Coverage for pygeodesy/nvectorBase.py: 95%
255 statements
« prev ^ index » next coverage.py v7.6.1, created at 2025-04-09 11:05 -0400
« prev ^ index » next coverage.py v7.6.1, created at 2025-04-09 11:05 -0400
2# -*- coding: utf-8 -*-
4u'''(INTERNAL) Private elliposiodal and spherical C{Nvector} base classes
5L{LatLonNvectorBase} and L{NvectorBase} and function L{sumOf}.
7Pure Python implementation of C{n-vector}-based geodesy tools for ellipsoidal
8earth models, transcoded from JavaScript originals by I{(C) Chris Veness 2005-2016}
9and published under the same MIT Licence**, see U{Vector-based geodesy
10<https://www.Movable-Type.co.UK/scripts/latlong-vectors.html>}.
11'''
13# from pygeodesy.basics import map1 # from .namedTuples
14from pygeodesy.constants import EPS, EPS0, EPS1, EPS_2, R_M, \
15 _0_0, _1_0, _2_0, _N_2_0
16# from pygeodesy.datums import _spherical_datum # from .formy
17from pygeodesy.errors import IntersectionError, _ValueError, VectorError, \
18 _xattrs, _xkwds, _xkwds_pop2
19from pygeodesy.fmath import fdot, fidw, hypot # PYCHOK fdot shared
20from pygeodesy.fsums import Fsum, fsumf_
21from pygeodesy.formy import _isequalTo, _spherical_datum
22# from pygeodesy.internals import _under # from .named
23from pygeodesy.interns import NN, _1_, _2_, _3_, _bearing_, _coincident_, \
24 _COMMASPACE_, _distance_, _h_, _insufficient_, \
25 _intersection_, _no_, _point_, _pole_, _SPACE_
26from pygeodesy.latlonBase import LatLonBase, _ALL_DOCS, _ALL_LAZY, _MODS
27# from pygeodesy.lazily import _ALL_DOCS, _ALL_LAZY, _ALL_MODS as _MODS # from .latlonBase
28from pygeodesy.named import _xother3, _under
29from pygeodesy.namedTuples import LatLon2Tuple, PhiLam2Tuple, Trilaterate5Tuple, \
30 Vector3Tuple, Vector4Tuple, map1
31from pygeodesy.props import deprecated_method, Property_RO, property_doc_, \
32 property_RO, property_ROnce, _update_all
33from pygeodesy.streprs import Fmt, hstr, unstr
34from pygeodesy.units import Bearing, Height, Radius_, Scalar
35from pygeodesy.utily import atan2, sincos2d, _unrollon, _unrollon3
36from pygeodesy.vector3d import Vector3d, _xyzhdlln4
38from math import degrees, fabs, sqrt
40__all__ = _ALL_LAZY.nvectorBase
41__version__ = '24.11.24'
44class NvectorBase(Vector3d): # XXX kept private
45 '''(INTERNAL) Base class for ellipsoidal and spherical C{Nvector}s.
46 '''
47 _datum = None # L{Datum}, overriden
48 _h = Height(h=0) # height (C{meter})
49 _H = NN # height prefix (C{str}), '↑' in JS version
51 def __init__(self, x_xyz, y=None, z=None, h=0, datum=None, **ll_name):
52 '''New n-vector normal to the earth's surface.
54 @arg x_xyz: X component of vector (C{scalar}) or (3-D) vector (C{Nvector},
55 L{Vector3d}, L{Vector3Tuple} or L{Vector4Tuple}).
56 @kwarg y: Y component of vector (C{scalar}), required if B{C{x_xyz}} is
57 C{scalar} and same units as B{C{x_xyz}}, ignored otherwise.
58 @kwarg z: Z component of vector (C{scalar}), like B{C{y}}.
59 @kwarg h: Optional height above surface (C{meter}).
60 @kwarg datum: Optional, I{pass-thru} datum (L{Datum}).
61 @kwarg ll_name: Optional C{B{name}=NN} (C{str}) and optional, original
62 latlon C{B{ll}=None} (C{LatLon}).
64 @raise TypeError: Non-scalar B{C{x}}, B{C{y}} or B{C{z}} coordinate or
65 B{C{x_xyz}} not an C{Nvector}, L{Vector3Tuple} or
66 L{Vector4Tuple} or invalid B{C{datum}}.
67 '''
68 h, d, ll, n = _xyzhdlln4(x_xyz, h, datum, **ll_name)
69 Vector3d.__init__(self, x_xyz, y=y, z=z, ll=ll, name=n)
70 if h:
71 self.h = h
72 if d is not None:
73 self._datum = _spherical_datum(d, name=n) # pass-thru
75 @Property_RO
76 def datum(self):
77 '''Get the I{pass-thru} datum (C{Datum}) or C{None}.
