7. structurefactor (sf)¶
Structure factors and directly related functions for scattering related to interaction potentials between particles.
Return values are dataArrays were useful.
To get only Y values use .Y
For RMSA an improved algorithm is used based on the original idea (see Notes in RMSA).
7.1. Structure Factors¶
RMSA (q, R, scl, gamma[, molarity, eta, useHP]) |
Structure factor for a screened coulomb interaction in rescaled mean spherical approximation (RMSA). |
PercusYevick (q, R[, molarity, eta]) |
The Percus-Yevick structure factor. |
PercusYevick1D (q[, R, eta]) |
The PercusYevick structure factor in 1D |
PercusYevick2D (q[, R, eta, a]) |
The PercusYevick structure factor in 2D |
stickyHardSphere (q, R, width, depth[, …]) |
Structure factor of a square well potential with depth and width (sticky hard spheres). |
adhesiveHardSphere (q, R, tau, delta[, …]) |
structure factor of a adhesive hard sphere potential (a square well potential) |
criticalSystem (q, corrlength, isothermalcompress) |
Structure factor of a critical system should take the Ornstein-Zernike form. |
latticeStructureFactor (q[, lattice, …]) |
Radial structure factor S(q) of a crystal lattice with particle asymmetry, DebyeWaller factor, diffusive scattering and domain size. |
latticeStructureFactor2D (qxyz, lattice[, …]) |
2D structure factor S(q) of a crystal lattice including particle asymmetry, DebyeWaller factor, diffusive scattering, rotation and domain size. |
7.2. Hydrodynamics¶
hydrodynamicFunct (wavevector, Rh, molarity) |
Hydrodynamic function H(Q) from hydrodynamic pair interaction of spheres in suspension. |
7.3. Pair Correlation¶
sq2gr (Sq, R[, interpolatefactor]) |
Radial distribution function g(r) from structure factor Sq. |
7.4. Lattice¶
Lattices with specific structure :
bravaisLattice (latticeVectors, size[, b]) |
Create a Bravais lattice. |
scLattice (abc, size[, b]) |
Simple Cubic lattice. |
bccLattice (abc, size[, b]) |
Body centered cubic lattice. |
fccLattice (abc, size[, b]) |
Face centered cubic lattice. |
hexLattice (ab, size[, b]) |
Simple 2D hexagonal lattice. |
hcpLattice (ab, size[, b]) |
Hexagonal closed packed lattice. |
diamondLattice (abc, size[, b]) |
Diamond cubic lattice with 8 atoms in unit cell. |
rhombicLattice (latticeVectors, size[, …]) |
Create a rhombic lattice with specified unit cell atoms. |
pseudoRandomLattice (size, numberOfPoints[, …]) |
Create a lattice with a pseudo random distribution of points. |
lattice methods :
lattice.X |
X coordinates |
lattice.Y |
Y coordinates |
lattice.Z |
Z coordinates |
lattice.XYZ |
X,Y,Z coordinates array Nx3 |
lattice.b |
Scattering length |
lattice.array |
Coordinates and scattering length as array |
lattice.points |
Points with scattering length >0 |
lattice.set_b (b) |
Set all initial points to given scattering length. |
lattice.type |
Returns type of the lattice |
lattice.move (vector) |
Move all points by vector. |
lattice.centerOfMass () |
CenterOf mass |
lattice.numberOfAtoms () |
Number of Atoms |
lattice.show ([R, cmap]) |
Show the lattice in matplotlib with scattering length color coded. |
lattice.filter (funktion) |
Set lattice points scattering length according to a function. |
lattice.planeSide (vector[, center, b, invert]) |
Set scattering length for points on one side of a plane. |
lattice.inSphere (R[, center, b, invert]) |
Set scattering length for points in sphere. |
lattice.inParallelepiped (v1, v2, v3[, …]) |
Set scattering length for points in parallelepiped. |
rhombicLattice.unitCellAtomPositions |
Absolute positions of unit cell atoms. |
rhombicLattice.getReciprocalLattice ([size]) |
Reciprocal lattice of given size with peak scattering intensity. |
rhombicLattice.getRadialReciprocalLattice (size) |
Get radial distribution of Bragg peaks with structure factor and multiplicity. |
rhombicLattice.rotate2hkl (grid, h, k, l) |
Rotate grid that the grid center lies in hkl direction and tangential to hkl direction. |
Lattice objects describing a lattice of points.
Included are methods to select sublattices as parallelepiped, sphere or side of planes.
The small angle scattering is calculated by js.ff.cloudScattering.
The same method can be used to calculate the wide angle scattering with bragg peaks using larger scattering vectors to get crystalline bragg peaks of nanoparticles.
Examples
A hollow sphere cut to a wedge.
import jscatter as js
import numpy as np
grid= js.lattice.scLattice(1/2.,2*8,b=[0])
grid.inSphere(6,b=1)
grid.inSphere(4,b=0)
grid.planeSide([1,1,1],b=0)
grid.planeSide([1,-1,-1],b=0)
grid.show()
q=js.loglist(0.01,5,600)
ffe=js.ff.cloudScattering(q,grid.points,relError=0.02,rms=0.1)
p=js.grace()
p.plot(ffe)
A cube decorated with spheres.
import jscatter as js
import numpy as np
grid= js.lattice.scLattice(0.2,2*15,b=[0])
v1=np.r_[4,0,0]
v2=np.r_[0,4,0]
v3=np.r_[0,0,4]
grid.inParallelepiped(v1,v2,v3,b=1)
grid.inSphere(1,center=[0,0,0],b=2)
grid.inSphere(1,center=v1,b=3)
grid.inSphere(1,center=v2,b=4)
grid.inSphere(1,center=v3,b=5)
grid.inSphere(1,center=v1+v2,b=6)
grid.inSphere(1,center=v2+v3,b=7)
grid.inSphere(1,center=v3+v1,b=8)
grid.inSphere(1,center=v3+v2+v1,b=9)
grid.show()
q=js.loglist(0.01,5,600)
ffe=js.ff.cloudScattering(q,grid.points,relError=0.02,rms=0.)
