AC Power Flows and their Derivatives using
Complex Matrix Notation and Cartesian
Coordinate Voltages

Baljinnyam Sereeter Ray D. Zimmerman

April 2, 2018*

MATPOWER. Technical Note 4

© 2008, 2010, 2011, 2017, 2018 Power Systems Engineering Research Center (PSERC)
All Rights Reserved

*Revision 1 — October 25, 2018. See Section 8 for revision history details.



CONTENTS CONTENTS

Contents
1 Notation 4
2 Introduction 5
3 Voltages 6
3.1 Bus Voltages . . . . . . . . . 6
3.1.1 First Derivatives . . . . . . . . . . . . . ... ... ..., 7
3.1.2 Second Derivatives . . . . . . . ... ... 7
3.2 Branch Voltages . . . . . . . . . ... o o 8
3.2.1 First Derivatives . . . . . . . . . ... 9
3.3 Reference Bus Voltage Angles . . . . . ... ... ... .. ...... 9
3.3.1 First Derivatives . . . . . . . . . . . .. ... ... ... 9
3.3.2 Second Derivatives . . . . . . . .. ... 9
3.4 Bus Voltage Magnitude Limits . . . . . . ... ... ... ... .... 10
3.4.1 First Derivatives . . . . . . . . . ... 10
3.4.2 Second Derivatives . . . . . . . .. ... .. 10
3.5 Branch Angle Difference Limits . . . . . . ... ... ... ... ... 11
3.5.1 First Derivatives . . . . . . . . . ... ... 11
3.5.2 Second Derivatives . . . . . . . ... ... 11
4 Bus Injections 12
4.1 Complex Current Injections . . . . . .. ... ... ... ... .... 12
4.1.1 First Derivatives . . . . . . . . . ... 12
4.1.2 Second Derivatives . . . . . . . . ... . 13
4.2 Complex Power Injections . . . . . .. ... ... ... ... ..., 17
4.2.1 First Derivatives . . . . . . . . . .. ... .. 18
4.2.2 Second Derivatives . . . . . . . .. 18
5 Branch Flows 20
5.1 Complex Currents . . . . . . . . . .. 20
5.1.1 First Derivatives . . . . . . . . . . . .. ... ... .. .... 20
5.1.2 Second Derivatives . . . . . ... ... ... ... . ... .. 20
5.2 Complex Power Flows . . . .. .. ... ... ... . ......... 20
5.2.1 First Derivatives . . . . . . . . . ... 21
5.2.2 Second Derivatives . . . . . . . ... ... ... 21
5.3 Squared Current Magnitudes . . . . . . . .. ... ... ... ... 23
5.4 Squared Apparent Power Magnitudes . . . . . . ... ... ... ... 23



CONTENTS

5.5 Squared Real Power Magnitudes . . . . . .. ... ..

6 Generalized AC OPF Costs

7 Lagrangian of the AC OPF

7.1 Nodal Current Balance . . . . . . ... ... ... ..
7.1.1 First Derivatives . . . . . .. ... ... ...
7.1.2 Second Derivatives . . . . . ... ... ....

7.2 Nodal Power Balance . . . . . ... ... ... ....
7.2.1 First Derivatives . . . . . . . . ... ... ..
7.2.2 Second Derivatives . . . . ... ... ... ..

8 Revision History

Appendix A Scalar Polar Coordinate Derivatives

A.1 First Derivatives . . . . . . . . . . . . ... ... ..
A.2 Second Derivatives . . . . . . . ...