78 '''
79 return self._datum
81 @property_ROnce
82 def Ecef(self):
83 '''Get the ECEF I{class} (L{EcefKarney}), I{once}.
84 '''
85 return _MODS.ecef.EcefKarney
87 @property_RO
88 def ellipsoidalNvector(self):
89 '''Get the C{Nvector type} iff ellipsoidal, overloaded in L{pygeodesy.ellipsoidalNvector.Nvector}.
90 '''
91 return False
93 @property_doc_(''' the height above surface (C{meter}).''')
94 def h(self):
95 '''Get the height above surface (C{meter}).
96 '''
97 return self._h
99 @h.setter # PYCHOK setter!
100 def h(self, h):
101 '''Set the height above surface (C{meter}).
103 @raise TypeError: If B{C{h}} invalid.
105 @raise VectorError: If B{C{h}} invalid.
106 '''
107 h = Height(h=h, Error=VectorError)
108 if self._h != h:
109 _update_all(self)
110 self._h = h
112 @property_doc_(''' the height prefix (C{str}).''')
113 def H(self):
114 '''Get the height prefix (C{str}).
115 '''
116 return self._H
118 @H.setter # PYCHOK setter!
119 def H(self, H):
120 '''Set the height prefix (C{str}).
121 '''
122 self._H = str(H) if H else NN
124 def hStr(self, prec=-2, m=NN):
125 '''Return a string for the height B{C{h}}.
127 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
128 @kwarg m: Optional unit of the height (C{str}).
130 @see: Function L{pygeodesy.hstr}.
131 '''
132 return NN(self.H, hstr(self.h, prec=prec, m=m))
134 @Property_RO
135 def isEllipsoidal(self):
136 '''Check whether this n-vector is ellipsoidal (C{bool} or C{None} if unknown).
137 '''
138 return self.datum.isEllipsoidal if self.datum else None
140 @Property_RO
141 def isSpherical(self):
142 '''Check whether this n-vector is spherical (C{bool} or C{None} if unknown).
143 '''
144 return self.datum.isSpherical if self.datum else None
146 @Property_RO
147 def lam(self):
148 '''Get the (geodetic) longitude in C{radians} (C{float}).
149 '''
150 return self.philam.lam
152 @Property_RO
153 def lat(self):
154 '''Get the (geodetic) latitude in C{degrees} (C{float}).
155 '''
156 return self.latlon.lat
158 @Property_RO
159 def latlon(self):
160 '''Get the (geodetic) lat-, longitude in C{degrees} (L{LatLon2Tuple}C{(lat, lon)}).
161 '''
162 return n_xyz2latlon(self, name=self.name)
164 @Property_RO
165 def latlonheight(self):
166 '''Get the (geodetic) lat-, longitude in C{degrees} and height (L{LatLon3Tuple}C{(lat, lon, height)}).
167 '''
168 return self.latlon.to3Tuple(self.h)
170 @Property_RO
171 def latlonheightdatum(self):
172 '''Get the lat-, longitude in C{degrees} with height and datum (L{LatLon4Tuple}C{(lat, lon, height, datum)}).
173 '''
174 return self.latlonheight.to4Tuple(self.datum)
176 @Property_RO
177 def lon(self):
178 '''Get the (geodetic) longitude in C{degrees} (C{float}).
179 '''
180 return self.latlon.lon
182 @Property_RO
183 def phi(self):
184 '''Get the (geodetic) latitude in C{radians} (C{float}).
185 '''
186 return self.philam.phi
188 @Property_RO
189 def philam(self):
190 '''Get the (geodetic) lat-, longitude in C{radians} (L{PhiLam2Tuple}C{(phi, lam)}).
191 '''
192 return n_xyz2philam(self, name=self.name)
194 @Property_RO
195 def philamheight(self):
196 '''Get the (geodetic) lat-, longitude in C{radians} and height (L{PhiLam3Tuple}C{(phi, lam, height)}).
197 '''
198 return self.philam.to3Tuple(self.h)
200 @Property_RO
201 def philamheightdatum(self):
202 '''Get the lat-, longitude in C{radians} with height and datum (L{PhiLam4Tuple}C{(phi, lam, height, datum)}).