p=js.grace()
p.plot(ffe)
A comparison of sc, bcc and fcc nanoparticles (takes a while )
import jscatter as js
import numpy as np
q=js.loglist(0.01,35,1500)
q=np.r_[js.loglist(0.01,3,200),3:40:800j]
unitcelllength=1.5
N=8
scgrid= js.lattice.scLattice(unitcelllength,N)
sc=js.ff.cloudScattering(q,scgrid.points,relError=50,rms=0.05)
bccgrid= js.lattice.bccLattice(unitcelllength,N)
bcc=js.ff.cloudScattering(q,bccgrid.points,relError=50,rms=0.05)
fccgrid= js.lattice.fccLattice(unitcelllength,N)
fcc=js.ff.cloudScattering(q,fccgrid.points,relError=50,rms=0.05)
p=js.grace(1.5,1)
# smooth with Gaussian to include instrument resolution
p.plot(sc.X,js.formel.smooth(sc,10, window='gaussian'),legend='sc')
p.plot(bcc.X,js.formel.smooth(bcc,10, window='gaussian'),legend='bcc')
p.plot(fcc.X,js.formel.smooth(fcc,10, window='gaussian'),legend='fcc')
q=q=js.loglist(1,35,100)
p.plot(q,(1-np.exp(-q*q*0.05**2))/scgrid.shape[0],li=1,sy=0,le='sc diffusive')
p.plot(q,(1-np.exp(-q*q*0.05**2))/bccgrid.shape[0],li=2,sy=0,le='bcc diffusive')
p.plot(q,(1-np.exp(-q*q*0.05**2))/fccgrid.shape[0],li=3,sy=0,le='fcc diffusive')
p.title('Comparison sc, bcc, fcc lattice for a nano cube')
p.yaxis(scale='l',label='I(Q)')
p.xaxis(scale='l',label='Q / A\S-1')
p.legend(x=0.03,y=0.001,charsize=1.5)
p.text('cube formfactor',x=0.02,y=0.05,charsize=1.4)
p.text('Bragg peaks',x=4,y=0.05,charsize=1.4)
p.text('diffusive scattering',x=4,y=1e-6,charsize=1.4)
Structure factors and directly related functions for scattering related to interaction potentials between particles.
Return values are dataArrays were useful.
To get only Y values use .Y
For RMSA an improved algorithm is used based on the original idea (see Notes in RMSA).
-
jscatter.structurefactor.
PercusYevick
(q, R, molarity=None, eta=None)[source]¶ The Percus-Yevick structure factor.
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters: - q : array; N dim
scattering vector; units 1/(R[unit])
- R : float
Radius of the object
- eta : float
volume fraction as eta=4/3*pi*R**3*n with number density n in units or R
- molarity : float
number density in mol/l and defines q and R units to 1/nm and nm to be correct preferred over eta if both given
Returns: - dataArray
structure factor for given q
Notes
Problem is given in [1]; solution in [2] and best description of the solution is in [3].
References
[1] (1, 2) - Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
[2] (1, 2) - Wertheim, Phys. Rev. Lett. 10, 321 (1963).
[3] (1, 2) - Kinning and E. L. Thomas, Macromolecules 17, 1712 (1984).
-
jscatter.structurefactor.
PercusYevick1D
(q, R=1, eta=0.1)[source]¶ The PercusYevick structure factor in 1D
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters: - q : array; N dim
scattering vector; units 1/(R[unit])
- R : float
Radius of the object
- eta : float
packing fraction as eta=2*R*n with number density n
Returns: - dataArray
- [q,structure factor]
Notes
[1] Exact solution of the Percus-Yevick equation for a hard-core fluid in odd dimensions Leutheusser E Physica A 1984 vol: 127 (3) pp: 667-676 [2] On the equivalence of the Ornstein–Zernike relation and Baxter’s relations for a one-dimensional simple fluid Chen M Journal of Mathematical Physics 1975 vol: 16 (5) pp: 1150
-
jscatter.structurefactor.
PercusYevick2D
(q, R=1, eta=0.1, a=None)[source]¶ The PercusYevick structure factor in 2D
Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r).
Parameters: - q : array; N dim
scattering vector; units 1/(R[unit])
- R : float, default 1
Radius of the object
- eta : float, default 0.1
packing fraction as eta=pi*R**2*n with number density n maximum hexagonal closed = (np.pi*R**2)/(3/2.*3**0.5*a**2) Rmax=a*3**0.5/2. with max packing of 0.9069
- a : float, default None
hexagonal lattice constant if not None the packing fraction in hexagonal lattice as eta=(np.pi*R**2)/(3/2.*3**0.5*a**2) is used
Returns: - dataArray
References
[1] Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: Structure factors for the hard-disk (D=2) mixtures in simple explicit form Yaakov Rosenfeld Phys. Rev. A 42, 5978
-
jscatter.structurefactor.
RMSA
(q, R, scl, gamma, molarity=None, eta=None, useHP=False)[source]¶ Structure factor for a screened coulomb interaction in rescaled mean spherical approximation (RMSA).
Structure factor according to Hayter-Penfold [1] [2] . Consider a scattering system consisting of macro ions, counter ions and solvent. Here an improved algorithm is used based on the original idea described in [1] (see Notes).
Parameters: - q : array; N dim
Scattering vector; units 1/nm
- R : float
Radius of the object; units nm
- molarity : float
Number density n in units mol/l. Overrides eta, if both given.
- scl : float>0
Screening length; units nm; negative values evaluate to scl=0.
- gamma : float
- contact potential; units kTgamma=Zm/(pi*e0*e*R*(2+k*R))Zm = Z* effective surface chargee0,e free permittivity and dielectric constantk=1/scl inverse screening length of Debye-Hückel potential
- eta : float
Volume fraction as eta=4/3*pi*R**3*n with number density n.
- useHP : True, default False
To use the original Hayter/Penfold algorithm. This gives wrong results for some parameter conditions. It should ONLY be used for testing. See example examples/test_newRMSAAlgorithm.py for a direct comparison.
Returns: - dataArray : .
