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Foreword

Welcome to TUNA!

This is a personal project to deepen my understanding of the theory and algorithmic implementa-
tion of quantum chemistry. A simple to use terminal-based Python program, TUNA can calculate
properties of diatomic molecules with a number of quantum chemical methods.

Unlike other Python programs for quantum chemistry such as Psi4 [1] and PySCF [2], TUNA
is not primarily a collection of modules to incorporate into a workflow, but is intended to be a
complete program to be run directly from the command line. The program is inspired by the
ORCA quantum chemistry package [3, 4] (although the tuna is clearly the more majestic animal),
but no input files need to be set up as the geometry of a diatomic molecule is easily specified in
the terminal.

The key strength of TUNA is its user-friendly interface, hopefully offering an intuitive experience
that could potentially serve as a valuable teaching aid in the future. On the technical side, TUNA
utilises numerical energy derivatives, so any electronic structure method can be used to calculate
geometries, frequencies and molecular dynamics trajectories. Because these derivatives are fast for
diatomics, almost nothing is written to the disk, and extensive use is made of vectorised operations
in NumPy [5], TUNA is surprisingly fast for a Python program and significantly outpaces ORCA
for calculations on diatomics.

While TUNA is currently modest in scope, its capabilities are set to expand. The long term goal
is to develop it into a simple and efficient testing ground for the performance of density-functional
approximations on diatomics.

Who knows? Maybe one day, TUNA could make waves!

Harry Brough
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1 Getting Started

1.1 Installation

The easiest way to install TUNA is first ensuring a recent version of Python 3 is installed (ideally
Python 3.12), then run the following command from a terminal:

pip install QuantumTUNA

If this proceeds according to plan, next locate the folder where TUNA was installed, and add it to
the PATH environment variable. On Windows, where * is your user, this may be:

C:\Users\*\AppData\Local\Programs\Python\Python312\Lib\site-packages\TUNA

Once the folder containing the TUNA Python files is added to PATH, open a new terminal and
test that everything is working correctly by running:

TUNA --version

If the version of TUNA you installed prints to the terminal, you’re good to go!

Installing TUNA has only been tested with Python 3.12 on Windows 11 — and not tested very
well. However, everything should work fine on a different operating system or with earlier versions
of Python 3. Let me know if it doesn’t!

1.2 Simple Input Line

All calculations in TUNA are requested via a single line of commands in the terminal. The input
line is not case sensitive and the spaces around colons are optional. It has the structure:

TUNA [Calculation] : [Atom A] [Atom B] [Distance] : [Method] [Basis]

A single atom can be provided, in which case [Atom B] and [Distance] are omitted. If two
atoms are provided, a [Distance] must be too. Available calculation types and basis sets are
listed in section 3.1, and electronic structure methods are detailed in section 3.2.
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For instance, a single point energy calculation on an H2 molecule with bond length of 1.0 Å, with
Hartree–Fock theory in the STO-3G basis set is requested by:

TUNA SPE : H H 1.0 : HF STO-3G

Additional parameters can be requested by adding another colon at the end and appending key-
words. For example, an MP2/6-31G optimisation calculation using D2 semi-empirical dispersion
correction on a H–He+ molecule starting at a bond length of 0.8 Å is:

TUNA OPT : H He 0.8 : MP2 6-31G : CHARGE +1 D2

As many keywords as you like can be written after the second exclamation mark. Some keywords
such as CHARGE require a value (like +1 here) — just write this directly after the keyword, and
then more keywords can be written afterwards.

The output prints to the terminal by default, but by replacing the command TUNA with TUNALOG the
output will print to a file called "tuna-calculation.log" in the terminal’s directory.

1.3 Units and Constants

In the TUNA output, distances are printed in angstroms, times in femtoseconds and all other
quantities in atomic units unless otherwise stated. Internally, units in TUNA are set by the CO-
DATA 2022 recommendations [6], shown in Table 1.1. All other units and values are derived.

Table 1.1 Fundamental constants used in TUNA

Constant Symbol Value

Planck Constant h 6.62607015 × 10−34 J s

Elementary Charge e 1.602176634 × 10−19 C

Electron Mass me 9.1093837139 × 10−31 kg

Vacuum Permittivity ε0 8.8541878188 × 10−12 F m−1

Speed of Light c 2.99792458 × 108 m s−1

Boltzmann Constant kB 1.380649 × 10−23 J K−1

Atomic Mass Unit amu 1.660539068911 × 10−27 kg

Avogadro Constant NA 6.02214076 × 1023 mol−1
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1.4 Program Components

When TUNA is called by the terminal, the main program, tuna.py, begins a calculation in which
it calls various modules, listed in Table 1.2.

In the directory where TUNA was installed, the program can be run without the shell script by
calling tuna.py directly. This would be useful if the shell scripts don’t work, but Python does.

python tuna.py SPE : H H 1.0 : HF STO-3G

Table 1.2 List of Python modules that constitute TUNA, in alphabetical order

Module Description

tuna Main program, input parsing

tuna_basis Storing and setting up basis sets

tuna_ci Configuration interaction

tuna_energy Calculating energies, building molecules, coordinate scans

tuna_integral Evaluating one- and two-electron integrals

tuna_md Ab initio molecular dynamics

tuna_mpn Møller–Plesset perturbation theory energy and density

tuna_optfreq Calculating gradients, optimisation algorithm, harmonic frequencies

tuna_plot Plotting two- and three-dimensional graphs

tuna_postscf Calculating and printing molecular properties

tuna_scf Main self-consistent field loop, convergence acceleration

tuna_thermo Thermochemistry after frequency calculation

tuna_util General utility, units, frequently used functions

In addition to these modules, some external modules are also imported. All these should auto-
matically be installed when pip install QuantumTUNA is run. The most important are NumPy
[5] and SciPy [7], which speed up the code considerably compared to pure Python. In addition,
TermColor [8] makes the terminal output more vibrant, while Matplotlib [9], Scikit-Image [10] and
Plotly [11] enable the creation of two- and three-dimensional plots. The latter three modules are
not strictly necessary to run TUNA calculations.
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2 Summary of Features in TUNA

