
The PYCHEMKIN User Manual

Jane Huang, Kimia Mavon, Weidong Xu, Zeyu Zhao

1 Introduction

pychemkin is a Python 3 library that computes the reaction rates of species participating in
a system of elementary reactions.

1.1 Key chemical concepts and terminology

A system consisting of M elementary reactions involving N species has the general form

N

∑
i=1

ν′ijSi −→
N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (1)

for irreversible reactions (i.e., the reaction only proceeds in the forward direction) and

N

∑
i=1

ν′ijSi

N

∑
i=1

ν′′ijSi, j = 1, . . . , M. (2)

for reversible reactions (i.e., the reaction can proceed in either the forward or backward
directions).

Si is the ith specie in the system, ν′ij is its stoichiometric coefficient (dimensionless) on
the reactants side of the jth reaction, and ν′′ij is its stoichiometric coefficient (dimensionless)
on the product side for the jth reaction.

Each specie is characterized by a concentration xi, in units of [mol/vol]. The reaction
rate of each specie is the time rate of change of its concentration, dxi

dt . The reaction rate is
usually represented by the symbol fi, such that

fi =
M

∑
j=1

(ν′′ij − ν′ij)ωj =
M

∑
j=1

νijωj, i = 1, . . . , N. (3)

The progress rate of the jth reaction is given by

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i − k(b)j

N

∏
i=1

x
ν′′ij
i , j = 1, . . . , M. (4)

1

The forward reaction rate coefficient k(f)
j is assumed to take one of three possible

forms:

1. k = constant

2. Arrhenius: k = A exp(− E
RT), where A is the pre-factor, E is the activation energy, R

is the universal gas constant, and T is the temperature.

3. Modified Arrhenius: k = ATb exp(− E
RT), where A is the pre-factor, E is the activation

energy, R is the universal gas constant, T is the temperature, and b is the temperature
scaling parameter.

The forward and backward reaction rate coefficients are related by

k(b)j =
k(f)

j

ke
j

, j = 1, . . . , M, (5)

where the equilibrium coefficient ke
j is given by

ke
j =

(p0

RT

)γj
exp

(
∆Sj

R
−

∆Hj

RT

)
, j = 1, . . . , M. (6)

The pressure p0 is fixed at 105 Pa in this package. γj = ∑N
i=1 νij. The entropy change of

reaction j is

∆Sj =
N

∑
i=1

νijSi, j = 1, . . . , M, (7)

where Si is the entropy of specie i. Likewise, the enthalpy change of reaction j is

∆Hj =
N

∑
i=1

νijHi, j = 1, . . . , M. (8)

An irreversible reaction can be thought of as the limiting case where ke
j approaches ∞,

in which case the backwards reaction rate coefficient k(b)j approaches 0. The progress rate
expression then simplifies to

ωj = k(f)
j

N

∏
i=1

x
ν′ij
i , j = 1, . . . , M. (9)

2

1.2 Features

The package can solve for the reaction rates of a system of elementary reactions. The
number of reactions and species is arbitrary. For each system of reactions, the user sup-
plies the species participating in the reactions, the chemical equations, the stoichiometric
coefficients for the reactants and products, and the rate coefficient parameters (e.g., E and
A for Arrhenius rates). For a given system, the user can then specify a temperature and
a vector of species concentrations in order to return the reaction rates in the form of a
NumPy array. Rate coefficients and reaction progress rates can also be retrieved.

1.2.1 Calculation of thermodynamic quantities

Traditionally for combustion chemistry, the entropy and enthalpy of each species are
approximated by polynomial fits to numerical calculations from Gordon and McBride’s
1963 report, The Thermodynamic Properties of Chemical Substances to 6000 K, NASA Report
SP-3001:

Hi

RT
= ai1 +

1
2

ai2T +
1
3

ai3T2 +
1
4

ai4T3 +
1
5

ai5T4 +
ai6

T
(10)

and
Si

R
= ai1 ln (T) + ai2T +

1
2

ai3T2 +
1
3

ai4T3 +
1
4

ai5T4 + ai7. (11)

These are known as the NASA polynomials. For each specie, there are two sets of co-
efficients ai, the first of which is applicable at low temperatures and a second that is
applicable at high temperatures. pychemkin stores these coefficients (taken from http:

//burcat.technion.ac.il/dir/) in an SQL database and retrieves values for species
requested by the user.

2 Installation

2.1 Where to find and download the code

2.1.1 Using pip

pychemkin v. 0.1.1 is hosted on PyPi at https://pypi.python.org/pypi/pychemkin. To
download and install the package, simply type pip install pychemkin into your termi-
nal.