- .volumeFraction = eta
- .rescaledVolumeFraction
- .screeningLength
- .gamma=gamma
- .contactpotential
- .S0 structure factor at q=0
- .scalingfactor factor for rescaling to get g+1=0; if =1 nothing was scaled and it is MSA
Notes
- Improved algorithm
- The Python code is deduced from the original Hayter-Penfold Fortran code (1981, ILL Grenoble). This is also used in other common SAS programs as SASfit or SASview (translated to C). The original algorithm determines the root of a quartic F(w1,w2,w3,w4) by an estimate (named PW estimate), refining it by a Newton algorithm. As the PW estimate is sometimes not good enough this results in an arbitrary root of the quartic in the Newton algorithm. The solution therefore jumps between different possibilities by small changes of the parameters. We use here the original idea from [1] to calculate G(r<0) for all four roots of F(w1,w2,w3,w4) and use the physical solution with G(r<R)=0. See examples/test_newRMSAAlgorithm.py for a direct comparison.
- Validity
- The calculation of charge at the surface or screening length from a solute ion concentration is explicitly dedicate to the user. The Debye-Hückel theory for a macro ion in screened solution is a far field theory as a linearization of the Poisson-Boltzmann (PB) theory and from limited validity (far field or low charge -> linearization). Things like reverting charge layer, ion condensation at the surface, pH changes at the surface or other things might appear. Before calculating please take these things into account. Close to the surface the PB has to be solved. The DH theory can still be used if the charge is thus an effective charge named Z*, which might be different from the real surface charge. See Ref [3] for details.
References
[1] (1, 2, 3, 4) - Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).
[2] (1, 2) J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (2006). [3] (1, 2) - Belloni, J. Phys. Condens. Matter 12, R549 (2000).
-
jscatter.structurefactor.
adhesiveHardSphere
(q, R, tau, delta, molarity=None, eta=None)[source]¶ structure factor of a adhesive hard sphere potential (a square well potential)
Parameters: - q : array; N dim
scattering vector; units 1/(R[unit])
- R : float
radius of the hard core
- eta : float
volume fraction of the hard core particles
- molarity : float
number density in mol/l and defines q and R units to 1/nm and nm to be correct preferred over eta if both given
- tau : float
stickiness
- delta : float
width of the square well
Notes
The potential U(r) is defined as r<2R U(r)=infinity 2R<r<2R+delta U(r)=-depth=ln(12*tau*delta/(2R+delta)) r >2R+delta U(r)=0
References
[1] - Regnaut and J. C. Ravey, J. Chem. Phys. 91, 1211 (1989).
[2] - Regnaut and J. C. Ravey, J. Chem. Phys. 92 (5) (1990), 3250 Erratum
-
jscatter.structurefactor.
criticalSystem
(q, corrlength, isothermalcompress)[source]¶ Structure factor of a critical system should take the Ornstein-Zernike form.
Parameters: - q : array; N dim
scattering vector; units 1/(R[unit])
- corrlength : float
correlation length
- isothermalcompress : float
isothermal compressibility of the system
Notes
The peaking of the structure factor near Q=0 region is due to attractive interaction. Away from it the structure factor should be close to the hard sphere structure factor. Near the critical point we should find S(Q)=S_PY(Q)+S_OZ(Q) S_PY Percus Yevick structure factor S_OZ this function
References
[1] Analysis of Critical Scattering Data from AOT/D2O/n-Decane Microemulsions S. H. Chen, T. L. Lin, M. Kotlarchyk Surfactants in Solution pp 1315-1330
-
jscatter.structurefactor.
hydrodynamicFunct
(wavevector, Rh, molarity, intrinsicVisc=None, DsoverD0=None, structureFactor=None, structureFactorArgs={}, numberOfPoints=50, ncpu=-1)[source]¶ Hydrodynamic function H(Q) from hydrodynamic pair interaction of spheres in suspension.
We use the theory from Beenakker and Mazur [2] as given by Genz [1]. The \delta\gamma-expansion of Beenakker expresses many body hydrodynamic interaction within the renormalization approach dependent on the structure factor S(q).
Parameters: - wavevector : array
scattering vector q in units 1/nm
- Rh : float
effective hydrodynamic radius of particles in nm.
- molarity : float
- molarity in mol/lThis overrides a parameter ‘molarity’ in the structureFactorArgs.Rh and molarity define the hydrodynamic interaction, the volume fraction and Ds/D0 for H(Q).The structure factor may have a radius different from Rh e.g. for attenuated hydrodynamic interactions.
- DsoverD0 : float
- The high Q limit of the hydrodynamic function is for low volume fractionsDs/D0= 1/(1+intrinsicVisc * volumeFraction ) with self diffusion Ds.Ds is calculated from molarity and Rh.This explicit value overrides intrinsic viscosity and calculated Ds/D0.
- structureFactor : function, None
- Structure factor S(q) with S(q=inf)=1.0 recommended.1: If structurefactor is None a Percus-Yevick is assumed with molarity and R=Rh.2: A function S(q,…) is given as structure factor, which might be anempirical function (e.g. polynominal fit of a measurement)First parameter needs to be wavevector q .If “molarity” parameter is present it is overwritten by molarity above.
- structureFactorArgs : dictionary
Any extra arguments to structureFactor e.g. structFactorArgs={‘x’:0.123,R=3,….}
- intrinsicVisc : float
- Defines the high q limit for the hydrodynamic function.effective_viscosity= eta_solvent * (1-intrinsicVisc*Volumefraction )intrinsicVisc = 2.5 Einstein hard sphere density 1 g/cm**3For proteins instead of volume fraction the protein concentration in g/ml with typicalprotein density 1.37 g/cm^3 is often used.Intrinsic Viscosity depends on protein shape (see HYDROPRO).Typical real values for intrinsicVisc in practical units cm^3/gsphere 1.76 cm^3/g= 2.5 sphere with protein densityADH 3.9 = 5.5 a tetrameric proteinPGK 4.0 = 5.68 two domains with hinge-> elongatedRnase 3.2 = 4.54 one domaineta_solvent/effective_viscosity = (1-intrinsicVisc * Volumefraction )=Dself/D0
- numberOfPoints : integer, default 50
Determines number of integration points in equ 5 of ref [1] and therefore accuracy of integration. The typical accuracy of this function is <1e-4 for (H(q) -highQLimit) and <1e-3 for Ds/D0.
Returns: - dataArray
- [0] q values[1] hydrodynamic function[2] hydrodynamic function only Q dependent part = H(q) -highQLimit[3] structure factor for H(q) calculation.selfdiffusion Ds
Notes
Ds is calculated according to equ 11 in [1] which is valid for volume fractions up to 0.5. With this assumption the deviation of self diffusion Ds from Ds=Do*[1-1.73*phi+0.88*phi**2+ O(phi**3)] is smaller 5% for phi<0.2 (10% for phi<0.3)
References
[1] (1, 2, 3, 4) - Genz and R. Klein, Phys. A Stat. Mech. Its Appl. 171, 26 (1991).