2.1 Calculation Types

• Single point energy, SPE

• Geometry optimisation, OPT

• Harmonic frequency, FREQ

• Optimisation and harmonic frequency, OPTFREQ

• Coordinate scan, SCAN

• Ab initio molecular dynamics, MD

2.2 Electronic Structure Methods

• Hartree–Fock, HF

• Unrestricted Hartree–Fock, UHF

• MP2, MP2

• Unrestricted MP2 , UMP2

• Spin-component-scaled MP2, SCS-MP2

• Unrestricted spin-component-scaled MP2, USCS-MP2

• MP3, MP3

• Unrestricted MP3, UMP3

• Spin-component-scaled MP3, SCS-MP3

• Unrestricted spin-component-scaled MP3, USCS-MP3

• Orbital-optimised MP2, OMP2

• Unrestricted orbital-optimised MP2, UOMP2

• Configuration interaction singles, CIS

• Unrestricted configuration interaction singles, UCIS

• Configuration interaction singles with perturbative doubles, CIS[D]

• Unrestricted configuration interaction singles with perturbative doubles, UCIS[D]
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2.3 Basis Sets

• STO-3G

• STO-6G

• 3-21G

• 4-31G

• 6-31G

• 6-31+G

• 6-31++G

• 6-311G

• 6-311+G

• 6-311++G

2.4 Properties

• Nuclear and electronic dipole moment

• Mulliken and Löwdin charges and bond orders

• Mayer valences and bond order

• Spin contamination

• Koopmans’ theorem electron affinity and ionisation energy, HOMO–LUMO gap

• Electron density calculation and 3D plot

• Molecular orbitals and orbital energies

• Rotational constants

• Thermochemistry

• Harmonic fundamental transition intensities

2.5 Miscellaneous

• D2 dispersion correction

• Interface to GUI for plots for coordinate scan and electron density

• Ghost atoms

• Optimise to a minimum or maximum

8



• Decontract basis sets

• Rotate initial guess orbitals

• Temperature and pressure keywords for thermochemistry

• Optimisation and SCF convergence keywords

• Identification of point group

• Approximate or exact Hessian for optimisations

• Maximum iterations keywords

• Fock matrix extrapolation (DIIS)

• Dynamic and static damping

• Slow convergence option

• Very slow convergence option

• Level shift
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3 Detailed Documentation

3.1 Calculation Types

This section dives into the different calculation types available in TUNA, listed in Table 3.1 with
their respective keywords.

Table 3.1 Calculation types available in TUNA

Keyword Calculation type

SPE Single point energy

OPT Optimisation

FREQ Harmonic frequency

OPTFREQ Optimisation and subsequent harmonic frequency

SCAN Coordinate scan

MD Ab initio molecular dynamics

All calculation types run on an initial molecule, defined by its atoms, charge and multiplicity. At
the moment, only Gaussian integrals between s orbitals are implemented, so TUNA is (severely)
limited to Period 1 elements with unpolarised basis sets — TUNA is breaking new ground as the
only program with orbital-optimised MP2 but no carbon atoms! So, the only atoms available are
H and He.

However, “ghost atoms” for these are also available, which act as additional basis functions for
a single atom and can be used to counteract basis set superposition error. The ghost atoms
are accessible by typing “XH” or “XHe”. For example, the following command will calculate the
energy of a hydrogen atom in the presence of a ghost hydrogen atom’s basis functions, lowering
the energy compared to the calculation on a lone atom:

TUNA SPE : H XH 0.735 : HF 6-311++G
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Trying to run a calculation for a molecule (eg. OPT, FREQ, MD) a ghost atom will result in TUNA
exiting with an error.

Atoms or molecules can be given a charge and multiplicity with the CHARGE and MULTIPLICIY

keywords. For example, triplet H2 can be requested by:

TUNA SPE : H H 1.3 : UHF 6-311G : CHARGE 0 MULTIPLICITY 3

Alternatively, shortened parameters for charge and multiplicity, CH and ML can be used:

TUNA SPE : H H 1.3 : UHF 6-311G : CH 0 ML 3

If no charge or multiplicity is specified, TUNA defaults to a neutral molecule, which is assumed to
be either a singlet or a doublet depending on the whether the number of electrons is even or odd.

All calculations begin by printing the TUNA logo to the terminal, importing libraries and printing
the requested calculation type, including the basis set. Basis options are listed in Table 3.2.

Table 3.2 Basis sets implemented in TUNA

Basis Set Citation Description

STO-3G [12] Minimal basis set

STO-6G [12] Minimal basis set

3-21G [13] Double-zeta basis set

4-31G [14] Double-zeta basis set

6-31G [14] Double-zeta basis set

6-31+G [14] Double-zeta basis set with diffuse functions on heavy atoms

6-31++G [15] Double-zeta basis set with diffuse functions on all atoms

6-311G [16] Triple-zeta basis set

6-311+G [15] Triple-zeta basis set with diffuse functions on heavy atoms

6-311++G [15] Triple-zeta basis set with diffuse functions on all atoms

This basis set usually consists of partially contracted Gaussian functions, but can be fully decon-
tracted with the DECONTRACT keyword. For example, the following command will dedicate the
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three primitive Gaussians in the hydrogen STO-3G basis to three separate basis functions, rather
than a single 1s orbital, giving a lower energy to the hydrogen atom than contracted STO-3G:

TUNA SPE : H : HF STO-3G : DECONTRACT

The molecule is then set up as requested, and the molecular structure, number of atoms, number
of basis functions, number of primitive Gaussians, charge, multiplicity, number of electrons, point
group and bond length are printed. The specified calculation then starts.

At the end of any calculation — if it terminates successfully — TUNA prints the total time taken
for the calculation. This time is counted from when the Python modules have been imported.

3.1.1 Single Point Energy

A single point energy calculation in TUNA can be requested with the SPE calculation type keyword.
For instance, a single point calculation on H–He+ at a distance of 2.0 Å with restricted Hartree–
Fock in the 6-311G basis can be called by:

TUNA SPE : H He 2.0 : RHF 6-311G : CH 1

The molecule is first set up, and information printed to the console:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Molecule and Basis Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Molecular structure: H ––- He

Number of atoms: 2

Number of basis functions: 6

Number of primitive Gaussians: 10

Charge: 1

Multiplicity: 1

Number of electrons: 2

Number of alpha electrons: 1

Number of beta electrons: 1

Point group: Cinfv

Bond length: 2.0000

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The nuclear repulsion energy and optional dispersion energy (see section 3.1.3.1) are then calcu-
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lated. One- and two-electron integrals are evaluated, before the Hartree–Fock self-consistent field
cycle begins, discussed in section 3.2.1.2. When this is finished, the energy components will be
printed. If a correlated calculation (eg. MP2, MP3), or an excited state calculation (eg. CIS), is
requested, this then begins.