203 '''
204 return self.philamheight.to4Tuple(self.datum)
206 @property_RO
207 def sphericalNvector(self):
208 '''Get the C{Nvector type} iff spherical, overloaded in L{pygeodesy.sphericalNvector.Nvector}.
209 '''
210 return False
212 @deprecated_method
213 def to2ab(self): # PYCHOK no cover
214 '''DEPRECATED, use property L{philam}.'''
215 return self.philam
217 @deprecated_method
218 def to3abh(self, height=None): # PYCHOK no cover
219 '''DEPRECATED, use property L{philamheight} or C{philam.to3Tuple(B{height})}.'''
220 return self.philamheight if height in (None, self.h) else \
221 self.philam.to3Tuple(height)
223 def toCartesian(self, h=None, Cartesian=None, datum=None, **name_Cartesian_kwds): # PYCHOK signature
224 '''Convert this n-vector to C{Nvector}-based cartesian (ECEF) coordinates.
226 @kwarg h: Optional height, overriding this n-vector's height (C{meter}).
227 @kwarg Cartesian: Optional class to return the (ECEF) coordinates (C{Cartesian}).
228 @kwarg datum: Optional datum (C{Datum}), overriding this datum.
229 @kwarg name_Cartesian_kwds: Optional C{B{name}=NN} (C{str}) and optionally, additional
230 B{C{Cartesian}} keyword arguments, ignored if C{B{Cartesian} is None}.
232 @return: The (ECEF) coordinates (B{C{Cartesian}}) or if C{B{Cartesian} is None}, an
233 L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)} with C{C} and C{M}
234 if available.
236 @raise TypeError: Invalid B{C{Cartesian}} or B{C{name_Cartesian_kwds}} argument.
238 @raise ValueError: Invalid B{C{h}}.
239 '''
240 if h is None:
241 h = self.h
242 elif not isinstance(h, Height):
243 h = Height(h=h, Error=VectorError)
244 _, r, v = self._toEcefDrv3(Cartesian, None, datum, h, **name_Cartesian_kwds)
245 if r is None:
246 r = v.toCartesian(Cartesian, **self._name1__(name_Cartesian_kwds)) # h=0
247 return r
249 def _toEcefDrv3(self, CC, LL, datum, h, name=NN, **unused):
250 '''(INTERNAL) Helper for methods C{toCartesian} and C{toLatLon}.
251 '''
252 D = self.datum if datum in (None, self.datum) else \
253 _spherical_datum(datum, name=self.name)
254 if LL is None:
255 v = Vector3d(self, name=name or self.name) # .toVector3d(norm=False)
256 E = D.ellipsoid
257 r = E.a_b # Kenneth Gade eqn 22
258 n = v.times_(r, r, _1_0).length
259 n = (E.b / n) if n > EPS0 else _0_0
260 r = E.a2_b2 * n + h # fma
261 v = v.times_(r, r, n + h)
262 r = self.Ecef(D).reverse(v, M=True) if CC is None else None
263 else:
264 r = v = None
265 return D, r, v
267 @deprecated_method
268 def to2ll(self): # PYCHOK no cover
269 '''DEPRECATED, use property L{latlon}.'''
270 return self.latlon
272 @deprecated_method
273 def to3llh(self, height=None): # PYCHOK no cover
274 '''DEPRECATED, use property C{latlonheight} or C{latlon.to3Tuple(B{height})}.'''
275 return self.latlonheight if height in (None, self.h) else \
276 self.latlon.to3Tuple(height)
278 def toLatLon(self, height=None, LatLon=None, datum=None, **name_LatLon_kwds):
279 '''Convert this n-vector to an C{Nvector}-based geodetic point.
281 @kwarg height: Optional height, overriding this n-vector's
282 height (C{meter}).
283 @kwarg LatLon: Optional class to return the geodetic point
284 (C{LatLon}) or C{None}.
285 @kwarg datum: Optional, spherical datum (C{Datum}).
286 @kwarg name_LatLon_kwds: Optional C{B{name}=NN} (C{str}) and optionally,
287 additional B{C{LatLon}} keyword arguments, ignored if
288 C{B{LatLon} is None}.
290 @return: The geodetic point (C{LatLon}) or if C{B{LatLon} is None},
291 an L{Ecef9Tuple}C{(x, y, z, lat, lon, height, C, M, datum)}
292 with C{C} and C{M} if available.
294 @raise TypeError: Invalid B{C{LatLon}} or B{C{name_LatLon_kwds}} argument.