[2] (1, 2) - Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 126, 349 (1984).
[3] - Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 120, 388 (1983).
-
jscatter.structurefactor.
latticeStructureFactor
(q, lattice=None, domainsize=1000, asym=0, lg=1, rmsd=0.02, beta=None, hklmax=7, c=1.0)[source]¶ Radial structure factor S(q) of a crystal lattice with particle asymmetry, DebyeWaller factor, diffusive scattering and domain size.
The peak shape is a Voigt function. To get the full scattering the formfactor needs to be included (See Notes and Examples). 1-3 dimensional lattice structures with basis containing multiple atoms.
Parameters: - q : float
Wavevector in inverse units of lattice constant, units 1/A or 1/nm
- domainsize : float
Domainsize of the crystal, units as lattice constant of lattice. According to Debye-Scherrer equation fwhm=2\pi/domainsize the peak width is determined [2].
- lattice : lattice object
The crystal structure as defined in a lattice object. The size of the lattice is ignored. One of rhombicLattice, bravaisLattice, scLattice, bccLattice, fccLattice, diamondLattice, hexLattice, hcpLattice. See respective definitions.
- lg : float, default = 1
- Lorenzian/gaussian fraction describes the contributions of gaussian and lorenzian shape in peak shape.
- lorenzian/gaussian >> 1 lorenzian,
- lorenzian/gaussian ~ 1 central part gaussian, outside lorenzian wings
- lorenzian/gaussian << 1. gaussian
- asym : float, default=0
Asymmetry factor in sigmoidal as 2*fwhm/(1+np.exp(asym*(x-center))) For a=0 the Voigt is symmetric with fwhm. See formel.voigt .
- rmsd : float, default=0.02
Root mean square displacement <u^2>^{0.5} determining the Debye Waller factor. Units as a.
- beta : float, None, dataArray
- Asymmetry factor of the formfactor or reduction due to polydispersity.
- None beta=1, No beta assumed (spherical symmetric formfactor, no polydispersity)
- dataArray explicitly given as dataArray with beta in .Y column. Missing values are interpolated.
- An approximation for polydisperse beta can be found in [1] equ.17. This can be realized by beta=js.dA(np.vstack(q,np.exp(-(q*sr*R)**2))) with sr as relative standard deviation of gaussian distribution of the size R.
- See .formfactor for different formfactors which explicit calculation of beta.
- hklmax : int
Maximum order of the Bragg peaks to include.
- c : float, default=1
Porod constant. See 3.8 in [1].
Returns: - dataArray with columns [q,Sq,DW,beta,Z0q]
- q wavevector
- Sq = S(q) = 1+beta(q)*(Z0(q)-1)*DW(q) structure factor
- DW(q) Debye-Waller factor with (1-DW)=diffusive scattering.
- beta(q) asymmetry factor of the formfactor.
- Z0q lattice factor Z0(q)
- Attributes
- .q_hkl peak positions
- .fhkl symmetry factor
- .mhkl multiplicity
Notes
The scattering intensity of a crystal domain is
I(q)={\Delta\rho}^2 n P(q) S(q)
- with
- \Delta\rho scattering length difference between matrix and particles
- n number density (of elementary cells)
- P(q) form factor
- S(q) structure factor S(q)
For inhomogeneous particles we can incorporate \Delta\rho(r) in the formfactor P(q) if this includes the integrated scattering length differences.
The structure factor is [1] :
S(q)=1+ \beta(q)(Z_0(q)-1)*DW(Q)
- with
- \beta(q)=<F(q)>^2/<F(q)^2> as asymmetry factor [3] dependent on the scattering amplitude F(q) and particle polydispersity
- DW(q) Debye Waller factor
The lattice factor is [1] :
Z_0(q) = \frac{(2\pi)^{d-1}c}{nv_dq^{d-1}} \sum\limits_{hkl}m_{hkl}f_{hkl}^2L_{hkl}(q)
- with
- n number of particles per unit cell
- f_{hkl} unit cell structure factor that takes into account symmetry-related extinction rules
- v_d volume of the d-dimensional unit cell
- hkl reflections
- m_{hkl} peak multiplicity
- c Porod constant \simeq 1
We use a Voigt function for the peak shape L_{hkl}(q) (see formel.voigt).
DW is a Debye Waller like factor as DW(q)=e^{-q^2<u^2>} leading to a reduction of scattered intensity and diffusive scattering. It has contributions from thermal lattice disorder ( DW factor with 1/3 factor in 3D), surface roughness and size polydispersity.
- For the limiting behaviour q->0 see the discussion in [1] in 3.9. :
“… The zero-order peak is not explicitly considered because of the q^(1-dim) singularity and because its intensity depends also on the scattering length difference between the lattice inside and outside…… Due to the singularity and since structural features on length scales d > a, such as packing defects, grain boundaries or fluctuations decaying on larger length scales are only indirectly considered via the domain size D, eq 30 is not expected to give good agreement with experimentally determined scattering curves in the range of scattering vectors q < 2π/a. However, for q > 2π/a, this approach describes remarkably well experimentally measured high-resolution scattering curves….”
A good description of the real scattering for low Q is shown in example A nano cube build of different lattices.