After all the energies are calculated, the density matrix is used in property calculations. Currently,
the RHF, UHF, CIS and MP2 density matrix are available in TUNA. The MP2 density is imple-
mented for either RHF or UHF references, with and without spin-component scaling, as well as
for orbital-optimised MP2. The CIS and MP2 density matrices are unrelaxed (see section 3.2.2),
while there is no difference between the unrelaxed and relaxed densities for OMP2. If an MP3
calculation is requested, properties will be calculated with the relevant unrelaxed MP2 density ma-
trix. Calculations of rotational constants, multipole moments and population analysis are disabled
for single atoms.

Finally, the energies are printed to the console again. If the additional print keyword, P, is used,
molecular orbitals and their eigenvalues will also be printed, separated into α and β orbitals for
UHF calculations. If the reduced print keyword, T, is used, only the molecular information, SCF
cycles and final energies are printed.

3.1.1.1 Ionisation Energy and Electron Affinity

The first properties printed are the Koopmans’ theorem parameters [17]. These are the ionisation
energy, −εHOMO, electron affinity, −εLUMO and HOMO–LUMO gap, εLUMO − εHOMO. These
parameters are only determined in RHF calculations.

3.1.1.2 Rotational Constant

The rotational constant of the molecule is printed, calculated by

B = ℏ2

2µ(RA − RB)2 , (3.1)

where µ is the reduced mass of the molecule, using the masses in section 3.1.4. This is printed in
units of GHz and cm−1.

3.1.1.3 Multipole Moments

The only multipole moment implemented in TUNA is the dipole moment. The origin for dipole
moment calculations (which is printed) is the centre of mass, R0, calculated with the masses in
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section 3.1.4. The nuclear dipole moment,

µnuc = ZA(RA − R0) + ZB(RB − R0) , (3.2)

and the electronic dipole moment,

µele = −
∑
µν

PµνDµν , (3.3)

are calculated, where Dµν are the dipole moment integrals, ⟨µ|r − R0|ν⟩, evaluated with the rest
of the one-electron integrals at the start of a calculation.

In addition to these values and the total dipole moment, a diagram of the molecular structure is
printed with an arrow pointing in the direction of the negative charge. For example, a RHF/6-311G
calculation on H–He+ at 2 Å gives this output, meaning the hydrogen atom is more negatively
charged than the helium atom:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Dipole Moment

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Nuclear: −1.498793 Electronic: −1.477457

Total: −2.976250 H ––- He <––-+

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.1.1.4 Population Analysis

By default, TUNA prints Mulliken [18], Löwdin [19] and Mayer [20] population analysis after single
point energy calculations and optimisations. Note that all the equations in this section are true
for diatomics, not necessarily molecules in general.

The Mulliken analysis [18] is very widely used (despite its considerable weaknesses [21]), and
partitions the electron density by the basis functions assigned to each atom. The number of
electrons, N , is the integral of the density and can be calculated by

N =
∑
µν

PµνSµν . (3.4)

When the shared density is partitioned equally between atoms, the number of electrons on atom

14



A is given by

NA =
∑
µ∈A

∑
ν∈A

PµνSµν + 1
2BAB , (3.5)

where BAB is the Mulliken bond order, given by

BAB = 2
∑
µ∈A

∑
ν∈B

PµνSµν . (3.6)

The charge of an atom in a molecule is then given by QA = ZA −NA. At the bottom of the single
point energy output, TUNA prints these charges and the Mulliken bond order, as well as the sum
of the charges which should equal the requested molecular charge.

Because the molecular orbitals than generate a specific energy and density are not unique, popu-
lation analysis can be performed with non-localised orthogonal basis functions, in Löwdin analysis
[19] where the density matrix is rotated by

PL = S
1
2 PS

1
2 . (3.7)

Using this density matrix, atomic populations are calculated by

NA =
∑
µ∈A

P L
µµ , (3.8)

and the bond order is calculated by

BAB =
∑
µ∈A

∑
ν∈B

P L
µνP

L
µµ . (3.9)

Similarly to the Mulliken analysis, Löwdin charges and bond order are printed at the end of a
calculation.

The results of a Mayer analysis [20] are also printed. The Mayer charges are the same as the
Mulliken charges, but the bond order (and bonded valence) is given by

BAB =
∑
µ∈A

∑
ν∈B

(PS)µν(PS)νµ + (RS)µν(RS)νµ , (3.10)

where R is the spin density matrix, Pα − Pβ. In Mayer analysis the valence of each atom is
calculated. The total valence, which is similar to the expected valence of an atom (ie. one for
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hydrogen), is

VA = 2NA −
∑
µ∈A

∑
ν∈B

(PS)µν(PS)νµ (3.11)

and the free valence, which is a measure of the ability to form further bond, is calculated by
FA = VA − BAB. These valences are printed under the Mayer analysis heading at the end of a
calculation.

3.1.1.5 Electron Density Plot

A three-dimensional plot of the electron density can be calculated using the DENSPLOT keyword
after an energy calculation. This opens a Plotly [11] image in your default browser. These densities
are plotted using any available density matrix.

This can be combined with optimisations to show the change in electron density over time, which
is fun. However, the calculation of the cube files is very slow and the default parameters to view
the iso-surface may crop the density incorrectly in some cases.

3.1.2 Coordinate Scan

A coordinate scan can be requested in TUNA by the SCAN calculation type. This calculates
the potential energy surface, increasing the interatomic distance at each step, using the chosen
electronic structure method.

There are two mandatory parameters for a coordinate scan. The distance between steps must
be specified by the SCANSTEP keyword, and the total number of scan steps is specified by the
SCANNUMBER keyword. There are no default parameters here — these must be specified when a
scan calculation is requested.

For instance, an MP2 scan over the potential energy surface of H2, starting at a bond length of
0.3 Å with 20 steps of 0.1 Å can be requested by:

TUNA SCAN : H H 0.3 : MP2 6-31G : SCANNUMBER 20 SCANSTEP 0.1

By default, the previous step’s density matrix is read in at each scan step for RHF-based calculations
and UHF-based calculations on non-singlet molecules; this can be disabled using the NOMOREAD

keyword. For UHF calculations on singlet D∞h molecules, the molecular orbitals are rotated after
being read, unless the NOROTATE keyword is used. See section 3.2.1.1 for a discussion of the initial
guess and ROTATE keywords.
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Any of the keywords that can be used with a single point energy calculation (eg. D2, DENSPLOT,
ROTATE) can also be combined with the scan calculation. In addition, the SCANPLOT keyword will
make a simple Matplotlib [9] graph of the potential energy surface. At the end of a coordinate
scan calculation, a table of the bond lengths and final energies is printed, which can be easily copy
and pasted into a spreadsheet.

