
InsideOpt Seeker(TM) 1.0.0 Reference Manual

October 2023

1

Contents

1 Introduction 4

2 The Environment Class 5
2.1 Environment Creation and Termination 5
2.2 Basic Decision Variables . 6
2.3 Meta Decision Variables . 7

2.3.1 The Permutation Class 8
2.4 Unary Operators . 9
2.5 Binary Operators . 10
2.6 Indexing . 11
2.7 Conditioning . 12
2.8 Aggregation . 13

2.8.1 Sum . 13
2.8.2 Product . 14
2.8.3 Maximum . 15
2.8.4 Minimum . 16
2.8.5 ArgMax . 17
2.8.6 ArgMin . 18
2.8.7 And . 19
2.8.8 Or . 20
2.8.9 Arithmetic Mean . 21
2.8.10 Variance . 22
2.8.11 Unbiased Variance . 23
2.8.12 Standard Deviation . 24
2.8.13 Norm 1 . 25
2.8.14 Norm 2 . 26
2.8.15 Geometric Mean . 27
2.8.16 Root Mean Squared Value 28
2.8.17 Average Absolute Value 29

2.9 Quantiles and Sorting . 30
2.9.1 The Sorting Class . 31

2.10 Conversion . 32
2.11 Efficient Boolean Indicators . 33

2.11.1 Switch Conditions . 33
2.11.2 Interval Conditions . 34

2.12 User-Defined Terms . 35
2.12.1 The UserEvalTerm Class 36
2.12.2 The UserEvalVector Class 37
2.12.3 The IncPair Type . 38

2.13 Nested Linear Optimization . 39
2.13.1 The LP Class . 40

2.14 Canonical Distribution Terms . 41
2.15 User-Defined Stochastic Distributions 43

2.15.1 The UserDistribution Class 44

2

2.15.2 The UserVectorDistribution Class 45
2.16 Decision-Dependent Distributions 46

2.16.1 The UserStochTerm Class 47
2.16.2 The UserStochVector Class 48

2.17 Stochastic Aggregation . 49
2.17.1 Parametric Statistics . 49
2.17.2 Order Statistics and Probability Masses 50
2.17.3 Descriptive Statistics . 51

2.18 Constraints . 52
2.18.1 Constraint Generation . 52
2.18.2 Constraint Composition 53
2.18.3 Constraint Posting and Joint Generation and Posting . . 54

2.19 Optimization Functions . 55
2.20 Status, Progress Reports, and Search Statistics 56

2.20.1 The StatusType Enumeration 57
2.21 Parameters . 58

3 The Term Class 60
3.1 Construction . 60
3.2 Unary Operators . 61
3.3 Binary Operators . 62

3.3.1 Arithmetic Operators . 62
3.3.2 Logic Operators . 63

3.4 Term Status Check . 64

3

1 Introduction

The Seeker(TM) Library consists of two main classes, Env and Term, plus some
few helper classes. This reference manual lists the functions provided by the-
ses classes, as well as some helper classes. For more detailed background on
these functions, as well as examples that illustrate their use, please refer to the
Seeker(TM) User’s Manual. The purpose of this Reference Manual is to provide
a quick reference guide to look up functions quickly when developing a new
Seeker(TM) optimization model.

4

2 The Environment Class

2.1 Environment Creation and Termination

• Env(string): Constructor. Creates a deterministic Seeker(TM) environ-
ment, provided a valid license file name is given.

• Env(string, bool stochastic): Constructor. Creates a stochastic
Seeker(TM) environment, provided ”stochastic=true” and a valid license
file name is given.

• Env::Env(string license, int processID, int runID): Creates the
Seeker(TM) environment which will coordinate with other processes where
the environment was created using the exact same unique ”runID” integer
value. The processID numbers range from 0 to however many parallel runs
your license allows. Use 0 for your first parallel process, 1 for your second,
2 for your third, and so on. Note: It is important to start at 0 and
count up the processIDs for this process to work properly. Do
not run two different optimization processes for different models
using the same runID!

• Env::Env(string license, int processID, int runID, bool stochas-
tic): Creates a stochastic Seeker(TM) environment which will coordinate
with other processes where the environment was created using the exact
same unique ”runID” integer value. The processID numbers range from
0 to however many parallel runs your license allows. Use 0 for your first
parallel process, 1 for your second, 2 for your third, and so on. Note: It
is important to start at 0 and count up the processIDs for this
process to work properly. Do not run two different optimization
processes for different models using the same runID!

• void end(void): Must be called before terminating the environment to
avoid memory leaks.

• ∼Env(void): Destructor. Terminates the Seeker(TM) environment.

5

2.2 Basic Decision Variables

• Term continuous(double l, double h): Creates a variable that can
take any continuous floating point value within the interval [l, h]. At the
beginning of the optimization, the variable is initialized with an unspeci-
fied value in the same interval.

• Term continuous(double l, double h, double v): Creates a variable
that can take any continuous floating point value within the interval [l, h].
At the beginning of the optimization, the variable is initialized with value
v.

• Term ordinal(double l, double h): Creates a variable that can take
any integer value within the interval [l, h]. At the beginning of the op-
timization, the variable is initialized with an unspecified integer value in
the same interval.

• Term ordinal(double l, double h, double v): Creates a variable that
can take any integer value within the interval [l, h]. At the beginning of
the optimization, the variable is initialized with value round(v), where
the function round returns the nearest integer value within the allowed
interval.

• Term categorical(double l, double h): Creates a variable that can
take any integer value within the interval [l, h]. At the beginning of the
optimization, the variable is initialized with an unspecified value in the
same interval. The difference to the same ”Ordinal” variable is how the
variable is handled within the optimization.

• Term categorical(double l, double h, double v): Creates a variable
that can take any integer value within the interval [l, h]. At the beginning
of the optimization, the variable is initialized with value round(v), where
the function round returns the nearest integer value within the allowed
interval. The difference to the same ”Ordinal” variable is how the variable
is handled within the optimization.

• Term categorical(double l, double h, vector<int> allowed): Cre-
ates a variable that can take any integer value within the interval [l, h] that
is listed in ”allowed”. At the beginning of the optimization, the variable
is initialized with an unspecified value in ”allowed”.

• Term categorical(double l, double h, vector<int> allowed, dou-
ble v): Creates a variable that can take any integer value within the
interval [l, h] that is listed in ”allowed”. At the beginning of the optimiza-
tion, the variable is initialized with value round(v), where the function
round returns the nearest integer value within the allowed interval. This
value is required to be listed in ”allowed.”

6

2.3 Meta Decision Variables

• Partition partition(int numberOfPartitions, int numberOfItems):
Creates a partitioning that distributes items numbered from 0 to num-
berOfItems-1 into numberOfPartitions partitions.

• Partition packing(int numberOfSets, int numberOfItems):Creates
a packing that distributes items numbered from 0 to numberOfItems-1 over
numberOfSets sets, whereby some items may not be assigned to any set.

• Term boolean(Partition part, int item, int index): Returns a term
that is true if and only if item item is assigned to the set/partition with
index index.

• vector<Term> convex combination(int n): Returns a vector of con-
tinuous 0 to 1 decision variables that will always sum to 1.

• Permutation permutation(int n): Creates a Permutation object from
which two different sets of ordinal decision variables, which each form a
permutation.

7

2.3.1 The Permutation Class

• vector<Term> Permutation::get permutation(void): Returns the
values of n integer variables in [0, . . . , n−1] which are all different, thereby
forming a permutation.

• vector<Term> Permutation::get permutation inverse(void): Re-
turns the values of n integer variables in [0, . . . , n−1] which are all different,
thereby forming a permutation, which is the inverse of the permutation
provided by ”get permutation”.

8

2.4 Unary Operators

• Term abs(Term a): Returns the value of a if a ≥ 0 and −a otherwise.

• Term sqr(Term a): Returns a2.

• Term sqrt(Term a): Returns
√
a if a ≥ 0. Returns ”undefined” other-

wise.

• Term exp(Term a): Returns ea, where e is the Euler number.

• Term log(Term a): Returns the natural logarithm, log(a) if a > 0.
Returns ”undefined” otherwise.

• Term min 0(Term a): Returns the value of a if a < 0, and 0 otherwise.