References

CONTENTS

23

24

......... 25
......... 25
......... 25
......... 27
......... 27
......... 27

29

30

......... 30
......... 31

32



1 NOTATION

1 Notation

ny, ng, 1y, N, number of buses, generators, branches, reference buses, respectively

Us, Wy
|vil, 0
Ui
uw
V,0
v
Jbus
L
i,
St st
Sy
P.Q
M, N
Yous
Y, Y,
Cy

Cfa Ot

C’ref

real and imaginary parts of bus voltage at bus ¢

bus voltage magnitude and angle at bus ¢

complex bus voltage at bus 7, that is |v;|e?% or u; + jw;

ny X 1 vectors of real and imaginary parts of bus voltage

ny X 1 vectors of bus voltage magnitudes and angles

ny X 1 vector of complex bus voltages v;, U + jW

ny X 1 vector of complex bus current injections

n; X 1 vectors of complex branch current injections, from and to ends
ny X 1 vector of complex bus power injections

n; X 1 vectors of complex branch power flows, from and to ends
ng X 1 vector of generator complex power injections

real and reactive power flows/injections, S = P + j@Q

real and imaginary parts of current flows/injections, I = M + jN
ny X ny system bus admittance matrix

n; X ny system branch admittance matrices, from and to ends

ny X ng generator connection matrix
(i,7)™" element is 1 if generator j is located at bus i, 0 otherwise

n; X ny branch connection matrices, from and to ends,
(i, 7)" element is 1 if from end, or to end, respectively, of branch i is
connected to bus j, 0 otherwise

n, X ng reference bus indicator matrix
(4,7)™" element is 1 if bus j is i reference bus, 0 otherwise

diagonal matrix with vector A on the diagonal

(non-conjugate) transpose of matrix A

complex conjugate of A

matrix exponent for matrix A, or element-wise exponent for vector A
n x 1 vector of all ones, n x n identity matrix

appropriately-sized vector or matrix of all zeros
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2 INTRODUCTION

2 Introduction

This document is a companion to MATPOWER Technical Note 2 [1] and MATPOWER
Technical Note 3 [2]. The purpose of these documents is to show how the AC power
balance and flow equations used in power flow and optimal power flow computa-
tions can be expressed in terms of complex matrices, and how their first and second
derivatives can be computed efficiently using complex sparse matrix manipulations.
The relevant code in MATPOWER [3,4] is based on the formulas found in these three
notes.

MATPOWER Technical Note 2 presents a standard formulation based on complex
power flows and nodal power balances using a polar representation of bus voltages,
MATPOWER Technical Note 3 adds the formulas needed for nodal current balances,
and this note presents versions of both based on a cartesian coordinate representation
of bus voltages.

We will be looking at complex functions of the real valued vector

U
w
X=1p | (1)
Qg
For a complex scalar function f: R™ — C of a real vector X = [ T1 Ty Ty }T,
we use the following notation for the first derivatives (transpose of the gradient)
of of  of of
T >
The matrix of second partial derivatives, the Hessian of f, is
o2p . 94
an 9 af T 0x3 Ox10zn
fXX:_QZ_(_> = f f (3)
0X 0X \ 0X o o
Oxn0x1 ox2

For a complex vector function F': R" — C™ of a vector X, where

F(X)=[ A(X) f(X) - fu(X) ], (4)

the first derivatives form the Jacobian matrix, where row ¢ is the transpose of the
gradient of f;.

Oh ... 2A
@F 6271 an
Fx = X ST (5)
Ofm .. Ofm
ox1 0y
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3 VOLTAGES

In these derivations, the full 3-dimensional set of second partial derivatives of F' will
not be computed. Instead a matrix of partial derivatives will be formed by computing
the Jacobian of the vector function obtained by multiplying the transpose of the
Jacobian of F' by a constant vector A, using the following notation.

Frex(@) = (5 (55 )

Just to clarify the notation, if Y and Z are subvectors of X, then

Fralo) = (57 (57

One common operation encountered in these derivations is the element-wise mul-
tiplication of a vector A by a vector B to form a new vector C' of the same dimension,
which can be expressed in either of the following forms

(6)

A=«

(7)

A=«

C=[A]B=[B]A (8)

It is useful to note that the derivative of such a vector can be calculated by the chain

rule as
oC 0B 0A

— o = Al e+ (Bl =

Cx 0X

A] Bx + [B] Ax 9)

