
ESBMTK Tutorial

Ulrich G Wortmann

October 30, 2023

Contents
1 A simple example 1

1.1 Implementing the P-cycle with ESBMTK 3
1.1.1 Defining the model geometry and initial conditions . . 4
1.1.2 Model processes . 6

1.2 Running the model, visualizing and saving the results 8

1 A simple example

A simple model of the marine P-cycle would consider the delivery of P from
weathering, the burial of P in the sediments, the thermohaline transport of
dissolved PO4 as well as the export of P in form of sinking organic matter
(POP). The concentration in the respective surface an deep water boxes is
then sum of the respective fluxes (see Fig. 1). The model parameters are
taken from Glover 2011, Modeling Methods in the Marine Sciences.
If we define equations that control the export of particulate P (FPOP) as
a fraction of the upwelling P (Fu), and the burial of P (Fb) as fraction of
(FPOP), we express this model as coupled ordinary differential equations
(ODE, or initial value problem):

d[PO4]S
dt

= Fw + Fu − Fd − FP OP

VS
(1)

and for the deep ocean,

d[PO4]D
dt

= FP OP + Fd − Fu − Fb

VD
(2)

1

Figure 1: A two-box model of the marine P-cycle. Fw = weathering Fu =
upwelling, Fd = downwelling, FPOP = particulate organic phosphor, Fb =
burial.

2

which is easily encoded as a python function

1 def dCdt(t, C_0, V, F_w, thx):
2 """Calculate the change in concentration as
3 a function of time. After Glover 2011, Modeling
4 Methods for Marine Science.
5

6 :param C: list of initial concentrations mol/m*3
7 :param time: array of time points
8 :params V: lits of surface and deep ocean volume [m^3]
9 :param F_w: River (weathering) flux of PO4 mol/s

10 :param thx: thermohaline circulation in m*3/s
11 :returns dCdt: list of concentration changes mol/s
12 """
13

14 C_S = C_0[0] # surface
15 C_D = C_0[1] # deep
16 F_d = C_S * thx # downwelling
17 F_u = C_D * thx # upwelling
18 tau = 100 # residence time of P in surface waters [yrs]
19 F_POP = C_S * V[0] / tau # export production
20 F_b = F_POP / 100 # burial
21

22 dCdt[0] = (F_w + F_u - F_d - F_POP) / V[0]
23 dCdt[1] = (F_d + F_POP - F_u - F_b) / V[1]
24

25 return dCdt

1.1 Implementing the P-cycle with ESBMTK

While ESBMTK provides abstractions to efficiently define complex models,
the following section will use the basic ESBMTK classes to define the above
model. While quite verbose, it demonstrates the design philosophy behind
ESBMTK. More complex approaches are described further down.
Currently ESBMTK is only available via pip install as

1 import sys
2 !{sys.executable} -m pip install esbmtk

3

1.1.1 Defining the model geometry and initial conditions

In a first step one needs to define a model object that describes fundamental
model parameters. The following code first loads the various esbmtk classes
that will help with model construction, and then defines the model object.
Note that units are automatically translated into model units. While con-
venient, there are some import caveats: Internally, the model uses ’year’
as the time unit, mol as the mass unit, and liter as the volume unit. You
can change this by setting these values to e.g., ’mol’ and ’kg’, however, some
functions assume that their input values are in ’mol/l’ rather than mol/m**3
or ’kg/s’. Ideally this would be caught by ESBMTK, but at present, this
not guaranteed. So your mileage may vary, if you fiddle with these settings.
Note: Using mol/kg e.g., for seawater, will be discussed below.

1 # import classes from the esbmtk library
2 from esbmtk import (
3 Model, # the model class
4 Reservoir, # the reservoir class
5 Connection, # the connection class
6 Source, # the source class
7 Sink, # sink class
8 Q_, # Quantity operator
9)

10

11 # define the basic model parameters
12 M = Model(
13 name="M", # model name
14 stop="3 Myr", # end time of model
15 timestep="1 kyr", # upper limit of time step
16 element=["Phosphor"], # list of element definitions
17)

Next, we need to declare some boundary conditions. Most ESBMTK classes
will be able to accept input in the form of strings that also contain units
(e.g., "30 Gmol/a"). Internally these strings are parsed and converted into
the model base units. This works most of the time, but not always. In the
below example, we the residence time τ . This variable is then used as input
to calculate the scale for the primary production as M.sb.volume / tau
which must fail since M.sb.volume is a numeric value and tau is a string.

1 # try the following

4

2 tau = "100 years"
3 tau * 12

To avoid this we have to manually parse the string into a quantity. This is
done with the quantity operator Q_ Note that Q_ is not part of ESBMTk
but imported from the pint library.

1 # now try this
2 from esbmtk import Q_
3 tau = Q_("100 years")
4 tau * 12

Most ESBMTK classes accept quantities, strings that represent quantities as
well as numerical values. Weathering and burial fluxes are often defined in
mol/year, whereas ocean models use kg/year. ESBMTK provides a method
(set_flux()) that will automatically convert the input into the correct
units. In this example it is not necessary since the flux and the model both
use mol . It is however good practice to to relay on the automatic conversion.
Note that it makes a difference for the mole to kilogram conversion whether
ones uses M.P or M.PO4 as the reference species!