296 @raise ValueError: Invalid B{C{height}}.
297 '''
298 h = self.h if height is None else (
299 height if isinstance(height, Height) else
300 Height(height, Error=VectorError))
301 # use the .toCartesian() logic for better height accuracy instead of
302 # r = self.Ecef(D).forward(self.lat, self.lon, height=h, M=True)
303 D, r, _ = self._toEcefDrv3(None, LatLon, datum, h, **name_LatLon_kwds)
304 if r is None:
305 kwds = _xkwds(name_LatLon_kwds, height=h, datum=D)
306 r = LatLon(self.lat, self.lon, **self._name1__(kwds))
307 return r
309 def toStr(self, prec=5, fmt=Fmt.PAREN, sep=_COMMASPACE_): # PYCHOK expected
310 '''Return a string representation of this n-vector.
312 Height component is only included if non-zero.
314 @kwarg prec: Number of (decimal) digits, unstripped (C{int}).
315 @kwarg fmt: Enclosing backets format (C{str}).
316 @kwarg sep: Optional separator between components (C{str}).
318 @return: Comma-separated C{"(x, y, z [, h])"} enclosed in
319 B{C{fmt}} brackets (C{str}).
320 '''
321 t = Vector3d.toStr(self, prec=prec, fmt=NN, sep=sep)
322 if self.h:
323 t = sep.join((t, self.hStr()))
324 return (fmt % (t,)) if fmt else t
326 def toVector3d(self, norm=True):
327 '''Convert this n-vector to a 3-D vector, I{ignoring height}.
329 @kwarg norm: If C{True}, normalize the 3-D vector (C{bool}).
331 @return: The (normalized) vector (L{Vector3d}).
332 '''
333 v = Vector3d.unit(self) if norm else self
334 return Vector3d(v, name=self.name)
336 @deprecated_method
337 def to4xyzh(self, h=None): # PYCHOK no cover
338 '''DEPRECATED, use property L{xyzh} or C{xyz.to4Tuple(B{h})}.'''
339 return self.xyzh if h in (None, self.h) else Vector4Tuple(
340 self.x, self.y, self.z, h, name=self.name)
342 def unit(self, ll=None):
343 '''Normalize this n-vector to unit length.
345 @kwarg ll: Optional, original latlon (C{LatLon}).
347 @return: Normalized vector (C{Nvector}).
348 '''
349 return _xattrs(Vector3d.unit(self, ll=ll), self, _under(_h_))
351 @Property_RO
352 def xyzh(self):
353 '''Get this n-vector's components (L{Vector4Tuple}C{(x, y, z, h)})
354 '''
355 return self.xyz.to4Tuple(self.h)
358class _N_vector_(NvectorBase):
359 '''(INTERNAL) Minimal, low-overhead C{n-vector}.
360 '''
361 def __init__(self, x, y, z, h=0, **name):
362 self._x, self._y, self._z = x, y, z
363 if h:
364 self._h = h
365 if name:
366 self.name = name
369NorthPole = _N_vector_(0, 0, +1, name='NorthPole') # North pole
370SouthPole = _N_vector_(0, 0, -1, name='SouthPole') # South pole
373class LatLonNvectorBase(LatLonBase):
374 '''(INTERNAL) Base class for n-vector-based ellipsoidal and spherical C{LatLon}s.
375 '''
377 def _update(self, updated, *attrs, **setters): # PYCHOK _Nv=None
378 '''(INTERNAL) Zap cached attributes if updated.
380 @see: C{ellipsoidalNvector.LatLon} and C{sphericalNvector.LatLon} for
381 the special case of B{C{_Nv}}.
382 '''
383 if updated:
384 _Nv, setters = _xkwds_pop2(setters, _Nv=None)
385 if _Nv is not None:
386 if _Nv._fromll is not None:
387 _Nv._fromll = None
388 self._Nv = None
389 LatLonBase._update(self, updated, *attrs, **setters)
391# def distanceTo(self, other, **kwds): # PYCHOK no cover
392# '''I{Must be overloaded}.'''
393# self._notOverloaded(other, **kwds)
395 def intersections2(self, radius1, other, radius2, **kwds): # PYCHOK expected
396 '''B{Not implemented}, throws a C{NotImplementedError} always.'''
397 self._notImplemented(radius1, other, radius2, **kwds)
399 def others(self, *other, **name_other_up):
400 '''Refined class comparison.
402 @arg other: The other instance (C{LatLonNvectorBase}).