3 Voltages

3.1 Bus Voltages

V' is the n, x 1 vector of complex bus voltages. The element for bus 7 is v; = u; + jw;.
U and W are the vectors of real and imaginary parts of the bus voltages. Consider
also the vector of inverses of bus voltages ﬁ, denoted by A. Note that

v uitjwg uFw? o ol o)
A=Vi=[y v (11)

O =tan’ ([U]_1 W) (12)

V= (U2+W?)? (13)
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3.1 Bus Voltages

3.1.1 First Derivatives

Vo = g_‘(; - [1nb]
Vi = g—;[// = j [1n,)
i
Aw =S = AP

VOLTAGES

(14)

(15)

(16)

(17)

The following could also be useful for implementing certain constraints on volt-
age magnitude or angles. For the derivations, see the scalar versions found in Ap-

pendix A.
00 9
Oy 0 2l
00 9
ow =29 _prep)
152% 1
Vy = U 2
150% 1
Vw = v 2l

3.1.2 Second Derivatives

For the derivations, see the scalar versions found in Appendix A.

Ouu()) = % (007
=2\ V] U] W]
Opw (1) = % (05™)
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3.2 Branch Voltages

Oww()) = % (Ow )
=2\ V' U] W]
Voo (A) % (Vo™
=\ [V W]
Vow () = % (Vo™
=~ )W)
Viw(A) = % (V™)
= -V U W]
Vi (A) = ai (V™)
=\ U

3.2 Branch Voltages

3 VOLTAGES

(25)

The n; x 1 vectors of complex voltages at the from and to ends of all branches are,

respectively

Vi =CyV
Vi=CGV
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3.3 Reference Bus Voltage Angles 3 VOLTAGES

3.2.1 First Derivatives

oV, . ov
U Cf@ = Cy (40)
o, oV

T Cfﬁ = jCy (41)

3.3 Reference Bus Voltage Angles

The n, x 1 vector of complex voltages at reference buses is
‘/ref = Crefv (42)
The equality constraint on voltage angles at reference buses is

Gref (X) — Oref® . @speciﬁed (43)

ref

3.3.1 First Derivatives

Gref = 55; = CefOy = —Chet V]2 [W] (44)
Gl{/Ie/f = aai; = CrefOw = Cher [V}_Q [U] (45)
3.3.2 Second Derivatives
GEL(N) = CretOur(N) = 2Ck [N V] [U] W] (46)
Gty (V) = Cret®uw(N) = Crt N V] (W] = [UT?) (47)
Gt (A) = CretOwu(N) = Crt N V] (W] = [U]?) (48)
Giti () = CretOuw () = —2C:et [\ V] [U] [W] (49)



3.4 Bus Voltage Magnitude Limits 3 VOLTAGES

3.4 Bus Voltage Magnitude Limits

Upper and lower bounds on bus voltage magnitudes are the n, x 1 vectors

HY"™(X) =V — pmax (50)
HY™ (X)) =ymin -y (51)
3.4.1 First Derivatives

HY™ = Vy = V7 [U] (52)
Hy™ =V = V] W] (53)
oY = gy (54)
Hy" =~y (55)

3.4.2 Second Derivatives
HYG™ () = Vou(h) = P V72 (W] (56)
Hyw (V) = Yow(\) = = N V7 [U] (7] (57)
Hyg (V) = Vwo(A) = =N V7 [U] (7] (58)
Hipw (A) = Vww(A) = N V] (U] (59)
Hyy"(\) = —Hyy™ (A (60)
Hw'(\) = —Hyw™ (V) (61)
Hyy'(\) = —Hyg (V) (62)
Hyw (\) = —Hiy (V) (63)
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3.5 Branch Angle Difference Limits

3.5 Branch Angle Difference Limits

3 VOLTAGES

Upper and lower bounds on branch voltage angle differences are the n; x 1 vectors

3.5.1

3.5.2

H®"™ (X)) = (C; — C,)O — i
HO™ (X) = O™ — (Cr—C)O

First Derivatives
HY"™ = (Cy — C)Oy = —(Cy — Cy) V]2 W]