3.1.3 Geometry Optimisation

A geometry optimisation finds the location of a stationary point on the potential energy surface,
and is requested by the OPT calculation type keyword:

TUNA OPT : H He 1.0 : RHF 6-311G : CH 1

At the start of an optimisation, the convergence criteria, maximum number of iterations and
maximum allowed step are printed, before the calculation sets off. In each iteration, the molecule
is set up and the energy is calculated. Tight SCF convergence criteria are used by default for
optimisations and the density matrix is read in from the previous optimisation step — this guess
strategy can be disabled using the NOMOREAD keyword.

Next, the gradient is calculated using the central differences method, by

∇Ei = ∂E

∂r
= E(r + δr) − E(r − δr)

2δr , (3.12)

where r is the interatomic distance and δr = 0.0001. Next, an approximation to the Hessian, H,
is calculated by

Hi = ∇Ei − ∇Ei−1
ri − ri−1

. (3.13)

Instead of this approximate Hessian, the exact Hessian can be calculated using the CALCHESS

keyword. This increases calculation time at each step significantly, but tends to reduce the number
of geometry iterations needed. For diatomics, the exact Hessian calculation is almost always
pointless unless the potential energy surface is very flat. For optimisations to a local minimum,
either the exact or approximate Hessian is used in the convex region of the potential energy surface,
whereas for optimisations to maxima, these Hessians are used in the concave region. Outside of
these regions, a default Hessian with value 1/4 is used. This value can be changed using the
DEFAULTHESS keyword.
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After the Hessian is determined, the bond length is updated by

ri = ri−1 + ∇Ei

Hi
. (3.14)

Note that for a one-dimensional potential energy surface there is no choice necessary about the
update — this is the only method that uses derivatives up to second order.

The maximum value for the change in bond length is 0.2 angstroms by default, to prevent exploding
optimisations from a bad starting guess geometry. This can be changed with the MAXSTEP keyword,
giving the maximum step in angstroms. The trajectory of a geometry optimisation can be printed
to an .xyz file using the TRAJ keyword. The structures and energies at each point are printed to
a file called “tuna-trajectory.xyz” in the directory of the terminal.

Four optimisation convergence criteria are available: loose, medium, tight and extreme. Medium
convergence is the default for standard optimisation calculations, while optimisation and frequency
calculations use tight default criteria. THe optimisation convergence criteria can be changed with
the keywords LOOSEOPT, MEDIUMOPT, TIGHTOPT and EXTREMEOPT. The gradient and step con-
vergence criteria of these are listed in Table 3.3. If the geometry has not converged to the
chosen criteria within the maximum number of iterations, the maximum can be increased with
the MAXITER keyword, which has a value of 30 by default.

Table 3.3 Optimisation convergence criteria in TUNA

Convergence Gradient / hartree bohr−1 Step / bohr

Loose 10−3 10−2

Normal 10−4 10−4

Tight 10−6 10−5

Extreme 10−8 10−7

When the gradient and step fall below the convergence criteria, the optimisation will terminate,
and the final density will be used to calculate properties. These properties can also be calculated
at each step with the additional print keyword, P. Finally, TUNA prints the bond length of the
converged geometry and the minimum energy. If a harmonic frequency calculation is desired
immediately after the optimisation terminates (on the final geometry), the OPTFREQ calculation
type should be used instead of OPT.
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Geometries can also be optimised to a local maximum, rather than a local minimum, using the
OPTMAX keyword. This simply inverts the treatment of the Hessian and step update calculations,
bringing the structure to a local maximum on the potential energy surface. This probably isn’t
very useful, but could find, for instance, the unphysical local maximum predicted by restricted
MP2 on the potential energy surface of H2.

An example of a calculation to do this, using 30 maximum iterations, with extreme geometry
convergence criteria is:

TUNA OPT : H H 2.0 : MP2 6-31++G : OPTMAX MAXITER 30 EXTREMEOPT

3.1.3.1 Dispersion Correction

Currently, the only available form of dispersion correction is the D2 semi-empirical scheme by
Grimme [22]. Here, the energy due to dispersion is calculated by

Edisp = − s6
fdamp

Cij
6

R6
ij

, (3.15)

where the damping function is given by

fdamp = 1 + exp
[
−d

(
Rij

Rr
− 1

)]
. (3.16)

The default value of the damping factor d is 20, and the s6 value is 1.2 in line with the param-
eterisation of Hartree–Fock in ORCA [3, 4]. The values of the Van der Waals radii, Rr, and C6

coefficients are element-specific. For correlated calculations, the Hartree–Fock parameterisation
is also used, so D2 is not recommended in these cases (although it’s not really any good for
Hartree–Fock either).

Dispersion correction is requested by the D2 keyword, for example:

TUNA OPT : H H 1.0 : HF 6-311++G : D2

3.1.4 Harmonic Frequency

A harmonic frequency calculation can be requested on a molecule at a set bond length with the
FREQ keyword by:

TUNA FREQ : H H 0.7375 : RHF 6-311++G
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These can be combined with a prior geometry optimisation, where the frequency calculation is run
on the optimised structure, using the OPTFREQ calculation type. All the keywords available for the
OPT calculation type are available for OPTRFEQ.

TUNA OPTFREQ : H H 1.0 : SCS-MP2 6-311++G

Harmonic frequency calculations in TUNA determine the numerical second derivative, which is the
bond’s force constant, k, by

k = ∂2E

∂r2 = −E(r + 2δr) + 16E(r + δr) − 30E(r) + 16E(r − δr) − E(r − 2δr)
12(δr)2 . (3.17)

The use of five single point calculations makes harmonic frequency calculations slow, but ensures
the frequencies are numerically stable. For additional reliability, TIGHT SCF convergence criteria
are used for frequency calculations by default.

After the second derivatives are determined, the vibrational frequency is calculated by

ω =
√
k

µ
, (3.18)

where µ is the reduced mass, calculated using the atomic masses shown in Table 3.4.

Table 3.4 Atomic masses in TUNA

Atom Major Isotope Mass / amu

Hydrogen 1H 1.00782503223

Helium 4He 4.00260325413

This printed frequency has units of cm−1. If k is negative (such as at a maximum on the potential
energy surface), ω will be imaginary and TUNA will output the frequency appended with an “i”.

The harmonic frequencies of H2 calculated from all the different methods implemented in TUNA
are shown in Table 3.5, where SCS-MP3 performs very well.
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Table 3.5 Harmonic frequencies of H2 calculated in the 6-311++g basis set in TUNA

Method Harmonic Frequency / cm−1

HF 4577

MP2 4456

OMP2 4452

SCS-MP2 4431

MP3 4367

SCS-MP3 4409

Exact 4401

3.1.4.1 Transition Intensity

In addition to the frequency, the fundamental absorption intensity is calculated and printed to the
console. These intensities are calculable for any density implemented in TUNA, which presently
includes Hartree–Fock and unrelaxed (SCS-)MP2 densities.