References
[1] (1, 2, 3, 4, 5, 6) Scattering curves of ordered mesoscopic materials. Förster, S. et al. J. Phys. Chem. B 109, 1347–1360 (2005). [2] (1, 2) Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination Phys. Rev. 56 (10): 978–982 (1939) doi:10.1103/PhysRev.56.978. [3] (1, 2) - Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
Examples
import jscatter as js import numpy as np q = np.r_[0.001:1:800j] a = 50. R=15 sr=0.1 p = js.grace() beta=js.dA(np.vstack([q,np.exp(-(q*sr*R)**2)])) p.title('structure factor for hexagonal 2D lattice') p.subtitle('with diffusive scattering and asymmetry factor beta') for i,rmsd in enumerate([1., 3., 10., 30.],1): grid=js.sf.hexLattice(50,5) hex = js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=500., beta=beta,lattice=grid) p.plot(hex, li=[1, 2, i], sy=0, le='rmsd=$rmsd') p.plot(hex.X,1-hex[-3], li=[3, 2, i], sy=0) p.plot(hex.X, hex[-2], li=[2, 2, i], sy=0, le='beta') p.text(r'broken lines \nshow diffusive scattering',x=0.4,y=6) p.yaxis(label='S(q)') p.xaxis(label='q / nm') p.legend(x=0.6,y=4) import jscatter as js import numpy as np q=np.r_[js.loglist(0.1,3,200),3:40:800j] unitcelllength=1.5 N=2 R=0.5 sr=0.1 beta=js.dA(np.vstack([q,np.exp(-(q*sr*R)**2)])) rmsd=0.02 # scgrid= js.lattice.scLattice(unitcelllength,N) sc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=scgrid) bccgrid= js.lattice.bccLattice(unitcelllength,N) bcc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=bccgrid) fccgrid= js.lattice.fccLattice(unitcelllength,N) fcc=js.sf.latticeStructureFactor(q, rmsd=rmsd, domainsize=50., beta=beta,lattice=fccgrid) # p=js.grace() p.plot(sc,legend='sc') p.plot(bcc,legend='bcc') p.plot(fcc,legend='fcc') p.text(r'broken lines \nshow diffusive scattering',x=10,y=0.1) p.yaxis(label='S(q)',scale='l',max=50,min=0.05) p.xaxis(label='q / nm',scale='l',max=50,min=0.5) p.legend(x=1,y=30,charsize=1.5)
-
jscatter.structurefactor.
latticeStructureFactor2D
(qxyz, lattice, orientation=None, rotation=None, domainsize=1000, rmsd=0.02, beta=None, hklmax=3, nGauss=13)[source]¶ 2D structure factor S(q) of a crystal lattice including particle asymmetry, DebyeWaller factor, diffusive scattering, rotation and domain size.
To get the full scattering the formfactor needs to be included (See Notes and Examples). 1-3 dimensional lattice structures with basis containing multiple atoms.
Parameters: - qxyz : array 3xN
Wavevector array representing a surface in q space (3D), units 1/A or 1/nm. This can describe a detector plane, section of the Ewald sphere or a line in reciprocal space.
- lattice : lattice object
Lattice object with arbitrary atoms particles in unit cell, or predefined lattice from rhombicLattice, bravaisLattice, scLattice,bccLattice, fccLattice, diamondLattice, hexLattice, hcpLattice with scattering length of unit cell atoms. See lattices for examples.
- orientation : 3 float as [h,k,l], None
- Orientation of the crystal relative to qxyz surface.
- [h,k,l] rotates the crystal that the lattice hkl direction points to the center of qxyz (mean position). e.g. points to plane center.
- If None the orientation is not changed.
- rotation : 5 float as [mean,sigma,h,k,l], None
Rotation of the crystal around axis hkl with Gaussian distribution around mean and width sigma (units rad).
- domainsize : float,list, list of directions
Domainsize of the crystal, units as lattice constant of lattice. According to Debye-Scherrer equation fwhm=2\pi/domainsize the peak width is determined [2].
- float : assume same domainsize in all directions.
- list 3 float : domainsize in directions of latticeVectors.
- list 4 x 3 : 3 times domainsize in hkl direction as [[size,h,k,l] ,[..],[..] ]
- [[3,1,1,1],[100,1,-1,0],[100,1,1,-2]] is thin in 111 direction and others are thick The user should take care that the directions are nearly orthogonal.
- rmsd : float, default=0.02
Root mean square displacement <u^2>^{0.5} determining the Debye Waller factor. Units as lattice constant.
- beta : float, None, dataArray
- Asymmetry factor of the formfactor or reduction due to polydispersity.
- None beta=1, No beta assumed (spherical symmetric formfactor, no polydispersity)
- dataArray beta explicitly given as dataArray with beta in .Y column. Missing values are interpolated.
- An approximation for polydisperse beta can be found in [1] equ.17. This can be realized by beta=js.dA(np.vstack(q,np.exp(-(q*sr*R)**2))) with sr as relative standard deviation of gaussian distribution of the size R.
- See .formfactor for different formfactors which explicit calculation of beta.
- hklmax : int
Maximum order of the Bragg peaks.
- nGauss : int, default 13
Number of points in integration over Gaussian for rotation width sigma.
Returns: - dataArray with columns [qx,qy,qz,Sq,DW,beta,Z0q]
- q wavevector
- Sq = S(q) = 1+beta(q)*(Z0(q)-1)*DW(q) structure factor
- DW(q) Debye-Waller factor with (1-DW)=diffusive scattering.
- beta(q) asymmetry factor of the formfactor.
- Z0q lattice factor Z0(q)
- Attributes (+ input parameters)
- .q_hkl peak positions
- .hkl Miller indices
- .peakFWHM full width half maximum
Notes
The scattering intensity of a crystal domain is
I(q)={\Delta\rho}^2 n P(q) S(q)
- with
- \Delta\rho scattering length difference between matrix and particles
- n number density (of elementary cells)
- P(q) form factor
- S(q) structure factor S(q)
For inhomogeneous particles we can incorporate \Delta\rho(r) in the formfactor P(q) if this includes the integrated scattering length differences.
The structure factor is [1] :
S(q)=1+ \beta(q)(Z_0(q)-1)*DW(Q)
- with
- \beta(q)=<F(q)>^2/<F(q)^2> as asymmetry factor [3] dependent on the scattering amplitude F(q) and particle polydispersity
- DW(q) Debye Waller factor
The lattice factor is [1] :
Z_0(q) = \frac{(2\pi)^3}{mv} \sum\limits_{hkl}f_{hkl}^2L_{hkl}(q,g_{hkl})
- with
- g_{hkl} peak positions
- m number of particles per unit cell
- f_{hkl} unit cell structure factor that takes into account symmetry-related extinction rules
- v volume of the unit cell
- hkl reflections
The peak shape function is
L_{hkl}(q,g_{hkl}) = \frac{1}{ \sqrt{2\pi} \sigma} e^{-\frac{(q-g_{hkl})^2}{2\sigma^2}}
with \sigma=fwhm/2\sqrt{2log(2)} related to the domainsize.