HY™ = 0w = (C; — Cy) V] [U]

emin o @max
HU - _HU

@min o @max
HW - _HW

Second Derivatives
Hpy™ (V) = (Cp = C)Ouu(A) = 2(Cr — Co) [ VI U] W]
Heyw™ (A) = (Cp = C)Ouw (N) = (C; = C) N V] (W] = [UT?)
Hy™ (V) = (Cr = C)Owu(A) = (Cp = C) N ) (W] = [U])
Hyw' (V) = (Cr = C)@ww (V) = =2(Cy = Co) N V) [U] W]
Hy" (V) = —Hgy ™ (V)
Hoyw' (\) = —Hgw ™ (V)
HYy (V) = —Hy (V)

HEW () = ~HE )
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4 BUS INJECTIONS

4 Bus Injections

4.1 Complex Current Injections

Consider the complex current balance equation, G¢(X) = 0, where

GX) = I"™ + 1% (78)
and
P = ViV (79)
1% =[Sy — C,S,]"A* (80)
4.1.1 First Derivatives
us albus us us
IE:@X:[[}} I 0 0] (81)
oIbus oV
P — = Yious— = Yius 82
U oU R T (82)
oIbus oV
Ibus - =Y S Yus
A T A (83)
dg
¥ = %]—X = |7 Iy Iy oIy (84)
a[dg * *
[chlg = W = _[Sd - CgSg] [A ]2 (85)
ords N
I} = S = 181 = CySy" [\']? (86)
o149
dg __ _ *
I =G5 = G (87)
o149
1% = = j A" C (88)
Qg an 4
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4.1 Complex Current Injections 4 BUS INJECTIONS

C aGC C C C (&
Gy = S = I 4 1 = Yo~ 54— Oy, AT (90)
c_aGc_bus dg _ . * 1A %12
Gy = aw Iy>+ 1y = (Ybus + [Sa — CySyl" [A] ) (91)
. 0G* .
Gpg:a—Pg:Ij'ii:—[A]Cg (92)
. _ 0G° A
GQg - rQq - [g)i - [A ]Cg (93)
4.1.2 Second Derivatives
0 T
bus _ bus —
IO = 5% <IX )\) 0 (94)
1% () = -2 (ﬂgTA) (95)
XX ax \Ux
[ Tp () TN T () T, (V)
| B ) G () L, () .
Idng(/\) I§§W(/\) 0 0
i IQiU()\) ]in(/\) 0 0

~| D —D 0 0 (97)
| —JD -D 0 0
1 () = 2 (IdgTA> (98)
UuU aU U
= % (—[Sq — CyS,J* [N N) (99)



4.1 Complex Current Injections 4 BUS INJECTIONS

= —2[S = CoS]" [N [AT] Ay (100)
= 2[S — C,Sy]" W AT’ (101)
- (102)

d O [ a7
Iy () = 5 (L) (103)
= % (] [Sd - Cgsg]* [A ]2 )‘) (104)
= 2j[Sa — CyS]” [N [A] AL, (105)
= —2j [Sd Cgsgyk [)‘] [A ]3 (106)
— _jC (107)

d O [ g7
IPiU(A> ~ U (ng )‘> (108)

0 T A

= 55 (=G V1Y) (109)
= —Cy" AJA (110)
=C,T AT (1L
=D (112)

d 0 daT
18500 = o= (13")) (113)
o CANISPY (114)
= jC, T[N A (115)
=—jCy" PP (116)
— D (117)

d 0 daT
I ) = 5= (1) (115)

0 1A %2

= i (7152 = Gy, (AT ) (119)
— —2[Sy — CyS,)" [N [AT] ALy (120)
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4.1 Complex Current Injections 4 BUS INJECTIONS

