the following there are the .h5 internal paths to the
necessary metadata for TexTOM, which will be carried into the integrated files. h5_nfast_path and
h5_nslow_path are only relevant if the experiment was performed in scanning mode, upon which all
data of one projection will be in the same data array with the horizontal and vertical position not
specified. If the experiment was performed in continuous rotation mode, these parameters can be
set to None. The last parameter is optional for the measurement of an ionisation chamber or diode,
which records the incoming photon flux during the respective measurement.

Then choose the integration mode, 2D is required for TexTOM, 1D can be done additionally
e.g. for diffraction tomography.

In the next block declare on how many CPUs you want to work parallely, the n_tasks specifies
how many files will be integrated at the same time, cores_per_task means how many CPUs work on
each task.

The last block are parameters for pyFAI, of particular importance are the radial range, which
should cover your peaks and the number of points (npt_rad), which should be enough to resolve
the individual peaks (although the code will also handle overlapping peaks or peaks which are in
a single bin to the cost of some information loss). The required angular resolution depends on the
sharpness of the features in the data in azimutal direction, keep in mind that it is recommended
to use a similar angular resolution for the construction of orientation distribution functions and
diffractlets, where the computation time will scale with the power of 3 of the number of angular
sampling points npt_azi. Furthermore, point to the files you received from your beamline and
specify angular resolution etc.

4.3 Alignment
Data is aligned fully automatically using the function:

align_data(
pattern=’.h5’, sub_data=’data_integrated’,
g_index_range=(0,5), g_range = False,
mode=’optical_flow’, crop_image=False,
regroup_max=16,
redo_import=False, flip_fov=False,
align_horizontal=True, align_vertical=True,
pre_rec_it = 5, pre_max_it = 5,
last_rec_it = 40, last_max_it = 5,

)

The first step of the alignment is the sorting of the data. Go to the data_integrated or
data_integrated_1d directory created by the integration script and make sure that all .h5 files
are valid datasets, which you want to use for the reconstruction (other file extensions will be
ignored). Move files that you don’t want to use to a subfolder (e.g. named excluded). The program
uses all data in the sub_data directory with pattern in the filename. By default it uses data in
data_integrated/, you can use others by typing e.g. align_data(sub_data=’data_integrated_1d’)

Next, choose the g-range you want to use for alignment. You can use indices in the to restrain
the g-values using the g.index_range parameter or give a g-range directly in the units specified in
the radial_units field in the data (this parameter has priority if specified). TexTOM will average
over all data in this range and treat them as scalar tomographic data for alignment. We recommend
using either the SAXS region of the sample or a bright peak with little azimutal variation.

TexTOM uses the alignment code from the Mumott tensor tomography package, which contains
2 pipelines. By default we use the optical flow alignment, but you can choose phase matching
alignment in the parameters. If you want to crop the projections, set the crop_image parameter to
the desired borders (e.g. ((0,-1),(10,-10)) for the full image in x-direction, while cropping 10 points
at the top and bottom) Take note that cropping only works with the phase matching alignment,
which will be chosen automatically if crop_image is defined.

The textom alignment pipeline will downsample the data by combining blocks of 2x2 pixels until
arriving at the sampling defined by regroup_max, by default 16, corresponding to a downsampling
to blocks of 16x16 pixels. Then the alignment will start at the lowest sampling, take the found
values and proceed to the next highest until it reaches the original sampling. This approach has
proven efficient, but can be omitted by setting regroup_max=1.

For the remaining parameters see the description further down.

When you start the alignment, it will open a file labelled geometry.py, which contains in-
formation about the experimental setup. Most parameters are equivalent to the Mumott no-
tation (https://mumott.org/tutorials/inspect_data.html#Geometry), which defines the ar-
rangement of sample, detector, rotation and tilt angles. In addition, you need to define beam
diameter, step size and scanning mode.

When you close and save the file, it will be automatically stored in sample_dir/analysis/geometry.py
and in the following, this file will be used. You can also create a geometry file in sample_dir /analysis/
prior to starting the alignment, then this file will directly be used (e.g. when you have several sam-
ples from the same beamtime, copy the geometry file after defining it for the first sample.). The
default values are given for the configuration published in Frewein et al. ITUCRJ (2024).

https://mumott.org/tutorials/inspect_data.html#Geometry

After aligning, function will create the file analysis/alignment_result.hb in the sample directory,
which contains the shifts found in the process. Refer to this file for checking sinograms and to-
mograms after alignment. You can also use the funciton check_alignment_consistency() to check if
there are projections wich deviate from the model. Inspect them and their agreement with the data
using check_alignment_projection(g), where g is an integer number corresponding to the projection
number. This number is assigned after sorting the data files alphabetically. The x-axis label in the
plot shown by check_alignment_consistency() uses the same labelling.