Correspondingly \sigma is a vector describing the peak shapes in all directions.
Distributions of domain orientation are included by the parameter rotation that describes gaussian distributions with mean and sigma around an axis defined by the corresponding hkl indices.
DW is a Debye Waller like factor as DW(q)=e^{-q^2<u^2>} leading to a reduction of scattered intensity and diffusive scattering. It has contributions from thermal lattice disorder ( DW factor with 1/3 factor in 3D).
References
[1] (1, 2, 3, 4) Order causes secondary Bragg peaks in soft materials Förster et al Nature Materials doi: 10.1038/nmat1995 [2] (1, 2) Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination Phys. Rev. 56 (10): 978–982 (1939) doi:10.1103/PhysRev.56.978. [3] (1, 2) - Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
Examples
Comparison fcc and sc to demonstrate selection rules
import jscatter as js import numpy as np R=8 N=50 ds=10 fcclattice= js.lattice.fccLattice(3.1, 5) qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T qxyz=np.c_[qxy,np.zeros(N**2)] ffe=js.sf.latticeStructureFactor2D(qxyz,fcclattice,orientation=[1,1,1],domainsize=ds,rmsd=0.1,hklmax=4) fig=js.mpl.surface(qxyz[:,0],qxyz[:,1],ffe[3].array) sclattice= js.lattice.scLattice(3.1, 5) ffs=js.sf.latticeStructureFactor2D(qxyz,sclattice,orientation=[1,1,1],domainsize=ds,rmsd=0.1,hklmax=4) fig=js.mpl.surface(qxyz[:,0],qxyz[:,1],ffs[3].array)
Comparison of different domainsizes dependent on direction of scattering
import jscatter as js import numpy as np R=8 N=50 qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T qxyz=np.c_[qxy,np.zeros(N**2)] sclattice= js.lattice.scLattice(2.1, 5) ds=[[20,1,0,0],[5,0,1,0],[5,0,0,1]] ffs=js.sf.latticeStructureFactor2D(qxyz,sclattice,orientation=[1,0,0],domainsize=ds,rmsd=0.1,hklmax=2) fig=js.mpl.surface(qxyz[:,0],qxyz[:,1],ffs[3].array) fig.axes[0].set_title('symmetric peaks: thinner direction perpendicular to scattering plane') fig.show() ffs=js.sf.latticeStructureFactor2D(qxyz,sclattice,orientation=[0,1,0],domainsize=ds,rmsd=0.1,hklmax=2) fig2=js.mpl.surface(qxyz[:,0],qxyz[:,1],ffs[3].array) fig2.axes[0].set_title('asymmetric peaks: thin direction is parallel to scattering plane') fig2.show()
Rotation along [1,1,1] axis. It looks spiky because of low number of points in xy plane
import jscatter as js import numpy as np # make xy grid in q space R=8 # maximum N=800 # number of points qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T # add z=0 component qxyz=np.c_[qxy,np.zeros(N**2)] # as position vectors # create sc lattice which includes reciprocal lattice vectors and methods to get peak positions sclattice= js.lattice.scLattice(2.1, 5) # We orient to 111 direction perpendicular to center of qxy plane # this needs crystal rotation by 15 degrees to be aligned to xy plane after rotation to 111 direction # The crystals rotates by 10 degrees around 111 to broaden peaks. ds=15; fpi=np.pi/180. ffs=js.sf.latticeStructureFactor2D(qxyz,sclattice,orientation=[1,1,1], rotation=[(30+15)*fpi,10*fpi,1,1,1], domainsize=ds,rmsd=0.1,hklmax=2,nGauss=23) fig=js.mpl.surface(qxyz[:,0],qxyz[:,1],ffs[3].array) fig.axes[0].set_title('10 degree rotation around 111 direction') fig.show()
-
jscatter.structurefactor.
sq2gr
(Sq, R, interpolatefactor=2)[source]¶ Radial distribution function g(r) from structure factor Sq.
The result strongly depends on quality of S(Q) (number of data points, Q range, smoothness). Read [2] for details of this inversion problem and why it may fail.
Parameters: - Sq : dataArray
- Structure factor e.g. in units as [Q]=1/nm
- .X wavevector
- .Y structure factor
- R : float
Estimate for the radius of the particles.
- interpolatefactor : int
Number of points between points in interpolation for rfft. 2 doubles the points
Returns: - dataArray
.n0 approximated from 2\pi^2 n_0=\int_0^{Q_{max}} [S(Q) -1]Q^2 dQ
Notes
One finds that
g(r)-1=(2\pi^2 n_0 r)^{-1} \int_0^\infty [S(Q) -1]Qsin(qr)dQ
with 2\pi^2 n_0=\int_0^\infty [S(Q) -1]Q^2 dQ defining n_0.
As we have only a limited Q range (0 < Q < \infty ), limited accuracy and number of Q values we require that mean(g(R/2<r<R3/4))=0.
References
[1] Yarnell, J. L., Katz, M. J., Wenzel, R. G., & Koenig, S. H. (1973). Structure factor and radial distribution function for liquid argon at 85 K. Physical Review A, 7(6), 2130. [2] (1, 2) On the determination of the pair correlation function from liquid structure factor measurements A.K. Soper Chemical Physics 107, 61-74, (1986) Examples
import jscatter as js import numpy as np p=js.grace() p.multi(2,1) q=js.loglist(0.01,100,2**13) p[0].clear();p[1].clear() R=2.5 eta=0.3;scl=5 n=eta/(4/3.*np.pi*R**3) # unit 1/nm**3 sf=js.sf.RMSA(q=q,R=R,scl=scl, gamma=50, eta=eta) gr=js.sf.sq2gr(sf,R,interpolatefactor=1) sfcut=js.sf.RMSA(js.loglist(0.01,10,2**10),R=R,scl=scl, gamma=50, eta=eta) grcut=js.sf.sq2gr(sfcut,R,interpolatefactor=5) p[0].plot(sf.X*2*R,sf.Y,le=r'\xG=50') p[1].plot(gr.X/2/R,gr[1],le=r'\xG=50') p[1].plot(grcut.X/2/R,grcut[1],le=r'\xG=50 \f{}Q\smax\N=10') sfh=js.sf.RMSA(q=q,R=R,scl=scl, gamma=0.01, eta=eta) grh=js.sf.sq2gr(sfh,R,interpolatefactor=1) p[0].plot(sfh.X*2*R,sfh.Y,le=r'\xG=0.01') p[1].plot(grh.X/2/R,grh[1],le=r'\xG=0.01') p[0].xaxis(max=20,label='2RQ') p[1].xaxis(max=4*R,label='r/(2R)') p[0].yaxis(max=2,min=0,label='S(Q)') p[1].yaxis(max=2.5,min=0,label='g(r)') p[0].legend(x=10,y=1.8) p[1].legend(x=4,y=1.8) p[0].title('Comparison RMSA') p[0].subtitle('R=%.2g, eta=%.2g, scl=%.2g' %(R,eta,scl))
-
jscatter.structurefactor.
stickyHardSphere
(q, R, width, depth, molarity=None, phi=None)[source]¶ Structure factor of a square well potential with depth and width (sticky hard spheres).