• Term max 0(Term a): Returns the value of a if a > 0, and 0 otherwise.

• Term sin(Term a): Returns the sine of a in radians: sin(a).

• Term cos(Term a): Returns the cosine of a in radiance: cos(a).

• Term ceil(Term a): Returns the smallest possible integer value which
is greater than or equal to the value of a.

• Term floor(Term a): Returns the largest possible integer value which
is less than or equal to the value of a.

• Term round(Term a): Returns the integral value that is nearest to the
value of a, with halfway cases rounded away from zero.

• Term trunc(Term a): Rounds the value of a towards zero and returns
the nearest integral value that is not larger in magnitude than a.

9

2.5 Binary Operators

• Term abs(Term a, Term b): Returns |a− b|.

• Term eucl(Term a, Term b): Returns (a− b)2.

• Term power round exp(Term a, Term b): Returns ab̄ if a ̸= 0, where
b̄ = round(b). Returns 1 if a = b̄ = 0, and 0 if a = 0 and b̄ ̸= 0.

• Term power(Term a, Term b): Returns ab if a > 0, and ”undefined”
if a < 0. Returns 1 if a = b = 0, and 0 if a = 0 and b ̸= 0.

• Term round div(Term a, Term b): If b̄ ̸= 0, the operator returns the
nearest integer that is not larger in magnitude than ā/b̄ (rounding towards
zero), whereby b̄ = round(b). Returns ”undefined” if b̄ = 0.

• Term div(Term a, Term b): If b ̸= 0, the operator returns the nearest
integer that is not larger in magnitude than a/b (rounding towards zero).
Returns ”undefined” if b = 0.

• Term round mod(Term a, Term b): If b̄ ̸= 0, the operator returns
ā − (ā div b̄) ∗ b̄, whereby x̄ = round(x). If b̄ = 0, the operator returns
”undefined.”

• Term mod(Term a, Term b): Undefined, use ”Term Term::operator%(
Term a, Term b).”

10

2.6 Indexing

• template <class T>
Term index(Term ind, const vector<T>& terms): For any integer
value that ”ind” takes in the set {0, . . . , terms.size() − 1}, the operator
returns the value of ”terms[ind].” The return value is ”undefined” if the
value of ”ind” does not fall into this set. The template type ”T” must
match either Term, bool, int, long, float, or double.

• template <class T>
Term index(Term ind1, Term ind2, const vector<vector<T>>&
terms): For any integer value that ”ind1” takes in the set {0, . . . , terms
.size()− 1}, and for any integer value that ”ind2” takes in the set {0, . . . ,
terms[ind1].size()−1}, the operator returns the value of ”terms[ind1][ind2].”
The return value is ”undefined” if any of the values of ”ind1” and ”ind2”
do not fall into the respective sets. The template type ”T” must match
either Term, bool, int, long, float, or double.

Note: Please check carefully that the index term or terms only take
feasible values that fit the dimensions of the vector or matrix pro-
vided. Seeker(TM) will exit if this is not the case and the result of this
term is material for the objective or the constraint status.

11

2.7 Conditioning

• Term if (Term condTerm, Term thenTerm, Term elseTerm):
Returns the value of ”thenTerm” if ”condTerm” evaluates to non-Zero,
and the value of ”elseTerm” otherwise.

• template <class T> Term if (Term condTerm, Term thenTerm,
T elseTerm): Returns the value of ”thenTerm” if ”condTerm” evaluates
to non-Zero, and ”elseTerm” of type ”T” otherwise, whereby the type ”T”
is either bool, int, long, float, or double.

• template <class T> Term if (Term condTerm, T thenTerm,
Term elseTerm): Returns the value of ”thenTerm” of type ”T” if ”cond-
Term” evaluates to non-Zero, and the value of ”elseTerm” otherwise,
whereby the type ”T” is either bool, int, long, float, or double.

• template <class T, class S> Term if (Term condTerm, T then-
Term, S elseTerm): Returns the value of ”thenTerm” of type ”T” if
”condTerm” evaluates to non-Zero, and ”elseTerm” of type ”S” other-
wise, whereby the types ”T” and ”S” are either bool, int, long, float, or
double.

12

2.8 Aggregation

2.8.1 Sum

• Term sum(vector<Term> terms): Returns the sum of the values in
”terms.”

• Term sum if(vector<Term> terms, Partition part, int i): Returns
the sum over all terms in terms whose index in the vector corresponds to
the items in partition i in the partitioning part.

• Term sum if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the sum of
the terms ’terms’ for which their corresponding switch condition matches
the corresponding case.

• Term sum if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the sum of those terms in ’terms’
for which the corresponding SwitchCondition object matches its caseIn-
dex’th case.

• Term sum if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the sum of the terms ’terms’ for which their corresponding interval condi-
tion term falls into the corresponding interval [lows[i], highs[i]].

• Term sum if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the sum of those terms
in ’terms’ for which the corresponding interval condition term falls into
[low, high].

13

2.8.2 Product

• Term prod(vector<Term> terms): Returns the product of the values
in ”terms.”

• Term prod if(vector<Term> terms, Partition part, int i): Returns
the product over all terms in terms whose index in the vector corresponds
to the items in partition i in the partitioning part.

• Term prod if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the prod-
uct of the terms ’terms’ for which their corresponding switch condition
matches the corresponding case.

• Term prod if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the product of those terms in
’terms’ for which the corresponding SwitchCondition object matches its
caseIndex’th case.

• Term prod if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the product of the terms ’terms’ for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]].

• Term prod if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the product of those
terms in ’terms’ for which the corresponding interval condition term falls
into [low, high].

14

2.8.3 Maximum

• Term max(vector<Term> terms): Returns the maximum of the val-
ues in ”terms.”

• Term max if(vector<Term> terms, Partition part, int i): Re-
turns the maximum over all terms in terms whose index in the vector
corresponds to the items in partition i in the partitioning part.

• Term max if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the max-
imum of the terms ’terms’ for which their corresponding switch condition
matches the corresponding case. The value is -1e20 in case the list of
terms is empty.

• Term max if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the maximum of those terms in
’terms’ for which the corresponding SwitchCondition object matches its
caseIndex’th case. The value is -1e20 in case the list of terms is empty.

• Term max if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the maximum of the terms ’terms’ for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]]. The
value is -1e20 in case the list of terms is empty.

• Term max if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the maximum of those
terms in ’terms’ for which the corresponding interval condition term falls
into [low, high]. The value is -1e20 in case the list of terms is empty.

15

2.8.4 Minimum

• Term min(vector<Term> terms): Returns the minimum of the values
in ”terms.”

• Term min if(vector<Term> terms, Partition part, int i): Returns
the minimum over all terms in terms whose index in the vector corresponds
to the items in partition i in the partitioning part.

• Term min if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the mini-
mum of the terms ’terms’ for which their corresponding switch condition
matches the corresponding case. The value is +1e20 in case the list of
terms is empty.

• Term min if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the minimum of those terms in
’terms’ for which the corresponding SwitchCondition object matches its
caseIndex’th case. The value is +1e20 in case the list of terms is empty.

• Term min if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the minimum of the terms ’terms’ for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]]. The
value is +1e20 in case the list of terms is empty.

• Term min if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the minimum of those
terms in ’terms’ for which the corresponding interval condition term falls
into [low, high]. The value is +1e20 in case the list of terms is empty.

16

2.8.5 ArgMax

• Term argmax(vector<Term> terms): Returns the position {0, 1, . . . ,
n−1} of a term in the given vector of n terms which takes a value lower or
equal to all other terms. If more than one term determines the maximum
the position returned may correspond to any one of them. The value is
”undefined” in case the list of terms is empty.

• Term argmax if(vector<Term> terms, Partition part, int i): Re-
turns the position {0, 1, . . . , n−1} of a term in the given vector of n terms
which takes a value lower or equal to all other terms in terms whose index
in the vector corresponds to the items in partition i in the partitioning
part. The value is -1 in case the list of terms is empty.

• Term argmax if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the index
of the maximum of the terms ’terms’ for which their corresponding switch
condition matches the corresponding case. The value is -1 in case the list
of terms is empty.

• Term argmax if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the index of the maximum of
those terms in ’terms’ for which the corresponding SwitchCondition ob-
ject matches its caseIndex’th case. The value is -1 in case the list of terms
is empty.