The intensity is proportional to the dipole moment derivative at the equilibrium geometry in
mass-weighted normal coordinates,

∂µ

∂q , (3.19)

which is calculated by the central differences method of numerical differentiation when the Hessian
is determined.

A commonly used measure of intensity, which is printed by TUNA, is the integral absorption
coefficient, A, which has units km mol−1. This coefficient is calculated by

A = NA
12c2ε0

(
∂µ

∂q

)2
, (3.20)

where NA is the Avogadro constant. This absorption coefficient is calculated as it is independent
of the experimental setup — the incident light intensity, molar concentration and length of sample
cell [23].
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3.1.4.2 Thermochemistry

After the vibrational frequency calculation is finished TUNA begins a quick calculation of thermo-
chemical parameters. The contributions to internal energy,

U = E + Ezero-point + Etranslational + Evibrational + Erotational , (3.21)

and entropy,

S = Selectronic + Stranslational + Svibrational + Srotational , (3.22)

are first calculated, before the enthalpy,

H = U + kBT , (3.23)

and Gibbs free energy,

G = H − TS , (3.24)

are evaluated and printed. All these values, including entropies, are expressed in hartree.

The zero-point energy is given by Ezero-point = 1
2ω, and is excluded if the vibrational frequency

is imaginary. The translational contribution to energy is Etranslational = 3
2kBT and the rotational

contribution is Erotational = kBT . Finally, the vibrational contribution is calculated by

Evibrational = ω

exp (ω/kBT ) − 1 , (3.25)

assuming the molecule behaves as a harmonic oscillator — at high temperatures this may be a
particularly bad approximation.

The electronic contribution to entropy is assumed to be zero, but the translational, vibrational
and rotational contributions are calculated by three fairly horrible formulas, where p is the pressure
and B is the rotational constant:

Stranslational = kB

[
5
2 + ln

(
MkBT

h

) 3
2

+ ln
(
kBT

p

)]
(3.26)

Svibrational = kB

[
ω

kBT
(
exp(ω/kBT ) − 1

) − ln
(

1 − exp
(

− ω

kBT

))]
(3.27)
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Srotational = kB

[
1 + ln

(
kBT

2πσBc

)]
(3.28)

For the rotational entropy, the symmetry number, σ, is determined from the molecular point group.
Symmetric, D∞h molecules have σ = 2 while asymmetric, C∞v molecules have σ = 1.

The entropy, and therefore the Gibbs free energy, depends on the temperature and pressure. Using
the TEMP and PRES keywords, these quantities can be specified. For instance, a thermochemistry
calculation at 340 K and 101500 Pa can be called by:

TUNA FREQ : H H 0.6750 : RHF 6-311++G : TEMP 340 PRES 101500

3.1.5 Ab Initio Molecular Dynamics

The implementation in TUNA of ab initio molecular dynamics (AIMD) is Born–Oppenheimer
molecular dynamics [24], where nuclear positions are updated by the classical equations of motion,
F = ma, over the quantum chemical potential energy surface. Therefore, unlike other AIMD
methods such as Car–Parrinello molecular dynamics where the electronic degrees of freedom are
also dynamic [25], the ab initio energy and gradient must be recalculated at every timestep.

To run an AIMD calculation in TUNA, use the MD calculation type with any electronic structure
method and basis, and set the timestep (fs), initial temperature (K) and number of steps with
the keywords TIMESTEP, TEMP and MDNUMBER respectively. By default, TIMESTEP is 0.1 fs, TEMP

is 0 K and MDNUMBER is 30.

For instance, a 50 step AIMD calculation using MP2/6-31G with a timestep of 0.2 fs at an initial
temperature of 350 K can be called by:

TUNA MD : H H 1.2 : MP2 6-31G : TIMESTEP 0.2 TEMP 350 MDNUMBER 50

As positions and velocities are continually updated, a trajectory is mapped out. By default, TUNA
prints this trajectory to a file called "tuna-trajectory.xyz" in the terminal’s directory — this
logging can be disabled using the NOTRAJ keyword.

The output prints the step number, time, bond length and temperature. The classical kinetic
energy of the nuclei, as well as their potential energy (the total electronic energy) is also printed,
with the total molecular energy. The timestep should be chosen to conserve the total system
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energy. At each timestep, all energy and gradient information can be printed using the additional
print keyword, P, although this makes a big mess.

Because the Velocity Verlet algorithm [26] yields velocities and positions at the same point in time
and is numerically stable, it is implemented in TUNA. Positions are updated by

r(t+ ∆t) = r(t) + v(t)∆t+ 1
2a(t)∆t2, (3.29)

and velocities are updated by

v(t+ ∆t) = v(t) + a(t) + a(t+ ∆t)
2 ∆t . (3.30)

By default, the AIMD calculation begins with the atoms at rest. However, by using the TEMP

keyword an initial temperature can be specified from which the total classical kinetic energy of
the molecule is calculated by

K = 3kBT , (3.31)

where

K = 1
2m1v2

1 + 1
2m2v2

2 . (3.32)

From this kinetic energy, velocities are randomly determined to satisfy the Maxwell–Boltzmann
distribution. Next, net molecular translations are removed before the velocities are rescaled to
produce the specified temperature exactly. Net rotations are not removed, so to handle this three-
dimensional data — which is stressful for TUNA — the coordinates are rotated onto one dimension
to calculate the energy and gradient before forces are back-transformed into three dimensions.

The initial specified temperature will not be conserved, as thermostats don’t really make sense for
diatomics, so all AIMD calculations are run in the NV E ensemble.