Sticky hard sphere model is derived using a perturbative solution of the factorized form of the Ornstein-Zernike equation and the Percus-Yevick closure relation. The perturbation parameter is width/(width+2R)
Parameters: - q : array; N dim
Scattering vector; units 1/(R[unit])
- R : float
Radius of the hard sphere
- phi : float
Volume fraction of the hard core particles
- molarity : float
Number density in mol/l and defines q and R units to 1/nm and nm to be correct Preferred over phi if both given.
- depth : float
Potential well depth in kT depth >0 (U<0); positive potential allowed (repulsive) see [1].
- width : float
Width of the square well
Notes
The potential U(r) is defined asr<2R U(r)=infinity2R<r<2R+width U(r)=-depth in [kT]r >2R+width U(r)=0eps=width/(2*R+width) stickiness=exp(-depth)/12./eps
References
[1] (1, 2) S.V. G. Menon, C. Manohar, and K. S. Rao, J. Chem. Phys. 95, 9186 (1991) [2] - Sztucki, T. Narayanan, G. Belina, A. Moussaïd, F. Pignon, and H. Hoekstra, Phys. Rev. E 74, 051504 (2006)
[3] W.-R. Chen, S.-H. Chen, and F. Mallamace, Phys. Rev. E 66, 021403 (2002) [4] - Foffi, E. Zaccarelli, F. Sciortino, P. Tartaglia, and K. A. Dawson, J. Stat. Phys. 100, 363 (2000)
-
class
jscatter.structurefactor.
lattice
[source]¶ Create an arbitrary lattice.
Please use one of the subclasses below for creation.
pseudorandom, rhombicLattice, bravaisLattice scLattice, bccLattice, fccLattice, diamondLattice, hexLattice, hcpLattice, sqLattice, hexLattice, lamLattice
This base class defines methods valid for all subclasses.
-
X
¶ X coordinates
-
XYZ
¶ X,Y,Z coordinates array Nx3
-
Y
¶ Y coordinates
-
Z
¶ Z coordinates
-
array
¶ Coordinates and scattering length as array
-
b
¶ Scattering length
-
filter
(funktion)[source]¶ Set lattice points scattering length according to a function.
All points in the lattice are changed for which funktion returns value !=0 (tolerance 1e-12).
Parameters: - funktion : function returning float
Function to set lattice points scattering length. The function is applied with each i point coordinates (array) as input as .points[i,:3]. The return value is the corresponding scattering length.
Examples
# To select points inside of a sphere with radius 5 around [1,1,1]: from numpy import linalg as la sc=js.sf.scLattice(0.9,10) sc.set_b(0) sc.filter(lambda xyz: 1 if la.norm(xyz-np.r_[1,1,1])<5 else 0) # sphere with increase from center from numpy import linalg as la sc=js.sf.scLattice(0.9,10) sc.set_b(0) sc.filter(lambda xyz: 2*(la.norm(xyz)) if la.norm(xyz)<5 else 0) fig=sc.show()
-
inParallelepiped
(v1, v2, v3, corner=None, b=1, invert=False)[source]¶ Set scattering length for points in parallelepiped.
Parameters: - corner : 3x float
Corner of parallelepiped
- v1,v2,v3 : each 3x float
Vectors from origin to 3 corners that define the parallelepiped.
- b: float
Scattering length for selected points.
- invert : bool
Invert selection
Examples
import jscatter as js sc=js.sf.scLattice(0.2,10,b=[0]) sc.inParallelepiped([1,0,0],[0,1,0],[0,0,1],[0,0,0],1) sc.show() sc=js.sf.scLattice(0.1,30,b=[0]) sc.inParallelepiped([1,1,0],[0,1,1],[1,0,1],[-1,-1,-1],2) sc.show()
-
inSphere
(R, center=None, b=1, invert=False)[source]¶ Set scattering length for points in sphere.
Parameters: - center : 3 x float, default [0,0,0]
Center of the sphere.
- R: float
Radius of sphere around origin.
- b: float
Scattering length for selected points.
- invert : bool
True to invert selection.
Examples
import jscatter as js sc=js.sf.scLattice(1,15,b=[0]) sc.inSphere(6,[2,2,2],b=1) sc.show() sc.inSphere(6,[-2,-2,-2],b=2) sc.show() sc=js.sf.scLattice(0.8,20,b=[0]) sc.inSphere(3,[2,2,2],b=1) sc.inSphere(3,[-2,-2,-2],b=1) sc.show() sc=js.sf.scLattice(0.8,20,b=[0]) sc.inSphere(3,[2,2,2],b=1) sc.inSphere(4,[0,0,0],b=2) sc.show()
-
move
(vector)[source]¶ Move all points by vector.
Parameters: - vector : list of 3 float or array
Vector to shift the points.
-
planeSide
(vector, center=None, b=1, invert=False)[source]¶ Set scattering length for points on one side of a plane.
Parameters: - center : 3x float, default [0,0,0]
Point in plane.
- vector : list 3x float
Vector perpendicular to plane.
- b: float
Scattering length for selected points.
- invert : bool
False choose points at origin side. True other side.
Examples
sc=js.sf.scLattice(1,10,b=[0]) sc.planeSide([1,1,1],[3,3,3],1) sc.show() sc.planeSide([-1,-1,0],3) sc.show()
-
points
¶ Points with scattering length >0
-
show
(R=None, cmap='rainbow')[source]¶ Show the lattice in matplotlib with scattering length color coded.