• Term argmax if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the index of the maximum of the terms ’terms’ for which their correspond-
ing interval condition term falls into the corresponding interval [lows[i],
highs[i]]. The value is -1 in case the list of terms is empty.

• Term argmax if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the index of the max-
imum of those terms in ’terms’ for which the corresponding interval con-
dition term falls into [low, high]. The value is -1 in case the list of terms
is empty.

17

2.8.6 ArgMin

• Term argmin(vector<Term> terms): Returns the position {0, 1, . . . ,
n−1} of a term in the given vector of n terms which takes a value lower or
equal to all other terms. If more than one term determines the minimum
the position returned may correspond to any one of them. The value is
”undefined” in case the list of terms is empty.

• Term argmin if(vector<Term> terms, Partition part, int i): Re-
turns the position {0, 1, . . . , n − 1} of a term in the given vector of n
terms which takes a value greater or equal to all other terms in terms
whose index in the vector corresponds to the items in partition i in the
partitioning part. The value is -1 in case the list of terms is empty.

• Term argmin if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. The term returned will equal the index
of the minimum of the terms ’terms’ for which their corresponding switch
condition matches the corresponding case. The value is -1 in case the list
of terms is empty.

• Term argmin if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): Returns the index of the minimum of
those terms in ’terms’ for which the corresponding SwitchCondition object
matches its caseIndex’th case. The value is -1 in case the list of terms is
empty.

• Term argmin if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. The term returned will equal
the index of the minimum of the terms ’terms’ for which their correspond-
ing interval condition term falls into the corresponding interval [lows[i],
highs[i]]. The value is -1 in case the list of terms is empty.

• Term argmin if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): Returns the index of the min-
imum of those terms in ’terms’ for which the corresponding interval con-
dition term falls into [low, high]. The value is -1 in case the list of terms
is empty.

18

2.8.7 And

• Term and (vector<Term> terms): Returns 0 if any of the values
in ”terms” evaluates to 0, and 1 otherwise.

• Term and if(vector<Term> terms, Partition part, int i): Returns
0 if any of the values in ”terms” evaluates to 0 whose index in the vector
corresponds to the items in partition i in the partitioning part. The value
is ”1” in case the list of terms is empty.

• Term and if(vector<Term> terms, vector<SwitchCondition> con-
ditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns 0 if any of the values in ”terms”
evaluates to 0 for which their corresponding switch condition matches the
corresponding case, and 1 otherwise. The value is 1 in case the list of
terms is empty.

• Term and if(vector<Term> terms, vector<SwitchCondition> con-
ditions, int caseIndex): All vectors must have the exact same length.
Returns 0 if any of the values in ”terms” evaluates to 0 for which the
corresponding SwitchCondition object matches its caseIndex’th case, and
1 otherwise. The value is 1 in case the list of terms is empty.

• Term and if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns 0 if any of the val-
ues in ”terms” evaluates to 0 for which their corresponding interval con-
dition term falls into the corresponding interval [lows[i], highs[i]], and 1
otherwise. The value is 1 in case the list of terms is empty.

• Term and if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the
exact same length. Returns 0 if any of the values in ”terms” evaluates
to 0 for which their corresponding interval condition term falls into the
corresponding interval [low, high], and 1 otherwise. The value is 1 in case
the list of terms is empty.

19

2.8.8 Or

• Term or (vector<Term> terms): Returns 1 if any of the values in
”terms” does not evaluate to 0, and 0 otherwise.

• Term or if(vector<Term> terms, Partition part, int i): Returns 1
if any of the values in ”terms” does not evaluate to 0 whose index in the
vector corresponds to the items in partition i in the partitioning part, and
0 otherwise. The value is ”0” in case the list of terms is empty.

• Term or if(vector<Term> terms, vector<SwitchCondition> con-
ditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns 1 if any of the values in ”terms”
does not evaluate to 0 for which their corresponding switch condition
matches the corresponding case, and 0 otherwise. The value is 0 in case
the list of terms is empty.

• Term or if(vector<Term> terms, vector<SwitchCondition> con-
ditions, int caseIndex): All vectors must have the exact same length.
Returns 1 if any of the values in ”terms” does not evaluate to 0 for which
the corresponding SwitchCondition object matches its caseIndex’th case,
and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term or if(vector<Term> terms, vector<IntervalCondition> con-
ditions, vector<double> lows, vector<double> highs): All vectors
must have the exact same length. Returns 1 if any of the values in
”terms” does not evaluate to 0 for which their corresponding interval con-
dition term falls into the corresponding interval [lows[i], highs[i]], and 0
otherwise. The value is 0 in case the list of terms is empty.

• Term or if(vector<Term> terms, vector<IntervalCondition> con-
ditions, double low, double high): All vectors must have the exact
same length. Returns 1 if any of the values in ”terms” does not evaluate
to 0 for which their corresponding interval condition term falls into the
corresponding interval [low, high], and 0 otherwise. The value is 0 in case
the list of terms is empty.

20

2.8.9 Arithmetic Mean

• Term mean(vector<Term> terms): Returns the sum of the values
in ”terms” divided by their number.

• Term mean if(vector<Term> terms, Partition part, int i): Re-
turns the arithmetic mean of the values in ”terms” whose index in the
vector corresponds to the items in partition i in the partitioning part, and
0 otherwise. The value is ”0” in case the list of terms is empty.

• Term mean if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns the arithmetic mean of the
values in ”terms” for which their corresponding switch condition matches
the corresponding case, and 0 otherwise. The value is 0 in case the list of
terms is empty.

• Term mean if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): All vectors must have the exact same
length. Returns the arithmetic mean of the values in ”terms” for which
the corresponding SwitchCondition object matches its caseIndex’th case,
and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term mean if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns the arithmetic mean
of the values in ”terms” for which their corresponding interval condition
term falls into the corresponding interval [lows[i], highs[i]], and 0 other-
wise. The value is 0 in case the list of terms is empty.

• Term mean if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the ex-
act same length. Returns the arithmetic mean of the values in ”terms”
for which their corresponding interval condition term falls into the corre-
sponding interval [low, high], and 0 otherwise. The value is 0 in case the
list of terms is empty.

21

2.8.10 Variance

• Term variance(vector<Term> terms): Returns the variance of the
values in ”terms.” Note that this operator returns the (biased) value of

the canonical definition of the variance, i.e.,
∑

i(terms[i]−µ)2

n , whereby µ is
the mean of the values in ”terms.”

• Term variance if(vector<Term> terms, Partition part, int i): Re-
turns the biased variance estimate of the values in ”terms” whose index in
the vector corresponds to the items in partition i in the partitioning part,
and 0 otherwise. The value is ”0” in case the list of terms is empty.

• Term variance if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns the biased variance estimate
of the values in ”terms” for which their corresponding switch condition
matches the corresponding case, and 0 otherwise. The value is 0 in case
the list of terms is empty.

• Term variance if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): All vectors must have the exact same
length. Returns the biased variance estimate of the values in ”terms” for
which the corresponding SwitchCondition object matches its caseIndex’th
case, and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term variance if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns the biased variance
estimate of the values in ”terms” for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]], and
0 otherwise. The value is 0 in case the list of terms is empty.

• Term variance if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the ex-
act same length. Returns the biased variance estimate of the values in
”terms” for which their corresponding interval condition term falls into
the corresponding interval [low, high], and 0 otherwise. The value is 0 in
case the list of terms is empty.

22

2.8.11 Unbiased Variance

• Term sample variance(vector<Term> terms): Returns the unbi-
ased variance estimator for the values in ”terms.” Note that this operator

returns the unbiased value of of the variance, i.e.,
∑

i(terms[i]−µ)2

(n−1) , whereby

µ is the mean of the values in ”terms.” The list of terms must contain at
least two terms.

• Term sample variance if(vector<Term> terms, Partition part,
int i): Returns the unbiased variance estimator for the values in ”terms”
whose index in the vector corresponds to the items in partition i in the
partitioning part, and 0 otherwise. The value is ”0” in case the list of
active terms contains less than two entries.