= _Qj[sd - Cgsgyk [)‘] [A*]3 (121)
= I, (V) = —jC (122)

d 0 daT
I () = 5o (1) (123)
= o (7154 CuS VT (124
=2j [S - CgSg]* P‘] [A*] A;V (125)
= 2[Sy— S, N AP (126)
_ ¢ (127)

d 0 doT
I () = 5o (1) (128)
— o (<G 1A (120)
= —C, T[N AL (130)
= —jCyT N [AT (131)
— D (132)

d 9 dg T
15w = 5 (18 )) (133)
- % (C,T A A) (134)
=, [\ Ay (135)
=, AP (136)
__p (137)

d 0 daT
1,00 = 55 (1°73) (138)
= aig (_[Sd - CgSg]* [A*]z )‘) (139)
= NP ING, (140)
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4.1 Complex Current Injections 4 BUS INJECTIONS

=1, () =D" (141)

1,0 = o (173 (142)
- 8% (S0 = CuS,)" AT ) (143)

= —j AT NG, (144)

= 19, (\) = —jD" (145)

I, ) = 5o (17N (146)
= agg (=151 — CySyT A2 ) (147)

= AN G, (148)

= 1§, () = =D (149)

d 0 dgT

o, ) = 50 (Im? )\) (150)
- 50 15— Gy, 1) (151)

= — APV C, (152)
=18, (\) = -DT (153)

G5x () = 5 (G5 (154)

Girr(A) - G (

| G Gy 00 1)
ConlN) Cow®) 0 0

= I1%.(\) (156)
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4.2  Complex Power Injections 4 BUS INJECTIONS

c -jc DT —jD7
—jc —-C —jDT -DT
| D - 0 0 (157)
—jD -D 0 0

Computational savings can be achieved by storing and reusing certain interme-
diate terms during the computation of these second derivatives, as follows:

A = [A7] (158)
B =]\ A% (159)
C =2[S;— C,S,]" AB (160)
D=C,'B (161)
(A =C (162)
Givy(A) = —iC (163)
pu(A) =D (164)
g,u(A) =—jD (165)
Gyw(A) = —-C (166)
pw(A) =—jD (167)
g,w(A) =D (168)
ow(A) =Gy (M) (169)
GCUPg (A) = G?DgUTO‘) (170)
we,(\) =G (V) (171)
o,(\) = Go,uT (V) (172)
o,V = Gow' (V) (173)
4.2 Complex Power Injections
Consider the complex power balance equation, G*(X) = 0, where
G5 (X) = S 4+ 5, - C,8, (174)
and
SP = (V] I" (175)
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4.2  Complex Power Injections 4 BUS INJECTIONS

4.2.1 First Derivatives

S 8GS S S S S
GX — aX — [ GU GW GPg GQg j|
9Sbus r «1 OV o IPus*
s — Ibus e
“0="30 : :6U+[V] oU
_ Ibus* +[V]Ybus*
9Sbus r «1 OV o IPus*
s — Ibus e
G ow | _8W+[V] oW
(]
Gy, = —C,
G, = —iC)
4.2.2 Second Derivatives
G5 (A):i(GS A)
XX gx X
Gyp(A)  Giw(A) 0 0
_ | Gwu(N) Gyw(A) 00
0 0 00
0 0 00
G = 2 (G
UU aU U
. a bus* *T
=g (1] +viwT1) )
0 *Y S *T
= 55 ([A] Yo V* 4 Yius™ T [N v)
- [)\] }/‘bus#< + Ybus*T P\]
=F
Gio(N) i(GS T)\)
wuU ou \Zw

(176)

(177)

(178)
(179)
(180)

(181)

(182)

(183)

(184)

(185)
(186)

(187)

(188)
(189)

(190)



4.2  Complex Power Injections 4 BUS INJECTIONS

- 2 6] -5 )2) oo
= % (j ([A] Yous V" = Yous™T [A] V)) (192)
= 5 ([ Yius" = Yous' T [N]) (193)
=g (194)
Gow(N) = % (G (195)
- o (] o)) i
= (v + Vi TV (197)
= (Ybus*T [A] = [A] Ybus*) (198)
=Gy (V) =6" (199)
Cirw(N) = 5 (G ) (200)
- % (7 (][] = YT V1) ) (201)
_ % <j ([)\] Vi V* — Yous™ T [N V)) (202)
= [\ Yous® + Yous T [N (203)
_F (204)