3.2 Electronic Structure Methods

The electronic structure methods implemented in TUNA are shown in Table 3.6. The phrase
“default spin” indicates that this will activate either a restricted or unrestricted Hartree–Fock cal-
culation depending on the multiplicity of the requested molecule. A singlet molecule will default
to RHF, while other multiplicities default to UHF. Unrestricted references can be requested for
singlet states, but restricted references can not be requested for multiplet states.
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Table 3.6 Electronic structure methods implemented in TUNA

Keyword Electronic Structure Method

HF Hartree–Fock theory (default spin)

UHF Unrestricted Hartree–Fock theory

MP2 Second-order Møller–Plesset perturbation theory (default spin)

UMP2 Unrestricted second-order Møller–Plesset perturbation theory

SCS-MP2 Spin-component-scaled MP2 perturbation theory (default spin)

USCS-MP2 Unrestricted spin-component-scaled MP2 theory

MP3 Third-order Møller–Plesset perturbation theory (default spin)

UMP3 Unrestricted third-order Møller–Plesset perturbation theory

SCS-MP3 Spin-component-scaled MP3 perturbation theory (default spin)

USCS-MP3 Unrestricted spin-component-scaled MP3 theory

OMP2 Orbital-optimised MP2 theory (default spin)

UOMP2 Unrestricted orbital-optimised MP2 theory

CIS Configuration interaction singles (default spin)

UCIS Unrestricted configuration interaction singles

CIS[D] CIS with perturbative doubles (default spin)

UCIS[D] Unrestricted CIS with perturbative doubles

3.2.1 Hartree–Fock Theory

Both restricted and unrestricted Hartree–Fock calculations are available. Restricted open-shell
Hartree–Fock is not yet implemented. The HF method keyword defaults to RHF for singlet molecules
and UHF for non-singlets. Unrestricted Hartree–Fock can also be requested on a singlet molecule
using the UHF method, such as:

TUNA SPE : H H 1.85 : UHF 6-311++G

The Roothaan–Hall equations [27, 28] turn the variational differential restricted Hartree–Fock
equations [29] into a simpler eigenvalue problem,

FC = SCϵ , (3.33)

where F is the Fock matrix, C is the molecular orbital matrix in the basis of atomic orbitals,
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S is the overlap matrix and ϵ is a diagonal matrix of eigenvalues. The Fock matrix consists of
contributions from the kinetic energy matrix, T, nuclear–electron attraction matrix, Fne, Coulomb
matrix, J, and exchange matrix, K, by

F = T + Vne + 2J − K . (3.34)

These matrices are determined from the one- and two-electron integrals of basis functions. To
solve the Roothaan–Hall equations, they need to be converted into a conventional eigenvalue
problem — ie. the overlap matrix needs to become the identity matrix. To do this, the basis
functions can be rotated to an orthonormal basis. One method to achieve this defines X = S− 1

2 ,
such that when the Fock matrix is rotated by

F′ = X†FX , (3.35)

the Roothaan–Hall equations become a conventional eigenvalue problem,

F′C′ = C′ϵ . (3.36)

Now the rotated Fock matrix, F′, can be diagonalised for the eigenvectors, C′, and eigenvalues, ϵ.
The eigenvectors are then rotated back to the original atomic orbital basis, where they represent
molecular orbitals,

C = XC′ . (3.37)

Now the molecular orbitals have been determined the restricted Hartree–Fock density matrix, P,
is constructed by summing over the doubly occupied orbitals,

Pµν = 2
occ∑

i

CµiC
∗
νi . (3.38)

Finally, energy can be calculated by contracting this new density matrix with the Fock and core
Hamiltonian matrices, and adding on the constant nuclear repulsion energy,

E = Vnn + 1
2

∑
µν

Pµν(Fµν +Hcore
µν ) . (3.39)

The resulting molecular orbitals are then read in and contracted with the two-electron integrals to
determine the new two-electron contribution to the Fock matrix,

2J − K =
∑
κλ

Pκλ

(
⟨µν|κλ⟩ − 1

2⟨µν|λκ⟩
)
. (3.40)
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The Fock matrix is then constructed again, from which new molecular orbitals are determined as
this procedure repeats. When the energy and density matrix change from the last iteration less
than the convergence criteria, the mean field has become self-consistent and a stationary point on
the surface of orbital rotations has been found.

3.2.1.1 Initial Guess

The initial guess for a single point energy calculation is the density matrix from a one-electron
calculation, where contributions from J and K are ignored and the Fock matrix to diagonalise is

F = T + Vne . (3.41)

While this can cause problems for polyatomic molecules, it normally works fine for diatomics, so
no other guess options are implemented currently.

If an unrestricted Hartree–Fock calculation is run on a singlet molecule with equal α and β guess
densities the SCF will likely get caught in a local — but not global — minimum on the surface
of orbital rotations, the restricted Hartree–Fock solution. To get around this, TUNA rotates the
HOMO with the LUMO after the initial guess density is made, by[

ψ′
HOMO
ψ′

LUMO

]
=

[
cos θ − sin θ
sin θ cos θ

] [
ψHOMO

ψLUMO

]
(3.42)

By default, θ = 45◦. This can cause some problems with convergence when the RHF and UHF
solutions are (near-)degenerate, so the rotation can be disabled with the NOROTATE keyword.
Similarly, orbital rotation can be activated with the ROTATE keyword. If the default value of θ is
not converging well, use the ROTATE keyword followed by the desired rotation angle in degrees to
change it.

An example of forcing 45◦ rotation on a UHF calculation, corresponding to symmetric and anti-
symmetric linear combinations of the HOMO and LUMO, is:

TUNA SPE : H He 1.2 : UHF 6-31G : ROTATE 45

A well-considered guess rotation may allow a metastable energy state to be converged.

3.2.1.2 SCF Convergence

A number of SCF convergence criteria are available in TUNA, shown in Table 3.7. These can be
activated by the keywords LOOSE, MEDIUM (default for single point calculations), TIGHT (default
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for optimisations, frequencies and MD calculations) and EXTREME. The number of SCF iterations
before TUNA gives up can be picked with the keyword MAXITER, which is 100 by default.

Table 3.7 Self-consistent field convergence criteria in TUNA

Convergence ∆E MAX(∆P) RMS(∆P) [F,PS]

LOOSE 10−6 10−5 10−6 10−4

MEDIUM 10−7 10−6 10−7 10−5

TIGHT 10−9 10−8 10−9 10−7

EXTREME 10−11 10−10 10−11 10−9

There are several methods available to accelerate SCF convergence. The most powerful is probably
Fock matrix extrapolation, also known as direct inversion of the iterative subspace (DIIS) [30].

At SCF convergence, the density matrix commutes with the Fock matrix,

PF − FP = 0 . (3.43)

An error matrix can therefore be defined at the ith iteration, the root-mean-square of which
indicates how far the Hartree–Fock solution is from self-consistency.