• Term sample variance if(vector<Term> terms, vector<Switch-
Condition> conditions, vector<int> cases): All vectors must have
the exact same length. The values provided in ’cases’ must be non-negative
integers no greater than the number of matches their respective Switch-
Condition objects have been constructed with. Returns the unbiased vari-
ance estimator for the values in ”terms” for which their corresponding
switch condition matches the corresponding case, and 0 otherwise. The
value is ”0” in case the list of active terms contains less than two entries.

• Term sample variance if(vector<Term> terms, vector<Switch-
Condition> conditions, int caseIndex): All vectors must have the
exact same length. Returns the unbiased variance estimator for the values
in ”terms” for which the corresponding SwitchCondition object matches
its caseIndex’th case, and 0 otherwise. The value is ”0” in case the list of
active terms contains less than two entries.

• Term sample variance if(vector<Term> terms, vector<Interval-
Condition> conditions, vector<double> lows, vector<double>
highs): All vectors must have the exact same length. Returns the un-
biased variance estimator for the values in ”terms” for which their cor-
responding interval condition term falls into the corresponding interval
[lows[i], highs[i]], and 0 otherwise. The value is ”0” in case the list of
active terms contains less than two entries.

• Term sample variance if(vector<Term> terms, vector<Interval-
Condition> conditions, double low, double high): All vectorsmust
have the exact same length. Returns the unbiased variance estimator for
the values in ”terms” for which their corresponding interval condition term
falls into the corresponding interval [low, high], and 0 otherwise. The value
is ”0” in case the list of active terms contains less than two entries.

23

2.8.12 Standard Deviation

• Term standard deviation(vector<Term> terms): Returns the square
root of the biased variance estimate of the values in ”terms.”

• Term standard deviation if(vector<Term> terms, Partition part,
int i): Returns the root of the biased variance estimate of the values in
”terms” whose index in the vector corresponds to the items in partition i
in the partitioning part, and 0 otherwise. The value is ”0” in case the list
of terms is empty.

• Term standard deviation if(vector<Term> terms, vector<Switch-
Condition> conditions, vector<int> cases): All vectors must have
the exact same length. The values provided in ’cases’ must be non-negative
integers no greater than the number of matches their respective Switch-
Condition objects have been constructed with. Returns the root of the
biased variance estimate of the values in ”terms” for which their corre-
sponding switch condition matches the corresponding case, and 0 other-
wise. The value is 0 in case the list of terms is empty.

• Term standard deviation if(vector<Term> terms, vector<Switch-
Condition> conditions, int caseIndex): All vectors must have the
exact same length. Returns the root of the biased variance estimate of
the values in ”terms” for which the corresponding SwitchCondition object
matches its caseIndex’th case, and 0 otherwise. The value is 0 in case the
list of terms is empty.

• Term standard deviation if(vector<Term> terms, vector<Inter-
valCondition> conditions, vector<double> lows, vector<double>
highs): All vectors must have the exact same length. Returns the root
of the biased variance estimate of the values in ”terms” for which their
corresponding interval condition term falls into the corresponding interval
[lows[i], highs[i]], and 0 otherwise. The value is 0 in case the list of terms
is empty.

• Term standard deviation if(vector<Term> terms, vector<Inter-
valCondition> conditions, double low, double high): All vectors
must have the exact same length. Returns the root of the biased variance
estimate of the values in ”terms” for which their corresponding interval
condition term falls into the corresponding interval [low, high], and 0
otherwise. The value is 0 in case the list of terms is empty.

24

2.8.13 Norm 1

• Term norm1(vector<Term> terms): Returns the sum of absolute
values in ”terms.”

• Term norm1 if(vector<Term> terms, Partition part, int i): Re-
turns the sum of absolute values in ”terms” whose index in the vector
corresponds to the items in partition i in the partitioning part, and 0
otherwise. The value is ”0” in case the list of terms is empty.

• Term norm1 if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns the sum of absolute values in
”terms” for which their corresponding switch condition matches the cor-
responding case, and 0 otherwise. The value is 0 in case the list of terms
is empty.

• Term norm1 if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): All vectors must have the exact same
length. Returns the sum of absolute values in ”terms” for which the
corresponding SwitchCondition object matches its caseIndex’th case, and
0 otherwise. The value is 0 in case the list of terms is empty.

• Term norm1 if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns the sum of absolute
values in ”terms” for which their corresponding interval condition term
falls into the corresponding interval [lows[i], highs[i]], and 0 otherwise.
The value is 0 in case the list of terms is empty.

• Term norm1 if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the ex-
act same length. Returns the sum of absolute values in ”terms” for which
their corresponding interval condition term falls into the corresponding
interval [low, high], and 0 otherwise. The value is 0 in case the list of
terms is empty.

25

2.8.14 Norm 2

• Term norm2(vector<Term> terms): Returns the square root of the
sum of square values in ”terms.”

• Term norm2 if(vector<Term> terms, Partition part, int i): Re-
turns the square root of the sum of square values in ”terms” whose index
in the vector corresponds to the items in partition i in the partitioning
part, and 0 otherwise. The value is ”0” in case the list of terms is empty.

• Term norm2 if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns the square root of the sum of
square values in ”terms” for which their corresponding switch condition
matches the corresponding case, and 0 otherwise. The value is 0 in case
the list of terms is empty.

• Term norm2 if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): All vectors must have the exact same
length. Returns the square root of the sum of square values in ”terms” for
which the corresponding SwitchCondition object matches its caseIndex’th
case, and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term norm2 if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns the square root of
the sum of square values in ”terms” for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]], and
0 otherwise. The value is 0 in case the list of terms is empty.

• Term norm2 if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the ex-
act same length. Returns the square root of the sum of square values in
”terms” for which their corresponding interval condition term falls into
the corresponding interval [low, high], and 0 otherwise. The value is 0 in
case the list of terms is empty.

26

2.8.15 Geometric Mean

• Term geometric mean(vector<Term> terms): Returns the nth root
of the product of the n terms in ”terms.” It is the user’s responsibility to
make sure the values of the terms aggregated are all non-negative.

• Term geometric mean if(vector<Term> terms, Partition part,
int i): Returns the geometric mean of the values in ”terms” whose index
in the vector corresponds to the items in partition i in the partitioning
part, and 0 otherwise. The value is ”1” in case the list of terms is empty.

• Term geometric mean if(vector<Term> terms, vector<Switch-
Condition> conditions, vector<int> cases): All vectors must have
the exact same length. The values provided in ’cases’ must be non-negative
integers no greater than the number of matches their respective Switch-
Condition objects have been constructed with. Returns the geometric
mean of the values in ”terms” for which their corresponding switch con-
dition matches the corresponding case, and 0 otherwise. The value is 1 in
case the list of terms is empty.

• Term geometric mean if(vector<Term> terms, vector<Switch-
Condition> conditions, int caseIndex): All vectors must have the
exact same length. Returns the geometric mean of the values in ”terms”
for which the corresponding SwitchCondition object matches its caseIn-
dex’th case, and 0 otherwise. The value is 1 in case the list of terms is
empty.

• Term geometric mean if(vector<Term> terms, vector<Interval-
Condition> conditions, vector<double> lows, vector<double>
highs): All vectors must have the exact same length. Returns the geo-
metric mean of the values in ”terms” for which their corresponding interval
condition term falls into the corresponding interval [lows[i], highs[i]], and
0 otherwise. The value is 1 in case the list of terms is empty.

• Term geometric mean if(vector<Term> terms, vector<Interval-
Condition> conditions, double low, double high): All vectorsmust
have the exact same length. Returns the geometric mean of the values in
”terms” for which their corresponding interval condition term falls into
the corresponding interval [low, high], and 0 otherwise. The value is 1 in
case the list of terms is empty.

27

2.8.16 Root Mean Squared Value

• Term rmsv(vector<Term> terms): Returns the square root of the
mean of the squared values in ”terms.”

• Term rmsv if(vector<Term> terms, Partition part, int i): Re-
turns the square root of the mean of the squared values in ”terms” whose
index in the vector corresponds to the items in partition i in the parti-
tioning part, and 0 otherwise. The value is ”0” in case the list of terms is
empty.