Computational savings can be achieved by storing and reusing certain interme-
diate terms during the computation of these second derivatives, as follows:

€ = [A] Yous" (205)
F=E+&T (206)
G=j(E-ET) (207)
Gyy(\) =F (208)
Ghov(N) =6 (209)
Gow(\) =G' (210)
Girw\) = F (211)



5 BRANCH FLOWS

5 Branch Flows

Consider the line flow constraints of the form H(X) < 0. This section examines 3
variations based on the square of the magnitude of the current, apparent power and
real power, respectively. The relationships are derived first for the complex flows at
the from ends of the branches. Derivations for the to end are identical (i.e. just
replace all f sub/super-scripts with ¢).

5.1 Complex Currents

=Y,V (212)
I'=Y,V (213)
5.1.1 First Derivatives

I = g—ﬁ - [ i, i, 1, 1, (214)
gy, 19
=20 iy, (216)
I, = g—g =0 (217)
I, = a%]; =0 (218)

5.1.2 Second Derivatives
Hocl) = o (1) = 0 (219)

5.2 Complex Power Flows

St =[v;) 17" (220)
St= (V]I (221)
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5.2 Complex Power Flows

5.2.1 First Derivatives

Sk=5%==|5h s sk 5]
T 1 OV orf”
_ || 2N g
] ox (V7] 0X
T 1 OV orf”
f_ || 20 g
Sy :] :8U+[Vf] 50
= |17 Cy + V)] Yy
T ] OV orf*
fo_ e 25F o
= <[ff*} Cr = (V] Yf*>
Sf =0
Sg;gzo

5.2.2 Second Derivatives

Shoxli) = o (571)

oo o

oo o

5 BRANCH FLOWS

(222)

(223)

(224)

(225)
(226)
(227)

(228)

(229)

(230)

(231)

(232)
(233)

(234)
(235)



5.2 Complex Power Flows 5 BRANCH FLOWS

— By (236)
Sto = - (54 n) (237)
= % <j <CfT [ff*] -yt [Vf]> M) (238)
..
—i (e - gE) (239)
= (¢ WYy =y T W Cy) (240)
— Dy (241)
St = oo (17) (242)
- (e ] v =
-
= Ol ey T O (244)
=—J (CfT ] Yy = Y5 [u] Cf) (245)
= Sl (1) = -Dy (246)
St = o (54" 1) (247)
= % (j (CfT [ff*} - vy! [Vf]> M) (248)
2
—i (e Sy - g (219)
=5 (T I (=)Y5 = YT Il ()Cy ) (250)
= T (W] Yy + Y7 (4] Cy (251)
= By (252)

Computational savings can be achieved by storing and reusing certain interme-
diate terms during the computation of these second derivatives, as follows:

Ap = CfT [u] Yy (253)
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5.3 Squared Current Magnitudes 6 GENERALIZED AC OPF COSTS

By = A; + AT (254)
Dy =j(Ar— A" (255)
Shy(n) = B (256)
Stvu(i) =Dy (257)
T
Shw () = Sty (1) = =Dy (258)
Stvw (1) = By (259)
5.3 Squared Current Magnitudes
See the corresponding section in MATPOWER. Technical Note 2.
5.4 Squared Apparent Power Magnitudes
See the corresponding section in MATPOWER Technical Note 2.
5.5 Squared Real Power Magnitudes
See the corresponding section in MATPOWER. Technical Note 2.
6 Generalized AC OPF Costs
Let X be defined as ~ -
(260)

B
I
N<LOIE

where Y is the n,, x 1 vector of cost variables associated with piecewise linear generator
costs and Z is an n, x 1 vector of additional linearly constrained user variables.