If you choose to add, remove or change data or changing the g-range after doing an alignment,
redo the alignment with the setting redo_import=True. Else it will not respect the changes you
made. If you just want to change the number of interations or the regrouping, this is not necessary.

4.4 Model

Next you have to calculate the model, which consists of 2 parts: Diffractlets and Projectors.

Diffractlets are calculated from the crystal structure given by a .cif file, you have to provide.
When you start the model calculation using make model(), you will receive another file to edit
(crystal.py), containing information about the location of your .cif file, X-ray energy, g-range and
desired angular resolution. Save the file and it will be copied to sampel_dir/analysis/crystal.py. The
function will create the file crystal.h5, containing the diffractlets. As this calculation can be lengthy,
it is advised to perform it in advance and reuse crystal.h5 for other samples. If sample_dir/analysis/
contains already a crystal.hb file, it will use this without asking.

The projectors contain information on which voxels contribute to which pixel in the data and
depend on a finished alignment. Once you finished the alignment you can start calculating the
projectors, which requires some more user input for masking the sample. The program will open
a histogram of voxels based on the tomogram resulting from alignment. Choose the lower cutoff
to mask out voxels with low or zero density of crystallites, upon which you will be shown a 3D
outline of the sample. You can remove other parts of the sample using the input in the figure.
After processing, this will create a file analysis/tomo.h5, which is used in further processing of this
specific sample.

4.5 Data Pre-processing

When the model is ready, the data has to pass through a pre-processing step, where it is filtered
according to which data is masked, then renormalized and outliers are removed. You will be also
asked to choose the g-ranges around the peaks you would like to use for optimization, and to define
the detector mask. Text files will be created, these can be re-used for other samples and will
be automatically chosen if present in the analysis/ directory. There is also a simple background
subtraction pipeline, which can be turned on using the argument draw_baselines=True. Note that
this feature is still experimental and might not work with every sample.

4.6 Optimization

If all previous steps have been performed, you can start an optimization.

4.7 Visualisation

5 Functions
set_path(path)

Set the path where integrated data and analysis is stored

Parameters
path : str
full path to the directory, must contain a folder ’/data_integrated’

e
check_state()
Prints in terminal which parts of the reconstruction are ready

e
integrate()
Starts integrating raw data via pyFAI

[ToCl

align data(pattern=’.h5’, sub_data=’data_integrated’, q-index_range=(0,
5), q-range=False, crop_image=False, mode=’optical _flow’,
redo_import=False, flip_fov=False, regroup-max=16,

align horizontal=True, align vertical=True, pre_rec_it=b, pre_max_it=b,
last_rec_it=40, last_max_it=5)

Align data using the Mumott optical flow alignment

Requires that data has been integrated and that sample_dir contains
a subfolder with data

Parameters

pattern : str, optional

substring contained in all files you want to use, by default °’.h5’

sub_data : str, optiomnal
subfolder containing the data, by default ’data_integrated’
q_index_range : tuple, optional

determines which g-values are used for alignment (sums over them), by
default (0,5)
q_range : tuple, optional
give the gq-range in nm instead of indices e.g. (15.8,18.1), by default
False
crop_image : bool or tuple of int, optional
give the range you want to use in x and y, e.g. ((0,-1),(10,-10)), by
default False
mode : str, optional
choose alignment mode, ’optical_flow’ or ’phase_matching’, by default °’
optical_flow’
redo_import : bool, optional
set True if you want to recalculate data_mumott.hb5, by default False
flip_fov : bool, optional
only to be used if the fov is in the wrong order in the integrated
data files, by default False

regroup_max : int, optiomnal
maximum size of groups when downsampling for faster processing, by
default 16
align_horizontal : bool, optional
align your data horizontally, by default True
align_vertical : bool, optional
align your data vertically, by default True
pre_rec_it : int, optional

reconstruciton iterations for downsampled data, by default 5
pre_max_it : int, optional

alignment iterations for downsampled data, by default 5
last_rec_it : int, optional

reconstruciton iterations for full data, by default 40
last_max_it : int, optional

alignment iterations for full data, by default 5

check alignment _consistency()

Plots the squared residuals between data and the projected tomograms

10

check_alignment_projection(g=0)

Plots the data and the projected tomogram of projection g

Parameters

g : int, optional
projection running index, by default O

make_model ()

Calculates the TexTOM model for reconstructions

Is automatically performed by the functions that require it

preprocess_data(pattern=’.h5’, flip fov=False, baselines=True,
use_ion=True)

Loads integrated data and pre-processes them for TexTOM

Parameters
pattern : str, optional
substring contained in all files you want to use, by default ’.h5’

flip_fov : bool, optional
only to be used if the fov is in the wrong order in the integrated
data files, by default False
baselines : bool, optional
choose if you want to draw polynomial baselines, by default True
use_ion : bool, optiomnal
choose if you want to normalize data by the field ’ion’ in the
data files, by default True