• Term rmsv if(vector<Term> terms, vector<SwitchCondition>
conditions, vector<int> cases): All vectors must have the exact same
length. The values provided in ’cases’ must be non-negative integers no
greater than the number of matches their respective SwitchCondition ob-
jects have been constructed with. Returns the square root of the mean of
the squared values in ”terms” for which their corresponding switch condi-
tion matches the corresponding case, and 0 otherwise. The value is 0 in
case the list of terms is empty.

• Term rmsv if(vector<Term> terms, vector<SwitchCondition>
conditions, int caseIndex): All vectors must have the exact same
length. Returns the square root of the mean of the squared values in
”terms” for which the corresponding SwitchCondition object matches its
caseIndex’th case, and 0 otherwise. The value is 0 in case the list of terms
is empty.

• Term rmsv if(vector<Term> terms, vector<IntervalCondition>
conditions, vector<double> lows, vector<double> highs): All
vectors must have the exact same length. Returns the square root of
the mean of the squared values in ”terms” for which their correspond-
ing interval condition term falls into the corresponding interval [lows[i],
highs[i]], and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term rmsv if(vector<Term> terms, vector<IntervalCondition>
conditions, double low, double high): All vectors must have the
exact same length. Returns the square root of the mean of the squared
values in ”terms” for which their corresponding interval condition term
falls into the corresponding interval [low, high], and 0 otherwise. The
value is 0 in case the list of terms is empty.

28

2.8.17 Average Absolute Value

• Term average absolute value(vector<Term> terms): Returns the
mean of the absolute values in ”terms.”

• Term average absolute value if(vector<Term> terms, Partition
part, int i): Returns the mean of the absolute values in ”terms” whose
index in the vector corresponds to the items in partition i in the parti-
tioning part, and 0 otherwise. The value is ”0” in case the list of terms is
empty.

• Term average absolute value if(vector<Term> terms, vector<
SwitchCondition> conditions, vector<int> cases): All vectorsmust
have the exact same length. The values provided in ’cases’ must be non-
negative integers no greater than the number of matches their respective
SwitchCondition objects have been constructed with. Returns the mean
of the absolute values in ”terms” for which their corresponding switch
condition matches the corresponding case, and 0 otherwise. The value is
0 in case the list of terms is empty.

• Term average absolute value if(vector<Term> terms, vector<
SwitchCondition> conditions, int caseIndex): All vectors must
have the exact same length. Returns the mean of the absolute values
in ”terms” for which the corresponding SwitchCondition object matches
its caseIndex’th case, and 0 otherwise. The value is 0 in case the list of
terms is empty.

• Term average absolute value if(vector<Term> terms, vector<
IntervalCondition> conditions, vector<double> lows, vector<
double> highs): All vectors must have the exact same length. Returns
the mean of the absolute values in ”terms” for which their correspond-
ing interval condition term falls into the corresponding interval [lows[i],
highs[i]], and 0 otherwise. The value is 0 in case the list of terms is empty.

• Term average absolute value if(vector<Term> terms, vector<
IntervalCondition> conditions, double low, double high): All vec-
tors must have the exact same length. Returns the mean of the absolute
values in ”terms” for which their corresponding interval condition term
falls into the corresponding interval [low, high], and 0 otherwise. The
value is 0 in case the list of terms is empty.

29

2.9 Quantiles and Sorting

• vector<Term> ith smallest value(Term i, vector<Term> terms):
Returns a vector with two terms. The first holds the value of the i’th
smallest value in the list. The second gives the position of the i’th smallest
value in the list. Note that the term ’i’ can be variable but must always
evaluate to an integer number in {0, 1, . . ., n− 1} when n is the length of
the vector ’terms.’

• vector<Term> ith smallest value(int i, vector<Term> terms):
Returns a vector with two terms. The first holds the value of the i’th
smallest value in the list. The second gives the position of the i’th small-
est value in the list. Note that the term ’i’ can be variable but must always
evaluate to an integer number in {0, 1, . . ., n− 1} when n is the length of
the vector ’terms.’

• vector<Term> ith largest value(Term i, vector<Term> terms):
Returns a vector with two terms. The first holds the value of the i’th
largest value in the list. The second gives the position of the i’th largest
value in the list. Note that the term ’i’ can be variable but must always
evaluate to an integer number in {0, 1, . . ., n− 1} when n is the length of
the vector ’terms.’

• vector<Term> ith largest value(int i, vector<Term> terms): Re-
turns a vector with two terms. The first holds the value of the i’th largest
value in the list. The second gives the position of the i’th largest value in
the list. Note that the term ’i’ can be variable but must always evaluate
to an integer number in {0, 1, . . ., n−1} when n is the length of the vector
’terms.’

• Sorting int sorting(vector<Terms> terms): Returns a Sorting ob-
ject which will first round all values of the terms in the vector ’terms’.

• Sorting float sorting(vector<Terms> terms): Returns a Sorting
object which will sort the terms from smallest to largest.

• Sorting partial sorting(vector<Term> terms, int k, bool maxi-
mize): Returns a Sorting object which will sort the top (if ’maximize’ is
true, otherwise: bottom) k values of the terms in the vector ’terms.’ The
order returned is from largest to smallest when ’maximize’ is true, and
from smallest to largest otherwise.

30

2.9.1 The Sorting Class

• vector<Term> Sorting::get(void): returns the vector of values sorted
from smallest to largest, unless if the Sorting instance was created us-
ing the ’partial sorting’ environment method with the parameter ’maxi-
mize=true.’

• vector<Term> Sorting::get permutation(void): returns the vector
of positions in {0, 1, . . . , n−1} in the original vector ’terms’ that was used
to create the Sorting object.

• vector<Term> Sorting::get permutation inverse(void): returns
the vector of positions in {0, 1, . . . , n−1} in the sorted list with respect to
the original terms in the vector ’term’ that was used to create the Sorting
object

31

2.10 Conversion

• template <class T>
Term convert(T data): Turns a Boolean, integer, long integer, float, or
double into a Term.

• template <class T>
vector<Term> convert(vector<T> data): Turns a vector of Booleans,
integers, long integers, floats, or doubles into a vector of Terms.

• template <class T>
vector<vector<Term> > convert(vector <vector<T> > data):
Turns a matrix of Booleans, integers, long integers, floats, or doubles into
a matrix of Terms.

32

2.11 Efficient Boolean Indicators

2.11.1 Switch Conditions

• SwitchCondition switch condition(Term cond, vector<Term>
matches): Returns a SwitchCondition object for the Term ’cond’ for
matching one or more terms provided in the vector ’matches.’

• SwitchCondition switch condition(Term cond, int n): Returns a
SwitchCondition object for the Term ’cond’ for matching the values 0 to
n-1.

• Term boolean(SwitchCondition c, int caseIndex): Returns a term
that is true if, and only if, the conditional term underlying the SwitchCon-
dition ’c’ matches the value of the caseIndex’th matching term, whereby
’caseIndex’ must take a value between 0 and matches.size()-1 or 0 and
n-1, depending on which function was used to create SwitchCondition ’c’.
In case one or more of the terms involved take floating point values, their
values are considered identical if, and only if, their difference in value is
at most 1e-7.

33

2.11.2 Interval Conditions

• IntervalCondition interval condition(Term cond): Returns an In-
tervalCondition object for the Term ’cond.’

• Term boolean(IntervalCondition c, double low, double high): Re-
turns a term that is true if, and only if, the conditional term underlying
the IntervalCondition ’c’ is in [low,high].

34

2.12 User-Defined Terms

• Term Env::user defined term(std::vector<Term> terms, User-
EvalTerm& userEval): Creates a user-defined term. The values of
the terms in ”terms” will be provided to the overloaded function ”double
UserEvalTerm::evaluate(vector<double>)” which implements the user-de-
fined function.

• vector<Term> Env::user defined term(std::vector<Term> terms,
UserEvalVector& userEval, int numberOfTargets): Creates a user-
defined vector function. The values of the terms in ”terms” will be pro-
vided to the overloaded function ”vector<double> UserEvalVector::evalu-
ate(vector<double>)” which returns a vector of size ”numberOfTargets”
and implements the user-defined function.

Note: When creating the objects of the overloaded classes UserEval-
Term and UserEvalVector, care must be taken that these objects per-
sist until the Seeker(TM) environment is ended. Otherwise, Seeker(TM)

will make calls to these objects which may result in runtime failures.

