Stan Math Library  2.12.0
reverse mode automatic differentiation
double_exponential_ccdf_log.hpp
Go to the documentation of this file.
1 #ifndef STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_CCDF_LOG_HPP
2 #define STAN_MATH_PRIM_SCAL_PROB_DOUBLE_EXPONENTIAL_CCDF_LOG_HPP
3 
16 #include <boost/random/uniform_01.hpp>
17 #include <boost/random/variate_generator.hpp>
18 #include <cmath>
19 
20 namespace stan {
21  namespace math {
22 
23  template <typename T_y, typename T_loc, typename T_scale>
24  typename return_type<T_y, T_loc, T_scale>::type
25  double_exponential_ccdf_log(const T_y& y, const T_loc& mu,
26  const T_scale& sigma) {
27  static const char* function("double_exponential_ccdf_log");
29  T_partials_return;
30 
31  T_partials_return ccdf_log(0.0);
32 
33  if (!(stan::length(y)
34  && stan::length(mu)
35  && stan::length(sigma)))
36  return ccdf_log;
37 
38  check_not_nan(function, "Random variable", y);
39  check_finite(function, "Location parameter", mu);
40  check_positive_finite(function, "Scale parameter", sigma);
41  check_consistent_sizes(function,
42  "Random variable", y,
43  "Location parameter", mu,
44  "Scale Parameter", sigma);
45 
46  using std::log;
47  using std::exp;
48  using std::exp;
49 
51  operands_and_partials(y, mu, sigma);
52 
53  VectorView<const T_y> y_vec(y);
54  VectorView<const T_loc> mu_vec(mu);
55  VectorView<const T_scale> sigma_vec(sigma);
56  const double log_half = std::log(0.5);
57  size_t N = max_size(y, mu, sigma);
58 
59  for (size_t n = 0; n < N; n++) {
60  const T_partials_return y_dbl = value_of(y_vec[n]);
61  const T_partials_return mu_dbl = value_of(mu_vec[n]);
62  const T_partials_return sigma_dbl = value_of(sigma_vec[n]);
63  const T_partials_return scaled_diff = (y_dbl - mu_dbl) / sigma_dbl;
64  const T_partials_return inv_sigma = 1.0 / sigma_dbl;
65  if (y_dbl < mu_dbl) {
66  ccdf_log += log1m(0.5 * exp(scaled_diff));
67 
68  const T_partials_return rep_deriv = 1.0
69  / (2.0 * exp(-scaled_diff) - 1.0);
71  operands_and_partials.d_x1[n] -= rep_deriv * inv_sigma;
73  operands_and_partials.d_x2[n] += rep_deriv * inv_sigma;
75  operands_and_partials.d_x3[n] += rep_deriv * scaled_diff
76  * inv_sigma;
77  } else {
78  ccdf_log += log_half - scaled_diff;
79 
81  operands_and_partials.d_x1[n] -= inv_sigma;
83  operands_and_partials.d_x2[n] += inv_sigma;
85  operands_and_partials.d_x3[n] += scaled_diff * inv_sigma;
86  }
87  }
88  return operands_and_partials.value(ccdf_log);
89  }
90 
91  }
92 }
93 #endif
VectorView< T_return_type, false, true > d_x2
bool check_not_nan(const char *function, const char *name, const T_y &y)
Return true if y is not NaN.
T value_of(const fvar< T > &v)
Return the value of the specified variable.
Definition: value_of.hpp:16
fvar< T > log(const fvar< T > &x)
Definition: log.hpp:14
T_return_type value(double value)
Returns a T_return_type with the value specified with the partial derivatves.
size_t length(const std::vector< T > &x)
Definition: length.hpp:10
Metaprogram to determine if a type has a base scalar type that can be assigned to type double...
fvar< T > exp(const fvar< T > &x)
Definition: exp.hpp:10
This class builds partial derivatives with respect to a set of operands.
VectorView< T_return_type, false, true > d_x3
size_t max_size(const T1 &x1, const T2 &x2)
Definition: max_size.hpp:9
bool check_finite(const char *function, const char *name, const T_y &y)
Return true if y is finite.
bool check_consistent_sizes(const char *function, const char *name1, const T1 &x1, const char *name2, const T2 &x2)
Return true if the dimension of x1 is consistent with x2.
VectorView is a template expression that is constructed with a container or scalar, which it then allows to be used as an array using operator[].
Definition: VectorView.hpp:48
boost::math::tools::promote_args< typename partials_type< typename scalar_type< T1 >::type >::type, typename partials_type< typename scalar_type< T2 >::type >::type, typename partials_type< typename scalar_type< T3 >::type >::type, typename partials_type< typename scalar_type< T4 >::type >::type, typename partials_type< typename scalar_type< T5 >::type >::type, typename partials_type< typename scalar_type< T6 >::type >::type >::type type
return_type< T_y, T_loc, T_scale >::type double_exponential_ccdf_log(const T_y &y, const T_loc &mu, const T_scale &sigma)
bool check_positive_finite(const char *function, const char *name, const T_y &y)
Return true if y is positive and finite.
fvar< T > log1m(const fvar< T > &x)
Definition: log1m.hpp:15
VectorView< T_return_type, false, true > d_x1

     [ Stan Home Page ] © 2011–2016, Stan Development Team.