PiFi − FiPi = ei . (3.44)

An error vector is built, where each error matrix is associated with a Fock matrix. This error vector
is then optimised in a least-squares minimisation to yield the proportion of each Fock matrix, cj ,
which can be used to make a new Fock matrix with a lower error vector,

Fj+1 =
∑

j

cjFj . (3.45)

DIIS tends to be very robust. TUNA stores 10 previous Fock matrices at each SCF step, and
will reset this stored array if the equations approach linear dependency and break. DIIS begins
after SCF step 2, to prevent extrapolation before convergence has properly begun, and can be
deactivated with the NODIIS keyword.
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Another convergence accelerator, which may be the most conceptually simple, is damping, where
the density matrix, P, is mixed with a fraction of the density from the previous SCF cycle, by

P′ = aPold + (1 − a)P . (3.46)

Static damping, where the value of a is fixed, can be invoked with the SLOWCONV or VERYSLOWCONV

keywords, where a = 0.5 and a = 0.85 respectively. These can be very helpful to force a difficult
case to converge, although should be used with a large value of MAXITER. A calculation with a
maximum of 100 iterations and a = 0.5 can be called by

TUNA SPE : H He 0.6 : HF 6-31+G : SLOWCONV MAXITER 100

However, the default method is dynamic damping, where the damping factor, a, is a function of
the DIIS error. The equation used in TUNA is

a = 0.7 tanh [F,PS] , (3.47)

which is homemade and not necessarily any good. This dynamic damping turns off (a = 0) when
the DIIS error falls below 0.01 units.

In level shifting, the energies of the virtual orbitals are shifted so that after diagonalisation of the
Fock matrix, the occupied and virtual orbitals mix less strongly and the calculation converges more
smoothly. Level shifting is applied via a parameter, b, which updates the Fock matrix by

F′ = F − bP (3.48)

Level shift is off by default because it doesn’t seem to help much when damping and DIIS are
enabled), but can be activated with b = 0.2 by the LEVELSHIFT keyword. This keyword can also
be used with a different value of b if 0.2 is not effective. For instance, a calculation using a level
shift of 0.35 without DIIS can be called by:

TUNA SPE : H He 0.8 : UHF 6-31+G : LEVELSHIFT 0.35 NODIIS

3.2.2 Møller–Plesset Perturbation Theory

In TUNA, conventional Møller–Plesset perturbation theory [31] to second (MP2) and third (MP3)
order are implemented for both restricted and unrestricted references. In addition, these methods
can be “spin-component-scaled” (SCS), which has been reported to increase their accuracy [32,
33]. These methods can be called by writing MP2, SCS-MP2, MP3, or SCS-MP3, such as:
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TUNA SPE : H H 0.6 : MP3 6-311G

Both conventional and spin-component-scaled MP2 and MP3 can be used with either unrestricted
or restricted references. If the molecule has an even number of electrons but an unrestricted
reference is desired, the method keywords UMP2, USCS-MP2, UMP3 or USCS-MP3 can be used:

TUNA SPE : H H 0.6 : UMP2 6-311G

All of these methods require an O(N5) transformation of the two-electron integrals into the spatial
orbital or spin orbital basis, and MP3 requires a further O(N6) contraction to calculate the energy.
However, at the number of basis functions involved in a TUNA calculation, these steps are small
compared to the time to calculate two-electron integrals. There are currently no options to freeze
core electrons.

For restricted Hartree–Fock references, the two electron integrals are transformed into a spatial
molecular orbital basis by

⟨ij|ab⟩ =
∑

µνκλ

CµiCνj⟨µν|κλ⟩CκaCλb , (3.49)

while for unrestricted references they are transformed into a spin orbital basis at higher computa-
tional cost.

Correlated calculations use these transformed integrals to calculate the energy. For instance, the
MP2 energy is calculated by

EMP2 = 1
4

∑
ijab

|⟨ij||ab⟩|2

εi + εj − εa − εb
. (3.50)

In TUNA, this energy is calculated via the amplitudes,

tab
ij = ⟨ij||ab⟩(Eab

ij )−1 , (3.51)

where

Eab
ij = εi + εj − εa − εb , (3.52)
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by

EMP2 = 1
4

∑
ijab

⟨ij||ab⟩tab
ij . (3.53)

These amplitudes are also used to update the occupied–occupied and virtual–virtual blocks of the
density matrix, for the unrelaxed density. For instance, the occupied–occupied blocks are given by

P j
i = −1

2
∑
abk

tjk
abt

ab
ik . (3.54)

The unrelaxed density is implemented for all MP2-based methods, but not for MP3. This density
is used for population analysis and dipole moment calculations, and to calculate natural orbital
occupancies, which are printed in the MP2 block in TUNA. If the additional print keyword, P, is
used, the density will also be used to compute the expectation value of the Ŝ2 operator, and the
spin contamination.

3.2.2.1 Spin-component Scaling

SCS-MP2 is a semi-empirical modification to MP2 that applies different scaling factors to the
same spin, ESS

MP2, and opposite spin, EOS
MP2, components of the MP2 correlation energy. These

calculations can be called in TUNA by:

TUNA SPE : H He 1.2 : SCS-MP2 6-31G

In SCS-MP2, the total energy is given by

ESCS-MP2 = EHF + αESS
MP2 + βEOS

MP2 , (3.55)

where by default, α = 1/3 and β = 6/5. These values can be changed by the SSS and OSS

keywords respectively.

In SCS-MP3, the total energy is given by

ESCS-MP3 = ESCS-MP2 + γEMP3 , (3.56)

where γ = 1/4 by default. The value of γ can be changed with the MP3S keyword.
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3.2.2.2 Orbital-optimised MP2

The MP2 energy can be minimised with respect to orbital rotations, in orbital-optimised MP2,
which lowers the MP2 energy further [34, 35]. This method can be requested with the OMP2

method keyword, or UOMP2 to force an unrestricted reference on a singlet state:

TUNA SPE : H H 0.6 : OMP2 6-311++G

The correlation energy is determined using the one- and two-particle reduced density matrices at
each OMP2 iteration, where the molecular orbitals are updated using a rotation matrix, R, by

Ci+1 = Ci exp(R) . (3.57)

This cycle continues until the change in energy falls below a convergence criteria of 10−8 by
default. This value can be changed with the OMP2CONV keyword. The maximum number of
OMP2 iterations is 20 by default, mutable with the OMP2MAXITER keyword.

The density matrix from orbital-optimised MP2 is fully relaxed, and is used by default to calculate
molecular properties and in population analysis.

3.2.3 Excited States

Excited state calculations are available in TUNA using the configuration interaction singles (CIS)
method, with an optional perturbative doubles correction. This module can be used to calculate
excitation energies and absorption intensities. Any excited state method for energies can be used
with optimisations, harmonic frequency calculations and, in principle, MD simulations. In reality,
there is significant risk to doing this, as unintended crossings between excited state potential energy
surfaces may occur. Excited state calculations are available for both RHF and UHF references.

3.2.3.1 Configuration Interaction Singles

The configuration interaction single excitations method is the analogy of Hartree–Fock for excited
states [36], and therefore not very good. CIS in TUNA is not yet spin-adapted.