35

2.12.1 The UserEvalTerm Class

• UserEvalTerm(void) : Base class constructor.

• virtual double evaluate(vector<double> values) = 0: Must be
overloaded to create a user defined term.

• virtual double inc evaluate(vector<int> valueIndices, vector<
double> oldValues, vector<double> values): Can be overloaded
when creating a user defined term to allow for fast recomputation. Inputs
are the indices of values that have changed, as they are indexed as input
for ”evaluate”; the old values of the input terms that have changed; the
new values of the input terms that have changed their value since the last
ca;; to ”evaluate” or ”inc evaluate.”

• virtual bool incremental(void) const = 0: Must be overloaded to
create a user defined term. Must return a static ”false” if ”inc evaluate”
was not overloaded. Otherwise return a static ”true” to enable fast re-
computation.

Note: When having ”incremental” return ’true’ and implementing
”inc evaluate,” each user-defined term that is created should be pro-
vided with its own class object!

36

2.12.2 The UserEvalVector Class

• UserEvalVector(void) : Base class constructor.

• virtual vector<double> recompute(vector<double> values) = 0:
Must be overloaded to create a user defined vector.

• virtual IncPair inc recompute(vector<int> valueIndices,
vector<double> oldValues, vector<double> values): Can be over-
loaded when creating a user defined vector to allow for fast recomputation.
Inputs are the indices of values that have changed, as they are indexed
as input for ”recompute”; the old values of the input terms that have
changed; the new values of the input terms that have changed their value
since the last call to ”recompute” or ”inc recompute.” The function must
return a pair of two vectors. The first contains the list of indices of output
values that have changed, indexed in the same order as returned by ”re-
compute” while starting the numbering at 0. The second vector contains
the list, of same length, of the new values for the respective outputs.

• virtual bool incremental(void) const = 0: Must be overloaded to cre-
ate a user defined vector. Must return a static ”false” if ”inc recompute”
was not overloaded. Otherwise return a static ”true” to enable fast re-
computation.

Note: When having ”incremental” return ’true’ and implementing
”inc recompute,” each user-defined vector that is created should be
provided with its own class object!

37

2.12.3 The IncPair Type

• typedef pair<vector<int>, vector<double> > IncPair: An IncPair
is a pair of vectors, the first of output indices that have changed, and the
second the new values of the respective outputs.

38

2.13 Nested Linear Optimization

• LP lp(vector<Term> objTerms, vector<Term>
varBounds, vector<Term> rowBounds, vector<vector<
Term>> matrix, bool maximize): Given a vector with n terms that
specify the objective function, a vector with 2n variable bounds, whereby
two consecutive values specify first the lower bound and then the upper
bound on each variable, a vector with 2m row bounds, where again the
even entries give the lower, and the odd entries specify the upper bounds
for the linear constraints, a matrix that consists of m times n entries (i.e.,
in row-wise representation), and a Boolean flag indicating whether the
linear solver is to maximize or minimize the objective, Seeker(TM) returns
an LP object from which various terms can be derived.

39

2.13.1 The LP Class

• Term LP::get solution status(void): This function should always be
called. It returns a term that reflects the value of the optimization. The
term is 1 in case the LP could be solved to optimality. The value is 0 if
the LP has no feasible solution. The value is 2 if the LP is unbounded.
The value is -1 in case the solver had a problem.

• Term LP::get objective(void): In case the status returned above is 1,
the term returned by this function reflects the optimal objective function
value.

• vector<Term> LP::get solution(void): In case the status returned
above is 1, the vector of terms returned by this function give the values of
an optimal solution.

• vector<Term> LP::get row sums(void): In case the status returned
above is 1, the vector of terms returned by this function equal the product
Ax, where A is the current matrix of the LP, and x is the optimal solution.

• Term LP::get dual status(void): This function should always be used
before any of the functions below are utilized. It returns a term that
reflects the status of the dual solution. Particularly, the term returned is
true if, and only if, the LP solver was able to find a valid dual solution.

• vector<Term> LP::get row duals(void): In case the dual status re-
turned above is true, the vector of terms returned by this function give
the row duals.

• vector<Term> LP::get column duals(void): In case the dual status
returned above is true, the vector of terms returned by this function give
the column duals.

40

2.14 Canonical Distribution Terms

• Term Env::continuous uniform(double low, double high): Returns
a data point that takes a uniformly random value in the interval [low, high].

• Term Env::discrete uniform(double low, double high): Returns a
data point that takes a uniformly random integer value in the interval
[low, high].

• Term Env::continuous exponential(double lambda, double low,
double high): Returns a data point that takes a non-negative value
sampled according to the exponential probability distribution with density
f(x) = λe−λx for x ≥ 0 and f(x) = 0, otherwise. The parameter ”lambda”
must be positive. If the value sampled by the distribution falls out of the
specified range [low, high], then the value returned will equal the closest
number within that interval.

• Term Env::discrete exponential(double lambda, double low, dou-
ble high): Returns a data point that takes a non-negative integer value
sampled according to the exponential probability distribution with den-
sity f(x) = λe−λx for x ≥ 0 and f(x) = 0, otherwise. The parameter
”lambda” must be positive. The value sampled by the distribution is first
rounded down and then, should it fall out of the specified range [low, high],
then the value returned will equal the closest integer number within that
interval. Note: Since Seeker(TM) always rounds down the sampled con-
tinuous values, this function can also be understood as creating a random
Term that follows the geometric distribution.

• Term Env::bernoulli(double prob): Creates a stochastic Term with
that takes random value 1 with probability ”prob” and 0, otherwise.

• Term Env::categorical distribution(vector<double> weights, vec-
tor<double> values): Creates a Term that takes a random value in
”values” according to the normalized distribution of the non-negative
weights in the vector ”weights.”

• Term Env::binomial(double p, long n): Creates a random Term that
takes random integer values in the interval [0, n] according to the binomial
distribution with density f(k) =

(
n
k

)
pk(1− p)n−k.

• Term Env::poisson(double lamba, double high): Creates a Term
that takes random non-negative integer values according to the Poisson

distribution with density f(k) = λke−λ

k! . If the value sampled by the
distribution is greater than ”high”, then the value returned will equal the
largest integer lower or equal ”high.”

41

• Term Env::normal(double mu, double sigma, double low, double
high): Creates a Term that takes random values according to the Normal

distribution with density f(k) = 1√
2π

e−
1
2 (

x−µ
σ)

2

. If the value sampled by

the distribution falls out of the specified range [low, high], then the value
returned will equal the closest number within that interval.

• Term Env::gamma(double shape, double scale, double high):
Creates a Term that takes random values according to the Gamma distri-
bution with density f(k) = 1

Γ(k)Θk x
k−1e−

x
Θ , whereby k > 0 is the shape

parameter and Θ > 0 is the scale parameter. If the value sampled by the
distribution is greater than ”high”, then the value returned will equal the
largest integer lower or equal ”high.”

42

2.15 User-Defined Stochastic Distributions

• Term user distribution(UserDistribution& ud): Returns a stochastic
Term that takes random values according to the user-defined distribution
”ud.” The user needs to create a class that derives from UserDistribution
and overload a single function vector<double> sample n(int n) which will
return n samples from the distribution. The maximum number n that
Seeker(TM) will ask for is given by the parameter ”resolution.”

• vector<Term> Env::user vector distribution(UserVectorDistri-
bution& ud): Returns a vector of stochastic Terms that take random val-
ues according to the joint user-defined distribution ”ud.” The user needs
to create a class that derives from UserVectorDistribution and overload
a single function vector<vector<double>> sample n(int n) which will re-
turn n samples from the joint distribution. The maximum number n that
Seeker(TM) will ask for is given by the parameter ”resolution”.

43

2.15.1 The UserDistribution Class

• UserDistribution(void) : Base class constructor.

• virtual vector<double> sample n(int n) = 0: Must be overloaded
to create a user defined distribution. The maximum number n that
Seeker(TM) will ask for is given by the parameter ”resolution”.

44

2.15.2 The UserVectorDistribution Class

• UserVectorDistribution(void) : Base class constructor.