2.1.2 Installing from source

To get the most up-to-date version, you can go to https://github.com/cs207group4/

cs207-FinalProject. If you have a GitHub account, you can simply open your termi-
nal and type git clone git@github.com:cs207group4/cs207-FinalProject.git. Oth-
erwise, you can download the package by clicking on the green button in the upper right

3

http://burcat.technion.ac.il/dir/
http://burcat.technion.ac.il/dir/
https://pypi.python.org/pypi/pychemkin
https://github.com/cs207group4/cs207-FinalProject
https://github.com/cs207group4/cs207-FinalProject

corner of the page that says ”Clone or download,” then click ”Download ZIP” to download
the entire repository as a ZIP file. Once you download the contents of the repository from
GitHub, enter the directory and type python setup.py install In order to run the test
suite, you need to have pytest v. 3.00+ and pytest-cov v. 2.5+ installed. When you’re in
the top level of the package directory, type pytest into the terminal. The results of the test
code will be printed out to the terminal.

2.2 Dependencies

This package has dependencies that usually come standard with the Anaconda distribution,
but will otherwise automatically be installed for you if you use pip.

• NumPy v. 1.11+

• sqlite3 v. 3.13.0+

Earlier versions of these packages may work, but the code has only been validated on
the listed versions.

3 Basic Usage and Examples

As an example of basic code usage, we consider the following system of elementary,
irreversible reactions:

1. H + O2
k1→ OH + O

2. H2 + O
k2→OH + H

3. H2 + OH
k3→ H2O + H

Reaction 1 has an Arrhenius rate coefficient with A = 3.52× 1010 and E = 7.14× 104.
Reaction 2 has a modified Arrhenius rate coefficient with A = 5.06× 10−2, b = 2.7, and
E = 2.63× 104. Finally, reaction 3 has a constant rate coefficient of k3 = 103.

3.1 User-required input

In an xml input file, the user provides the species participating in the reactions, the chemical
equations, the stoichiometric coefficients, and the rate coefficient parameters. See rxns.xml
in the tests/test xml folder for an example of how to format the input file.

The xml file will be processed and stored in a chemkin object as follows:

4

https://docs.pytest.org/en/latest/
https://pypi.python.org/pypi/pytest-cov
http://www.numpy.org/
https://www.sqlite.org/

>>>from pychemkin import chemkin

>>>rxn_system = chemkin.from_xml(’rxns.xml’)

Finished reading xml input file

We can print out information about the reaction system as follows:

>>>print(rxn_system)

chemical equations:

[

H + O2 =] OH + O

H2 + O =] OH + H

H2 + OH =] H2O + H

]

species: [‘H’, ‘O’, ‘OH’, ‘H2’, ‘H2O’, ‘O2’]

nu_react:

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]

[0. 1. 1.]

[0. 0. 0.]

[1. 0. 0.]]

nu_prod:

[[0. 1. 1.]

[1. 0. 0.]

[1. 1. 0.]

[0. 0. 0.]

[0. 0. 1.]

[0. 0. 0.]]

reaction coefficients:

[

Arrhenius Reaction Coeffs: {‘A’: 35200000000.0, ‘E’: 71400.0, ‘R’: 8.314}

modifiedArrhenius Reaction Coeffs: {‘A’: 0.0506, ‘b’: 2.7, ‘E’: 26300.0, ‘R’: 8.314}

Constant Reaction Coeffs: {‘k’: 1000.0, ‘R’: 8.314}

]

reaction types: [‘Elementary’, ‘Elementary’, ‘Elementary’]

reversible: [‘no’, ‘no’, ‘no’]

3.2 Computing reaction rates

Given the reaction data from a user-provided input file, the reaction rates can be computed
for an arbitrary temperature and set of species concentrations.

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

5

>>> rxn_system.reaction_rate_T(x,T)

array([-6.28889929e+06, 6.28989929e+06, 6.82761528e+06,

-2.70357993e+05, 1.00000000e+03, -6.55925729e+06])

3.3 Obtaining intermediate calculations

Rate coefficients and progress rates are calculated in the course of computing the reaction
rates. While these methods do not have to be called by the user to obtain the reaction rates,
they are accessible if the user wishes to obtain these values.

3.3.1 Obtaining forward rate coefficients

While the xml file provides the parameters for the functional form of the rate coefficient
expression, a temperature (usually) has to be specified to compute the rate coefficient. Our
package does this in the following manner:

>>> from pychemkin import ReactionCoeffs

>>> rc = ReactionCoeffs(‘Arrhenius’, A = 1e7, E=1e3)

>>> rc.set_params(T=1e2)

>>> rc.k_forward()

3003549.0889639612

3.3.2 Obtaining progress rates

The progress rate values wi can be computed in the following manner:

>>> T = 1000 #K

>>> x = np.array([1,1,1,1,1,1])

>>> rxn_system.progress_rate(x,T)

array([6.55925729e+06, 2.69357993e+05, 1.00000000e+03])

6

	Introduction
	Key chemical concepts and terminology
	Features
	Calculation of thermodynamic quantities

	Installation
	Where to find and download the code
	Using pip
	Installing from source

	Dependencies

	Basic Usage and Examples
	User-required input
	Computing reaction rates
	Obtaining intermediate calculations
	Computing rate coefficients
	Computing progress rates