11

make_fit (redo=True)

Initializes a TexTOM fit object for reconstructions
Is automatically performed by the functions that require it

Parameters
redo : bool, optional
set True for recalculating, by default True

optimize(order=0, mode=0, proj=’full’, redo fit=False, tol=0.001,
minstep=1e-09, itermax=3000, alg=’quadratic’, save h5=True)

Performs a single TexTOM parameter optimization

Parameters
order : int, optional

maximum sHSH order to be used, by default O
mode : int, optional

set 0 for only optimizing order O, 1 for highest order, 2 for all,
by default O
proj : str, optional
choose projections to be optimized: ’full’, ’half’, ’third’, ’notilt’,
by default ’full’
redo_fit : bool, optional
recalculate the fit object, by default False
tol : float, optional
tolerance for precision break criterion, by default 1e-3
minstep : float, optiomnal
minimum stepsize in line search, by default 1e-9
itermax : int, optional
maximum number of iterations, by default 3000
alg : str, optional

choose algorithm between ’backtracking’, ’simple’, ’quadratic’,
by default ’quadratic’
save_h5 : bool, optional

choose if you want to save the result to the directory analysis/fits,
by default True

e

12

optimize_auto(max_order=8, start_order=None, tol 0=1e-07, tol_1=0.001,
t0l1_2=0.0001, minstep_0=1e-09, minstep_1=1e-09, minstep_2=1e-09,
projections=’full’, alg=’quadratic’, adj_scal=False, redo_fit=False)

Automated TexTOM reconstruction workflow

Parameters
max_order : int, optional

maximum HSH order to be used, by default 8
start_order : int or None, optional

lowest order to be fitted, if None continues where you are standing,
by default None

redo_fit : bool, optional
recalculate the fit object, by default False
proj : str, optiomnal
choose projections to be optimized: ’full’, ’half’, ’third’, ’notilt’,

by default ’full’
alg : str, optional
choose algorithm between ’backtracking’, ’simple’, ’quadratic’,
by default ’quadratic’

list_opt()

Shows all stored optimizations

load_opt (hbpath="1last’)

Loads a previous Textom optimization into memory
seful: load_opt(results[’optimization’])

Parameters

hb5path : str, optional
filepath, just filename or full path
if ’last’, uses the youngest file is used in analysis/fits/,
by default ’last’

13

check_lossfunction()

No docstring available.

check fit average()

Plots the reconstructed average intensity for each projection with data

Parameters

check_fit_random(N=10, mode=’line’)

Generates TexTOM reconstructions and plots them with data for random points

Parameters
N : int, optional
Number of images created, by default 10
mode : str, optional
plotting mode, ’line’ or ’color’, by default line

check_residuals()

Plots the squared residuals summed over each projection

14

check_projections_average (G=None)

Plots the reconstructed average intensity for chosen projections with data

Parameters

G : int or ndarray or None, optional
projection indices, if None takes 10 equidistant omnes, by default None

[Tod

check_projections_residuals(G=None)

Plots the residuals per pix31l for chosen projections with data

Parameters

G : int or ndarray or None, optional
projection indices, if None takes 10 equidistant ones, by default None

e

check projections orientations(G=None)

Plots the reconstructed average orientations for chosen projections with

data
Parameters
G : int or ndarray or None, optional

projection indices, if None takes 10 equidistant omnes, by default None

Tod

calculate_orientation_statistics()

Calculates prefered orientations and stds and saves them to results dict

Mol

15

calculate_segments(thresh=10, min _segment_size=30,
max_segments_number=31)

Segments the sample based on misorientation borders

Parameters
thresh : float, optional
misorientation angle threshold inside segment in degree, by default 10
min_segment_size : int, optional
minimum number of voxels in segment, by default 30
max_segments_number : int, optional
maximum number of segments (ordered by size), by default 32

show_volume(data=’scaling’, plane=’z’, colormap=’inferno’, cut=1,
save=False, show=True)

Visualizes the whole sample by slices, colored by a value of your choice

Parameters

data : str or list, optional
name of one entry in the results dict or list of entries,
by default ’scaling’

plane : str, optiomnal
sliceplane ’x’/’y’/’z’, by default ’z’
colormap : str, optional

identifier of matplotlib colormap, default ’infermno’

https://matplotlib.org/stable/users/explain/colors/colormaps.html
cut : int, optional

cut colorscale at upper and lower percentile, by default 0.1

show slice_ipf(h, plane=’z’)

Plots an inverse pole figure of a sample slice

Parameters

16

height of the slice
plane : str, optiomnal
slice direction: x/y/z, by default ’z’

show_volume_ipf (plane=’z’, save=False, show=True)