• virtual vector<vector<double> > sample n(int n) = 0: Must be
overloaded to create a user defined vector distribution. The maximum
number n that Seeker(TM) will ask for is given by the parameter ”resolu-
tion”.

45

2.16 Decision-Dependent Distributions

• Term Env::user defined stochastic term(vector<Term> features,
UserStochTerm& ust): Returns a stochastic Term that takes random
values according to the user-defined distribution ”ust” which depends on
the current values of the deterministic terms in ”features.” Note: The
terms in ”features” cannot themselves be stochastic terms.

• vector<Term> Env::user defined stochastic vector(vector<
Term> features, UserStochVector& usv, int numberTargets):
Returns a vector of ”numberTargets” stochastic Terms that take random
values according to the joint user-defined vector distribution ”usv” which
depends on the current values of the deterministic terms in ”features.”
Note: The terms in ”features” cannot themselves be stochastic
terms.

46

2.16.1 The UserStochTerm Class

• UserStochTerm(void) : Base class constructor.

• vector<double> sample n(vector<double> features, int n): Must
be overloaded to create a user defined feature-dependent stochastic distri-
bution. The maximum number n that Seeker(TM) will ask for is given by
the parameter ”resolution”.

47

2.16.2 The UserStochVector Class

• UserStochVector(void) : Base class constructor.

• vector<vector<double>> sample n(vector<double> features, int
n): Must be overloaded to create a user defined feature-dependent stochas-
tic vector distribution. The maximum number n that Seeker(TM) will ask
for is given by the parameter ”resolution”.

48

2.17 Stochastic Aggregation

2.17.1 Parametric Statistics

• Term Env::aggregate mean(Term source): Returns the estimated
arithmetic mean value of the stochastic term ”source.” ”Source” must be
a stochastic term. The function returns a deterministic term that can be
used in constraints and the objective.

• Term Env::aggregate geometric mean(Term source): Returns the
estimated geometric mean of the stochastic term ”source.” ”Source” must
be a stochastic term. The function returns a deterministic term that can
be used in constraints and the objective.

• Term Env::aggregate variance(Term source): Returns the estimated
variance of the stochastic term ”source.” ”Source” must be a stochastic
term. The function returns a deterministic term that can be used in con-
straints and the objective.

• Term Env::aggregate aav(Term source): Returns the estimated mean
of the absolute values of the stochastic term ”source.” ”Source” must be
a stochastic term. The function returns a deterministic term that can be
used in constraints and the objective.

• Term Env::aggregate rmsv(Term source): Returns the root of the
estimated mean of the square values of the stochastic term ”source.”
”Source” must be a stochastic term. The function returns a determin-
istic term that can be used in constraints and the objective.

• Term Env::aggregate stdev(Term source): Returns the estimated
standard deviation of the stochastic term ”source.” ”Source” must be a
stochastic term. The function returns a deterministic term that can be
used in constraints and the objective.

49

2.17.2 Order Statistics and Probability Masses

• Term Env::aggregate quantile(Term source, double ratio,
bool maximize): Returns the estimated ”ratio”-quantile of the stochas-
tic term ”source.” For example, if ”ratio” = 0.75, then the term returned
by this function would provide an estimate of the 75% quantile of the
distribution of ”source.” If ”maximize” is false, we would expect 75% of
values of ”source” to be smaller than this quantile. If ”maximize” is true,
we would expect 75% of values of ”source” to be larger than this quantile.
”Source” must be a stochastic term. The function returns a deterministic
term that can be used in constraints and the objective.

• Term Env::aggregate min(Term source): Returns the estimated min-
imum value of the stochastic term ”source.” ”Source” must be a stochastic
term. The function returns a deterministic term that can be used in con-
straints and the objective.

• Term Env::aggregate max(Term source): Returns the estimated max-
imum value of the stochastic term ”source.” ”Source” must be a stochastic
term. The function returns a deterministic term that can be used in con-
straints and the objective.

• Term Env::aggregate relative frequency geq(Term source,
Term threshold): Returns the estimated probability mass of the stochas-
tic ”source” term taking a value that is greater or equal than the determin-
istic term ”threshold.” ”Source” must be a stochastic term. The function
returns a deterministic term that can be used in constraints and the ob-
jective.

• Term Env::aggregate relative frequency leq(Term source,
Term threshold): Returns the estimated probability mass of the stochas-
tic ”source” term taking a value that is lower or equal than the determin-
istic term ”threshold.” ”Source” must be a stochastic term. The function
returns a deterministic term that can be used in constraints and the ob-
jective.

• Term Env::aggregate relative frequency eq(Term source,
Term threshold): Returns the estimated probability mass of the stochas-
tic ”source” term taking a value that equals that of the deterministic term
”threshold.” ”Source” must be a stochastic term. The function returns a
deterministic term that can be used in constraints and the objective.

50

2.17.3 Descriptive Statistics

• Term Env::aggregate or(Term source): Returns a term that is true
if and only if the stochastic term ”source” is estimated to assume non-
zero values. ”Source” must be a stochastic term. The function returns a
deterministic term that can be used in constraints and the objective.

• Term Env::aggregate and(Term source): Returns a term that is true
if and only if the stochastic term ”source” is estimated to assume only non-
zero values. ”Source” must be a stochastic term. The function returns a
deterministic term that can be used in constraints and the objective.

51

2.18 Constraints

2.18.1 Constraint Generation

• Constraint leq(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l ≤ r.

• Constraint lt(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l < r.

• Constraint geq(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l ≥ r.

• Constraint gt(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l > r.

• Constraint eq(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l = r.

• Constraint neq(Term l, Term r): Creates a constraint that is true if,
and only if, for the values of the terms l and r it holds that l ̸= r.

Note: Creating a constraint has no effect on Seeker(TM) unless
the constraint is posted to the model first! Use ”enforce” to add
constraints to your model.

52

2.18.2 Constraint Composition

• Constraint and (vector<Constraint> constraints): Creates a con-
straint that is true if, and only if, all constraints in ”constraints” are true.

• Constraint or (vector<Constraint> constraints): Creates a con-
straint that is true if, and only if, at least one constraint in ”constraints”
is true.

53

2.18.3 Constraint Posting and Joint Generation and Posting

• void enforce(Constraint constraint): Only after calling this function,
Seeker(TM) will consider assignments of values to decision variables fea-
sible only of the constraint ”constraint” evaluates to ”true” under the
assignment.

• void enforce leq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l ≤ r.

• void enforce lt(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l < r.

• void enforce geq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l ≥ r.

• void enforce gt(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that l > r.

• void enforce eq(Term l, Term r): Enforces that the Seeker(TM) solver
will only consider assignments to the decision variables for which for the
values of the terms l and r it holds that r = l.

• void enforce neq(Term l, Term r): Enforces that the Seeker(TM)

solver will only consider assignments to the decision variables for which
for the values of the terms l and r it holds that r ̸= l.

54

2.19 Optimization Functions

• double minimize(Term obj, double time, double bound=-1e20):
Minimizes the target term ”obj” for ”time” seconds. The minimization
terminates early if the value of ”obj” drops to or below ”bound.” If no
bound is specified the optimization runs until the time limit.

• double maximize(Term obj, double time, double bound=1e20):
Maximizes the target term ”obj” for ”time” seconds. The maximization
terminates early if the value of ”obj” increases to or above ”bound.” If no
bound is specified the optimization runs until the time limit.

• double multi objective(vector<Term> objectives, vector<double>
fair, vector<double> excellent, vector<bool> directionMax, dou-
ble time): Optimizes the target terms ”objectives” for ”time” seconds.
The direction of the optimization of the respective objective is maximiza-
tion if, and only if, the corresponding entry in ”directionMax” is true. For
each objective, the respective values in ”fair” and ”excellent” must not be
equal and be in the correct order. For an objective to be maximized, that
value in ”excellent” is expected to be strictly greater than that in ”fair.”
For minimization, Seeker(TM) analogously expects the value in ”excellent”
to be strictly lower than that the ”fair” value.

Note: To avoid numerical problems, the user is advised to make
sure that the objective(s) to be optimized run(s) somewhere in [-1e08,
1e08]. If your optimization target can take larger absolute values,
please consider dividing the term to be optimized by 1e03 or more,
if needed. Analogously, if your objective function operates on a very
small scale, consider multiplying by 1e3 or more.