See the corresponding section in MATPOWER Technical Note 2 for additional
details.
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7 LAGRANGIAN OF THE AC OPF

7 Lagrangian of the AC OPF

Consider the following AC OPF problem formulation, where X is defined as in (260),
f is the cost function, and X represents the reduced form of X, consisting of only

U, W, P, and @, without Y and Z.

subject to

where

and

m}}n f(X)

G(X)=0 (262)
0

(261)

(263)

(264)

(265)

and G is the nodal balance function, equal to either G¢ for current balance or to G*

for power balance.

Partitioning the corresponding multipliers A and p similarly,

the Lagrangian for this problem can be written as

1223
)\P :ut
o iy
A ; T My min (266)
e [Lgmax
A
v Hemin
| M1
LIX, A\ p) = f(X) +ATG(X) + pTH(X) (267)
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7.1 Nodal Current Balance 7 LAGRANGIAN OF THE AC OPF

7.1 Nodal Current Balance

Let the nodal balance function G® be the nodal complex current balance G¢.

7.1.1 First Derivatives

Lx(X,\p)=fx+A'Gx +p"Hy (268)
LA(X A\ 1) =G (X) (269)
where
R{G%} 0 O R{G{} R{GS,} %{G;g} %{Ggg} 00
Go — S{GS}E 0 0| | G} S{GY ) %{G;g} S{ngg} 00
TTloee o0 o | gt ot 0 0 00
Ag Ag
(271)
and ) ) ) )
H, 0 0 H, H, 0 000
H, 0 0 H, Hi, 0 000
HY™ 0 0 HY™ HY™ 0 0 0 0
Hx=| H{™ 0 o0 |=| HY" Hy" 0 000 (272)
Y™ 0 0 ™ Hy™ 0 0 00
HS™ 0 0 H™ HZ™ 0 0 0 0
i A1 L Aj |
7.1.2 Second Derivatives
Lxx(X,\p) = fxx +Gxx(A) + Hxx () (273)
where
Gxx(\) 0 0
Gxx(\) = 0 00 (274)
0 00
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7 LAGRANGIAN OF THE AC OPF

Grx(N) = R{G5x(Ap)} + S{Gix(NQ)} + Gy (Aver)
([ Giu(Ap) fow(/\P) Gip,(Ap) G, (Ap) ]
-~ woAp)  Giw(Ap) Giyp,(Ap) Gipg,(Ap)
G%,u(Ap) Gfog (Ap) 0 0
\ ZQQU()‘P) (AP) 0 0 4
([ Giv(Ae) GCUW()‘Q) G((:JPQ()\Q> G%QQ(AQ) 1)
+ 34 Gwo(Ae) Guw(Aq) G?/VPQ(AQ) IC/VQg()‘Q)
Gp,u(Aq) G?vg (M) 0 0
(L GG, u(Ae) w(AQ) 0 N
Gt (Aret) G%v( ref) 00
+ GI{/?/fU ()‘ref) GII?W( ref) 00
0 0 00
0 0 00
and
Hyx(pn) 0 O
Hxx(p) = 0 00
0 0 0
Hyy(p)  Hyw(p) 0 0
_ | Hwu(p) Hww(n) 0 0
0 0 0 0

Hyy ()

Hyw ()

Hyy(p)

= Hi;(uy) + Hby ()

‘l‘ Hg;dx (Mvmax) + vam (Mvmin)
+ Hgmax< @max) + H@mm( @min)

= H[J;W(Mf) + HltJW(:ut)

+ vaax (,LLVmax) + vam (/,Lvmm)

T HEw (1mes) + HE (j1mn)

= HIJ;/U(W) + Hyyy (o)

mln

+ Hiyy (pymax) + Hipy (ppymin)
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(277)

(278)

(279)
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+ Hyy (pems) + Hyy (ftomn) (281)

Hyw (i) = Hipyy (t1y) + Hiyyy (12)

+ Hypy (prymse) + Hipyy (pymin)
+ Hipy (Hemax) + Hiy (figmn) (282)

7.2 Nodal Power Balance

Let the nodal balance function G° be the nodal complex power balance G*.