1 # boundary conditions
2 F_w = M.set_flux("45 Gmol", "year", M.P) # P @280 ppm (Filipelli 2002)
3 tau = Q_("100 year") # PO4 residence time in surface box
4 F_b = 0.01 # About 1% of the exported P is buried in the deep ocean
5 thc = "20*Sv" # Thermohaline circulation in Sverdrup

To set up the model geometry, we first use the Source and Reservoir classes
to create a source for the weathering flux, a sink for the burial flux, and
instances of the surface and deep oceans boxes. Since we loaded the element
definitions for phosphor in the model definition above, we can directly refer
to the "PO4" species in the reservoir definition.

1 # Source definitions
2 Source(
3 name="weathering",
4 species=M.PO4,
5 register=M, # i.e., the instance will be available as M.weathering
6)

5

7 Sink(
8 name="burial",
9 species=M.PO4,

10 register=M, #
11)
12

13 # reservoir definitions
14 Reservoir(
15 name="sb", # box name
16 species=M.PO4, # species in box
17 register=M, # this box will be available as M.sb
18 volume="3E16 m**3", # surface box volume
19 concentration="0 umol/l", # initial concentration
20)
21 Reservoir(
22 name="db", # box name
23 species=M.PO4, # species in box
24 register=M, # this box will be available M.db
25 volume="100E16 m**3", # deeb box volume
26 concentration="0 umol/l", # initial concentration
27)

1.1.2 Model processes

For many models, processes can mapped as the transfer of mass from one box
to the next. Within the ESBMTK framework this is accomplished through
the Connection class. To connect the a weathering flux from the source
object (M.w) to the surface ocean (M.sb) we declare a connection instance
describing this relationship as follows:

1 Connection(
2 source=M.weathering, # source of flux
3 sink=M.sb, # target of flux
4 rate=F_w, # rate of flux
5 id="river", # connection id
6)

Unless the=register= keyword is given, connections will be automatically
registered withe the parent of the source, i.e., the model M. Unless explicitly
given through the name keyword, connection names will be automatically
constructed from the names of the source and sink instances. However, it

6

is a good habit to provide the id keyword to keep connections separate in
cases where two reservoir instances share more than one connection. The
list of all connection instances can be obtained from the model object (see
below).
To map the process of thermohaline circulation, we connect the surface and
deep ocean boxes using a connection type that scales the mass transfer as a
function of the concentration in a given reservoir (ctype ="scale_with_-
concentration") . The concentration data is taken from the reference
reservoir which defaults to the source reservoir. As such, in most cases
the ref_reservoirs keyword can be omitted. The scale keyword can be
a string, or a numerical value. If its provided as a string ESBMTK will
map the value into model units. Note that the connection class does not
require the name keyword. Rather the name is derived from the source and
sink reservoir instances. Since reservoir instances can have more than one
connection (i.e., surface to deep via downwelling, and surface to deep via
primary production), it is required to set the id keyword.

1 Connection(# thermohaline downwelling
2 source=M.sb, # source of flux
3 sink=M.db, # target of flux
4 ctype="scale_with_concentration",
5 scale=thc,
6 id="downwelling_PO4",
7 # ref_reservoirs=M.sb, defaults to the source instance
8)
9 Connection(# thermohaline upwelling

10 source=M.db, # source of flux
11 sink=M.sb, # target of flux
12 ctype="scale_with_concentration",
13 scale=thc,
14 id="upwelling_PO4",
15)

There are several ways to define the biological export production, e.g., as
function of the upwelling PO4, or as function of the residence time of PO4
in surface ocean. Here we follow Glover (2011), and use the residence time
τ = 100 years.

1 Connection(#
2 source=M.sb, # source of flux

7

3 sink=M.db, # target of flux
4 ctype="scale_with_concentration",
5 scale=M.sb.volume / tau,
6 id="primary_production",
7)

We require one more connection to describe the burial of P in the sediment.
We describe this flux as a fraction of the primary export productivity. To
create the connection we can either recalculate the export productivity, or
use the previously calculated flux. We can query the export productivity
using the id_string of the above connection with the flux_summary()
method of the model instance:

1 M.flux_summary(filter_by="primary_production", return_list=True)[0]

The flux_summary() method will return a list of matching fluxes but since
there is only one match, we can simply use the first result, and use it to
define the phosphor burial as a consequence of export production in the
following way:

1 Connection(#
2 source=M.db, # source of flux
3 sink=M.burial, # target of flux
4 ctype="scale_with_flux",
5 ref_flux=M.flux_summary(filter_by="primary_production", return_list=True)[0],
6 scale=F_b,
7 id="burial",
8)

1.2 Running the model, visualizing and saving the results

1 M.run()
2 M.plot([M.sb, M.db])

8

	A simple example
	Implementing the P-cycle with ESBMTK
	Defining the model geometry and initial conditions
	Model processes

	Running the model, visualizing and saving the results