55

2.20 Status, Progress Reports, and Search Statistics

• void Env::set report(double interval): Reports the status of the
search ever ”interval” seconds. The reporting time may deviate for prob-
lems where evaluating the model takes a comparably long time.

• void Env::set report(double interval, vector<Term> reports, vec-
tor<string>): The same as above, but in this case Seeker(TM) also re-
ports the current value of all terms listed in ”reports.” To make the output
more readable or parseable, the user is asked to provide a vector of equal
length with corresponding identifiers for the reports.

• long Env::get number evaluations(void): Returns the number of ob-
jective function evaluations that Seeker(TM) conducted from creation to
the call of this routine. This can help understand how complex the eval-
uation of the model is.

• StatusType Env::get status(void) Returns the status of the last run
(see below).

56

2.20.1 The StatusType Enumeration

• ’StatusType::unoptimized’: The status request was conducted before
Seeker(TM) was called to minimize or maximize the objective.

• ’malformed’: Seeker(TM) encountered a problem in that the term to be
optimized or a constraint of the problem could not be evaluated. This
happens, for example, when dividing by 0.

• ’StatusType::infeasibleProblem’: The problem has no feasible solu-
tion and Seeker(TM) found a proof that the problem is infeasible.

• ’StatusType::infeasibleSolution’: Seeker(TM) was not able to find a
feasible solution in the time allowed, but also was not able to prove that
the problem has no feasible solutions.

• ’StatusType::timeout’: Seeker(TM) ran out of time, but found a feasible
solution that does not meet the optimization bound. Please note that the
latter may exist, but Seeker(TM) was simply not able to find it.

• ’StatusType::bounded’: Seeker(TM) found a feasible solution that meets
or exceeds the optimization bound and consequent;y stopped the optimiza-
tion before the allotted time ran out.

• ’StatusType::optimal’: Seeker(TM) found a feasible solution that is
provably optimal for the problem.

57

2.21 Parameters

• void Env::set parameters(vector<double> pa): The function sets
the internal parameters of Seeker(TM). As input, the function expects a
vector of 191 doubles, whereby the first 180 are expected to take integer
values in [−1000, 1000] and the final 11 parameters to take integer values
in [1, 100]. Note: This function should be used in combination
with an automatic tuner after the model development process is
completed and before the model is deployed.

• void Env::set local improvement size(double s): Sets the relative
size of the neighborhood considered when trying to improve a solution lo-
cally. The input parameter s is expected to be in [0, 1]. The neighborhood
is comparably larger, and local improvements are comparably more costly,
when s is closer to 1.

• void Env::set global improvement size(double s): Sets the relative
size of the neighborhood considered when trying to improve a solution by
means of recombination. The input parameter s is expected to be in [0, 1].
The neighborhood is comparably larger, and recombination improvements
are comparably more costly, when s is closer to 1.

• void Env::set exploration size(double s, double t): Sets the relative
size of the neighborhood considered when trying to explore the larger
search space. The input parameters s < t are expected to be in [0, 1].
The neighborhood can be comparably larger, and exploration excursions
can be comparatively more elaborate, when t is closer to 1. Analogously,
the neighborhood may be comparably smaller, and exploration excursions
will then focus more closely in the neighborhood of the current solution,
when s is closer to 0.

• void Env::set restart likelihood(double prob): Sets the probability
”prob” in [0, 1] which affects the frequency with which the search starts
from a new exploration point. This value can have dramatic effects on
search performance and should be changed with care. A value of 0.01
would be considered high for this parameter.

• Env::set stochastic parameters(int resolution, double speed):
Even though this is not exactly how Seeker(TM) works, you may think
of the ”resolution” parameter as the number of stochastic ”scenarios,”
whereby all ”scenarios” are considered equally likely. This parameter
thereby determines the smallest event probability that Seeker(TM) will
be able to consider, hence the name ”resolution.” The second parameter
”speed” has to be set in the interval [0, 1] and affects the speed and ac-
curacy with which Seeker(TM) attempts to assess the model. Generally
speaking, Seeker(TM) will need more time per evaluation if the speed is
set closer to 0 and less time when set closer to 1 (at the cost of larger
approximation errors).

58

• void Env::set parallel coordination parameters(double interval,
double initialWait): Sets the time interval ”interval” seconds in which
a process will coordinate its work with the other processes, as well as the
time ”initialWait (also in seconds) that the process should wait initially
or after an internal restart before coordinating.

59

3 The Term Class

3.1 Construction

A term cannot be constructed by the user directly. To construct a term, please
use the respective environment functions. Note that decision variables are terms,
data can be converted into terms using ”env.convert,” and terms can be derived
from terms using other environment functions.

The operators outlined in this Section also allow deriving terms from other
terms using the implicit language notation. This enables the user to derive
terms in a natural way, for example by writing x = y + 1 instead of x =
env.sum([y, env.convert(1)]) which has the exact same meaning.

60

3.2 Unary Operators

• Term Term::operator-(void): Returns the negative of the value of the
given term.

• Term Term::operator!(void): Returns 1 if the original term evaluates
to 0, and 0 otherwise. In Python, you need to useTerm Term::not (void).
For example: a = env.categorical(0,1). b = a.not (). b = not a is not al-
lowed.

61

3.3 Binary Operators

3.3.1 Arithmetic Operators

• Term operator+(const Term& a, const Term& b): Returns a+ b.

• Term operator-(const Term& a, const Term& b): Returns a− b.

• Term operator/(const Term& a, const Term& b): Returns a/b
if b evaluates to a value now equal 0. Otherwise, the return value is
”undefined.”

• Term operator*(const Term& a, const Term& b): Returns a ∗ b.

• Term operator%(const Term& a, const Term& b): If b ̸= 0, the
operator returns a−(a div b)∗b. If b = 0, the operator returns ”undefined.”

• Term operatorˆ(const Term& a, const Term& b): Returns ab if
a > 0, and ”undefined” if a < 0. If a = 0, the operator returns 1 if b = 0,
0 if b > 0, and ”undefined” if b < 0.

62

3.3.2 Logic Operators

• Term operator==(const Term& a, const Term& b): Returns a
term that is 1 if a = b and 0 otherwise. Do not confuse this with the
corresponding constraint.

• Term operator!=(const Term& a, const Term& b): Returns a
term that is 0 if a = b and 1 otherwise. Do not confuse this with the
corresponding constraint.

• Term operator<=(const Term& a, const Term& b): Returns a
term that is 1 if a ≤ b, and 0 otherwise. Do not confuse this with the
corresponding constraint.

• Term operator>=(const Term& a, const Term& b): Returns a
term that is 1 if a ≥ b, and 0 otherwise. Do not confuse this with the
corresponding constraint.

• Term operator<(const Term& a, const Term& b): Returns a term
that is 1 if a < b, and 0 otherwise. Do not confuse this with the corre-
sponding constraint.

• Term operator>(const Term& a, const Term& b): Returns a term
that is 1 if a > b, and 0 otherwise. Do not confuse this with the corre-
sponding constraint.

Note: To avoid numerical issues arising from limited machine pre-
cision, when one or both of the terms in a comparison evaluate to
a float or double, the comparison is conducted with slack. E.g.,
a <= b implicitly becomes a <= b+1e− 8, and a < b implicitly becomes
a < b − 1e− 8. This can lead to unexpexted behavior. For example,
env.if (a < 0, a, env.sqrt(a)) may lead to an undefined term evalua-
tion as ”a” may not be greater or equal 0 on the ”else” side of the
condition. In this case, please adjust the value of ”a” accordingly. In
the example, we should use env.if (a < 0, a, env.sqrt(env.max 0(a))).

Note: The following operators are for C++ only. In Python,
please use the explicit functions ’Env::or ’ and ’Env::and ’. Please do
not use the corresponding Python operators ” or ” and ” and ”
as their behavior is undefined.

• Term operator||(const Term& a, const Term& b): Returns 0 if
a = b = 0, and 1 otherwise.

• Term operator&&(const Term& a, const Term& b): Returns 0 if
a = 0 of b = 0, and 1 otherwise.

63

3.4 Term Status Check

• bool Term::status ok(void): Returns ”true” if, and only if, the respec-
tive term could be evaluated correctly.

64