Parameters: - R : float,None
Radius around origin to show.
- cmap : colormap
Colormap. E.g. ‘rainbow’, ‘winter’,’autumn’,’gray’ Use js.mpl.showColors() for all possibilities.
Returns: - fig handle
-
type
¶ Returns type of the lattice
-
-
class
jscatter.structurefactor.
rhombicLattice
(latticeVectors, size, unitCellAtoms=None, b=None)[source]¶ Create a rhombic lattice with specified unit cell atoms.
Allows to create 1D, 2D or 3D latices by using 1, 2 or 3 latticeVectors.
Parameters: - latticeVectors : list of array 3x1
Lattice vectors defining the translation of the unit cell along its principal axes.
- size :3x integer or integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- unitCellAtoms : list of 3x1 array, None=[0,0,0]
Position vectors of atoms in the unit cell in relative units of the lattice vectors [0<x<1].
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array .unitCellVolume V = a1*a2 x a3 with latticeVectors a1, a2, a3; if existing.
Examples
import jscatter as js import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # cubic lattice with diatomic base grid=js.sf.rhombicLattice([[1,0,0],[0,1,0],[0,0,1]],[3,3,3],[[-0.1,-0.1,-0.1],[0.1,0.1,0.1]],[1,2]) grid.show(1.5)
-
getRadialReciprocalLattice
(size, includeZero=False)[source]¶ Get radial distribution of Bragg peaks with structure factor and multiplicity.
Parameters: - size : int
Size of the lattice as maximum included Miller indices.
- includeZero : bool
Include q=0 peak
Returns: - 3x list of [unique q values, structure factor fhkl(q)**2, multiplicity mhkl(q)]
-
getReciprocalLattice
(size=2)[source]¶ Reciprocal lattice of given size with peak scattering intensity.
Parameters: - size : 3x int or int, default 2
Number of reciprocal lattice points in each direction (+- direction).
Returns: - Array [N x 4] with
reciprocal lattice vectors [:,:3] corresponding structure factor fhkl**2>0 [:, 3]
-
rotate2hkl
(grid, h, k, l)[source]¶ Rotate grid that the grid center lies in hkl direction and tangential to hkl direction.
Parameters: - grid : array Nx3
Grid points
- h,k,l : integer, float
Miller indices indicating the direction where to rotate to.
Returns: - grid points array 4xN
Examples
import jscatter as js import numpy as np R=8 N=10 qxy=np.mgrid[-R:R:N*1j, -R:R:N*1j].reshape(2,-1).T qxyz=np.c_[qxy,np.zeros(N**2)] fccgrid = js.lattice.fccLattice(2.1, 1) xyz=fccgrid.rotate2hkl(qxyz,1,1,1) p=js.mpl.scatter3d(xyz[:,0],xyz[:,1],xyz[:,2]) p.axes[0].scatter(fccgrid.X,fccgrid.Y,fccgrid.Z)
-
unitCellAtomPositions
¶ Absolute positions of unit cell atoms.
-
class
jscatter.structurefactor.
bravaisLattice
(latticeVectors, size, b=None)[source]¶ Create a Bravais lattice. Lattice with one atom in the unit cell.
See rhombicLattice for methods and attributes.
Parameters: - latticeVectors : list of array 1x3
Lattice vectors defining the translation of the unit cell along its principal axes.
- size :3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
-
class
jscatter.structurefactor.
scLattice
(abc, size, b=None)[source]¶ Simple Cubic lattice.
See rhombicLattice for methods.
Parameters: - abc : float
Point distance.
- size : 3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D grid=js.sf.bccLattice(1.2,1) grid.show(2)
-
class
jscatter.structurefactor.
bccLattice
(abc, size, b=None)[source]¶ Body centered cubic lattice.
See rhombicLattice for methods.
Parameters: - abc : float
Point distance.
- size : 3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js grid=js.sf.bccLattice(1.2,1) grid.show(2)
-
class
jscatter.structurefactor.
fccLattice
(abc, size, b=None)[source]¶ Face centered cubic lattice.
See rhombicLattice for methods.
Parameters: - abc : float
Point distance.
- size : 3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D grid=js.sf.fccLattice(1.2,1) grid.show(2)
-
class
jscatter.structurefactor.
hexLattice
(ab, size, b=None)[source]¶ Simple 2D hexagonal lattice.
See rhombicLattice for methods.
Parameters: - ab : float
Point distance.
- size : 2x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js grid=js.sf.hexLattice(1.2,1) grid.show(2)
-
class
jscatter.structurefactor.
hcpLattice
(ab, size, b=None)[source]¶ Hexagonal closed packed lattice.
See rhombicLattice for methods.
Parameters: - ab : float
Point distance. ab is distance in hexagonal plane, c = ab* (8/3)**0.5
- size : 3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D grid=js.sf.hcpLattice(1.2,[3,3,1]) grid.show(2)
-
class
jscatter.structurefactor.
diamondLattice
(abc, size, b=None)[source]¶ Diamond cubic lattice with 8 atoms in unit cell.
See rhombicLattice for methods.
Parameters: - abc : float
Point distance.
- size : 3x integer, integer
A list of integers describing the size in direction of the respective latticeVectors. Size is symmetric around zero in interval [-i,..,i] with length 2i+1. If one integer is given it is used for all 3 dimensions.
- b : list of float
Corresponding scattering length of atoms in the unit cell.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js grid=js.sf.diamondLattice(1.2,1) grid.show(2)
-
class
jscatter.structurefactor.
pseudoRandomLattice
(size, numberOfPoints, b=None, seed=None)[source]¶ Create a lattice with a pseudo random distribution of points.
Allows to create 1D, 2D or 3D pseudo random latices. The Halton sequence is used with skipping the first seed elements of the Halton sequence.
Parameters: - size :3x float
Size of the lattice for each dimension relative to origin.
- numberOfPoints : int
Number of points.
- b : float,array
Scattering length of atoms. If array the sequence is repeated to fill N atoms.
- seed : None, int
Seed for the Halton sequence by skipping the first seed elements of the sequence. If None an random integer between 10 and 1e6 is chosen.
Returns: - lattice object
.array grid points as numpy array
Examples
import jscatter as js grid=js.sf.pseudoRandomLattice([5,5,5],3000) fig=grid.show()