In CIS, the wavefunction is expressed as a linear combination of singly-excited determinants,

|ΨCIS⟩ =
∑
ia

ba
i |Ψa

i ⟩ . (3.58)

The weights of these determinants, ba
i , are determined by diagonalisation of the shifted CIS Hamil-
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tonian, whose elements, in the basis of determinants, are

Hia,jb = (εa − εj)δijδab − ⟨ja||ib⟩ . (3.59)

The eigenvalues of this matrix give the excitation energies from the reference Hartree–Fock de-
terminant and the excited states, ω. TUNA prints these for each state, along with the percentage
contribution of each transition between occupied and virtual orbitals to the state. The default
threshold for the contributions to be printed is 5%, but this can be changed with the CISTHRESH

parameter. The total number of excited states to print — counted from lowest excitation eneryg
— can be controlled with the NSTATES keyword, which has a default value of 10. This will not
speed up the calculation, as presently all states are calculated at the same time.

After the percentage contributions are calculated, TUNA determines the transition dipoles between
the excited and ground state, µ, and uses these to find the oscillator strengths, by

fosc = 2
3ω|µ|2 . (3.60)

These values, along with the excitation energy in eV, excitation frequency in cm−1 and excitation
wavelength in nm, are printed in the CIS absorption spectrum in TUNA.

Finally, the CIS unrelaxed density matrix is calculated using the weights matrix. For instance, the
change to the occupied–occupied block upon excitation is

∆P j
i = −

∑
ab

ba
i b

a
j . (3.61)

This is added to the Hartree–Fock density matrix to give the full CIS unrelaxed one-particle reduced
density matrix of a particular state. This state can then be investigated further in population
analysis and dipole moment calculations with the additional print keyword, P. The state of interest
is the lowest energy excited state by default, but can be changed using the ROOT keyword. This
determines for which state the density matrix is calculated, as well as which energy is printed at
the end of the single point calculation. Therefore, if a geometry optimisation is desired on the
fourth excited state of H2, the following should be requested:

TUNA OPT : H H 1.0 : CIS 6-311G : ROOT 4

Excited states for singlet molecules can be requested with an unrestricted reference, with the UCIS

method. For example, an unrestricted CIS calculation on H–He+ where the second excited state
will be used for population analysis and lots of information will be printed about the percentage
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contribution to the states, is:

TUNA SPE : H He 1.0 : CIS 6-31++G : P ROOT 2 CH 1 CISTHRESH 0.1

3.2.3.2 Perturbative Doubles Correction to CIS

The CIS(D) method is analogous to the MP2 correlation perturbative correction to the Hartree–
Fock ground state, to an excited state’s excitation energy [37]. This has been shown to improve
excitation energies considerably compared to CIS.

This method is callable in TUNA with the CIS[D] keyword — normal parentheses don’t work
nicely in the terminal — and the correction will be applied to a state of interest only, as, like MP2,
CIS(D) scales with O(N5) with basis functions.

The correction to the excitation energy ω, consists of a “direct” contribution from the uab
ij tensor,

which accounts for electron correlation effects of the electron involved in the excitation. The
other term is “indirect”, accounting for correlation between electrons not involved in the excitation,
calculated by contraction of the va

i tensor, which contains contributions from the MP2 amplitudes,

ωCIS(D) = 1
4

∑
ijab

(uab
ij )2

Eab
ij + ω

+
∑
ia

ba
i v

a
i . (3.62)

The state to which the energy correction should be applied is the first excited state by default, but
can be changed with the ROOT keyword. For example, a CIS[D] optimisation of the fourth excited
state of dihydrogen is requested by:

TUNA OPT : H H 1.0 : CIS[D] 6-311G : ROOT 4
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4 List of Keywords

Table 4.1 lists all of the mandatory and optional keywords in TUNA, grouped by their functions.

Table 4.1 Parameter keywords in TUNA

Parameter Description

P Print more information to the terminal
T Print less information to the terminal

CH [int] or CHARGE [int] Molecular charge
ML [int] or MULTIPLICITY [int] Molecular multiplicity

DECONTRACT Decontract basis set
ROTATE [float] Rotate orbitals for initial guess (by degrees)

NOROTATE Don’t rotate orbitals for initial guess

LOOSE or LOOSESCF Loose SCF convergence
NORMAL or NORMALSCF Normal SCF convergence
TIGHT or TIGHTSCF Tight SCF convergence

EXTREME or EXTREMESCF Extreme SCF convergence

DAMP Dynamic damping for SCF convergence
NODAMP No dynamic damping for SCF convergence

LEVELSHIFT [float] Level shift for SCF convergence, and parameter
NOLEVELSHIFT No level shift for SCF convergence

DIIS Fock matrix extrapolation for SCF convergence
NODIIS No Fock matrix extrapolation for SCF convergence
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Parameter Description

SLOWCONV High static damping (50%) for SCF convergence
VERYSLOWCONV Extreme static damping (85%) for SCF convergence
MAXITER [int] Maximum number of SCF iterations

LOOSEOPT Loose geometry convergence
NORMALOPT Normal geometry convergence
TIGHTOPT Tight geometry convergence

EXTREMEOPT Extreme geometry convergence

CALCHESS Calculate exact Hessian for optimisation
DEFAULTHESS [float] Default Hessian for optimisation

D2 Semi-empirical dispersion correction with D2
MAXSTEP [float] Maximum step for optimisation

MOREAD Use density from previous step
NOMOREAD Recalculate density from scratch each step
OPTMAX Optimise to a local maximum, rather than a minimum
TRAJ Write trajectory to tuna-trajectory.xyz

NOTRAJ Do not write trajectory
MAXGEOMITER [int] Maximum number of optimisation steps

SCANSTEP [float] Distance increment for coordinate scan
SCANNUMBER [int] Number of distance increments for coordinate scan

SCANPLOT Plot potential energy surface from coordinate scan
DENSPLOT Plot 3D electron density

TIMESTEP [float] Timestep for MD simulation
MDNUMBER [int] Number of timesteps for MD simulation

TEMP [float] or TEMPERATURE [float] Sets temperature for thermochemistry and MD
PRES [float] or PRESSURE [float] Sets pressure for thermochemistry calculations
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Parameter Description

SSS [float] Same-spin scaling for SCS-MP2
OSS [float] Opposite-spin scaling for SCS-MP2
MP3S [float] Scaling for SCS-MP3

OMP2CONV [float] Convergence criteria for OMP2
OMP2MAXITER [int] Maximum iterations for OMP2

CISTHRESH [float] Threshold for printing excited state contributions
ROOT [int] Choice of excited state

NSTATES [int] Number of states to print
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