Plots inverse pole figures as a tomogram with a slider to scroll through
the sample

Parameters
plane : str, optiomnal

slice direction: x/y/z, by default ’z’
save : bool, optional

if True, saves movie as .gif to results/images, by default False
show : bool, optional
if True, opens matplotlib window, by default True

show_histogram(x, nbins=50, cut=0.1, segments=None, save=False)

plots a histogram of a result parameter

Parameters
X : str,
name of a scalar from results
bins : int, optional
number of bins, by default 50
cut : int, optional
cut upper and lower percentile, by default 0.1
segments : list of int, optional

list of segments or None for all data, by default None

17

show_correlations(x, y, nbins=50, cut=(0.1, 0.1), segments=None,
save=False)

plots a 2D histogram between 2 result parameters

Parameters

name of a scalar from results

name of a scalar from results
bins : int, optiomnal

number of bins, by default 50
cut : tuple, optional

cut upper and lower percentile of both parameters, by default (0.1,0.1)
segments : list, optiomnal

list of segments or None for all data, by default None

[MoCl
show_voxel odf(x, y, z, num samples=1000)
Show a 3D plot of the ODF in the chosen voxel
Parameters
X : int
voxel x-coordinate
y : int
voxel y-coordinate
z : int
voxel z-coordinate
e

show_voxel polefigure(x, y, z, hkl=(1, 0, 0), mode=’density’,
alpha=0.1, num samples=10000.0)

Show a polefigure plot for the chosen voxel and hkl

Parameters

18

voxel x-coordinate

y : int
voxel y-coordinate
z : int

voxel z-coordinate
hkl : tuple, optiomnal

Miller indices, by default (1,0,0)
mode : str, optiomnal

plotting style ’scatter’ or ’density’, by default ’density’
alpha : float, optional

opacity of points, only for scatter, by default 0.1
num_samples : int/float, optional

number of samples for plot generation, by default 1le4

reconstruct_1d full(redo_import=False, only mumottize=False,
batch_size=10)

Reconstructs standard tomographic data such as azimutally averaged
diffraction data. Uses the same alignment as textom

Parameters
redo_import : bool, optional
description, by default False
only_mumottize : bool, optional
only preprocesses a file analysis/recld/data_recld.h5, by default False
batch_size : int, optional
number of g-values to load at the same time. Needs to be an integer
fraction
of the total number of g-values, else it will crash at the last batch.
Higher
numbers will decrease i/o time, but require more memory, by default 10

e

save_results()

Saves the results dictionary to a hb5 file

19

link xdmf (paths)

No docstring available.

list results()

Shows all results .h5 files in results directory

load results(hbpath=’last’, make bg nan=False)

Loads the results from a hb file do the results dictionary

list_results_loaded()

Shows all results currently in memory

save_images(x, ext=’raw’)

Export results as .raw or .tiff files for dragonfly

Parameters
X : str,
name of a scalar from results, e.g. ’scaling’

20

sort_integrated files(source=’data_integrated’,
target=’data integrated_1d’, check end=-6, pattern=’.h5’)

Reads all filenames in source folder and checks if the same exist in target
Moves the non-overlapping to an ’excluded’-subfolder

Parameters
source : str, optional

directory with sorted files, by default ’data_integrated’
target : str, optional

directory with files to sort, by default ’data_integrated_1d’
check_end : int, optiomnal

index of the last character of the filename to check, by default -6
pattern : str, optional

only filenames that contain this are searched, by default ’.hb’

e
help(method=None, module=None, filter=’’)
Prints information about functions in this library
Parameters
method : str or None, optional
get more information about a function or None for overview over all
functions, by default None
module : str or None, optional
choose python module or None for the base TexTOM library, by default
None
filter : str, optiomnal
filter the displayed functions by a substring, by default °’°
e

21

	Introduction
	Texture Tomography
	Installation

	Configuration
	Handling of the TexTOM software
	Workflow
	Data acquisition
	Data integration
	Alignment
	Model
	Data Pre-processing
	Optimization
	Visualisation

	Functions
	set_path
	check_state
	integrate
	align_data
	check_alignment_consistency
	check_alignment_projection
	make_model
	preprocess_data
	make_fit
	optimize
	optimize_auto
	list_opt
	load_opt
	check_lossfunction
	check_fit_average
	check_fit_random
	check_residuals
	check_projections_average
	check_projections_residuals
	check_projections_orientations
	calculate_orientation_statistics
	calculate_segments
	show_volume
	show_slice_ipf
	show_volume_ipf
	show_histogram
	show_correlations
	show_voxel_odf
	show_voxel_polefigure
	reconstruct_1d_full
	save_results
	link_xdmf
	list_results
	load_results
	list_results_loaded
	save_images
	sort_integrated_files
	help