7.2.1 First Derivatives

Lx(X,\p)=fx +AGx +p"Hy (283)

LA(X A p) = GT(X) (284)

L (XA p) = H'(X) (285)

where

R{G%} 0 0 R{Gy} R{GyHY -C, 0 00

e | S{Gyr 0 0 | 3Gy S{Gyy 0 -G, 0 0 (286)
tlef ool G G 0 0 00

AE AE

and Hy is the same as for nodal current balance in (272).

7.2.2 Second Derivatives

Lxx (X, \p) = fxx +Gxx(A) + Hxx (1) (287)
where
Gyx(A) 0 0
Gxx(\) = 0 00 (288)
0 0O
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7.2 Nodal Power Balance

Gxx(\) = R{G%~

[ G35
Gy

\

1 7

and Hx x(u) is the same as for nodal current balance in (277)—(282).

()} + S{G3

Grv%fU(Aref) G%Vefw ref)

7 LAGRANGIAN OF THE AC OPF

v(Ap) Gow(Ap) O
wo(Ap) Giyw(Ap) 0
0 0 0
0 0 0

0
ref (/\ref) ref A ef)
(A

CO0OO0OO ocoo o

O
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()\Q)} + Gref (Aref)

(289)
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8 REVISION HISTORY

8 Revision History

e Revision 1 (October 25, 2018)

— Added missing equality constraint for reference voltage angles. See Sec-
tions 3.3 and 7.

— Added missing inequality constraints for bus voltage magnitude limits.
See Sections 3.4 and 7.

— Added missing inequality constraints for branch voltage angle difference
limits. See Sections 3.5 and 7.

e Initial version (April 2, 2018) — Published as “MATPOWER Technical Note 4.
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A SCALAR POLAR COORDINATE DERIVATIVES

Appendix A Scalar Polar Coordinate Derivatives

When using cartesian coordinates for the voltages, the voltage magnitudes and angles
are now functions of the cartesian coordinates. Constraints on these functions require
their derivatives as well.

Consider a scalar complex voltage v that can be expressed in polar coordinates
|v| and 6 or cartesian coordinates u and w as:

v = |v]e’® (291)
— u+ jw (292)
We also have
f = tan~! % (293)
v|? = u? + w? (294)
A.1 First Derivatives
Given that 5 ') L g
tan™ " (y Yy
= - 295
ox 1+y20x (295)
we have
a0 1 O(u=tw) 1 L w
- — = — = —— 296
ou  14+u?w? Ou 1+ u*2w2( uw) v|? (296)
a0 1 I(utw) 1 o, u
Z — = = — 297
ow 14+u2w? Ow 1+ u2w? |v|? (297)

Olv olv| o2 1 1 U
e = o ou = 3 e = .
O|v olv| dlv]?2 1 1 w
8|w| - 8||v||2 5|9@t|1 - §(|U|2) (2w) = m (299)

30



A.2 Second Derivatives A SCALAR POLAR COORDINATE DERIVATIVES

A.2 Second Derivatives

%0 O(—|v|*w) g U 2uw
o2 = ou - I =
20 O(jv[Pw) 1 . =2\ u P20’ w? -
owdu v ) ol et ol
20 oChlw) 1 (2w o
oudw ow |l w3 ) Jv| lv|4
Cwr—u? 0%
P Jwdu
020 O(jv|2u) W 2uw 020
— — u(—2 Sk
ow? ow u(=2pv] )|v| lu[4 ou?
ol _ o(w[Tw) oyt P w?
o2 ou - |1}| + u(—]v| )7| - ’U|3 - W
Pl O(Jv|"tw) o U uw
i S L R
82'”’ _ a(l’l}’_lu) _ U(_| |—2>£ _ _w _ 82‘7)'
ouwow — Ow ! lw| ] Owdu
Pl O(|v|"tw) w o o —w?  u?

_ — —1 _ -2\ _ = - _ 7
gt~ ow W e = e = e
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