403 @kwarg name_other_up: Overriding C{name=other} and C{up=1}
404 keyword arguments.
406 @return: The B{C{other}} if compatible.
408 @raise TypeError: Incompatible B{C{other}} C{type}.
409 '''
410 if other:
411 other0 = other[0]
412 if isinstance(other0, (self.__class__, LatLonNvectorBase)): # XXX NvectorBase?
413 return other0
415 other, name, up = _xother3(self, other, **name_other_up)
416 if not isinstance(other, (self.__class__, LatLonNvectorBase)): # XXX NvectorBase?
417 LatLonBase.others(self, other, name=name, up=up + 1)
418 return other
420 def toNvector(self, **Nvector_and_kwds): # PYCHOK signature
421 '''Convert this point to C{Nvector} components, I{including height}.
423 @kwarg Nvector_and_kwds: Optional C{Nvector} class and C{Nvector} keyword arguments,
424 Specify C{B{Nvector}=...} to override this C{Nvector} class
425 or use C{B{Nvector}=None}.
427 @return: An C{Nvector} or if C{Nvector is None}, a L{Vector4Tuple}C{(x, y, z, h)}.
429 @raise TypeError: Invalid C{Nvector} or other B{C{Nvector_and_kwds}} item.
430 '''
431 return LatLonBase.toNvector(self, **_xkwds(Nvector_and_kwds, Nvector=NvectorBase))
433 def triangulate(self, bearing1, other, bearing2, height=None, wrap=False): # PYCHOK signature
434 '''Locate a point given this, an other point and the (initial) bearing
435 from this and the other point.
437 @arg bearing1: Bearing at this point (compass C{degrees360}).
438 @arg other: The other point (C{LatLon}).
439 @arg bearing2: Bearing at the other point (compass C{degrees360}).
440 @kwarg height: Optional height at the triangulated point, overriding
441 the mean height (C{meter}).
442 @kwarg wrap: If C{True}, use this and the B{C{other}} point
443 I{normalized} (C{bool}).
445 @return: Triangulated point (C{LatLon}).
447 @raise TypeError: Invalid B{C{other}} point.
449 @raise Valuerror: Points coincide.
450 '''
451 return _triangulate(self, bearing1, self.others(other), bearing2,
452 height=height, wrap=wrap, LatLon=self.classof)
454 def trilaterate(self, distance1, point2, distance2, point3, distance3,
455 radius=R_M, height=None, useZ=False, wrap=False):
456 '''Locate a point at given distances from this and two other points.
458 @arg distance1: Distance to this point (C{meter}, same units
459 as B{C{radius}}).
460 @arg point2: Second reference point (C{LatLon}).
461 @arg distance2: Distance to point2 (C{meter}, same units as
462 B{C{radius}}).
463 @arg point3: Third reference point (C{LatLon}).
464 @arg distance3: Distance to point3 (C{meter}, same units as
465 B{C{radius}}).
466 @kwarg radius: Mean earth radius (C{meter}).
467 @kwarg height: Optional height at trilaterated point, overriding
468 the mean height (C{meter}, same units as B{C{radius}}).
469 @kwarg useZ: Include Z component iff non-NaN, non-zero (C{bool}).
470 @kwarg wrap: If C{True}, use this, B{C{point2}} and B{C{point3}}
471 I{normalized} (C{bool}).
473 @return: Trilaterated point (C{LatLon}).
475 @raise IntersectionError: No intersection, trilateration failed.
477 @raise TypeError: Invalid B{C{point2}} or B{C{point3}}.
479 @raise ValueError: Some B{C{points}} coincide or invalid B{C{distance1}},
480 B{C{distance2}}, B{C{distance3}} or B{C{radius}}.
482 @see: U{Trilateration<https://WikiPedia.org/wiki/Trilateration>}, I{Veness}'
483 JavaScript U{Trilateration<https://www.Movable-Type.co.UK/scripts/
484 latlong-vectors.html>} and method C{LatLon.trilaterate5} of other,
485 non-C{Nvector LatLon} classes.
486 '''
487 return _trilaterate(self, distance1, self.others(point2=point2), distance2,
488 self.others(point3=point3), distance3,
489 radius=radius, height=height, useZ=useZ,
490 wrap=wrap, LatLon=self.classof)
492 def trilaterate5(self, distance1, point2, distance2, point3, distance3, # PYCHOK signature
493 area=False, eps=EPS1, radius=R_M, wrap=False):
494 '''B{Not implemented} for C{B{area}=True} and falls back to method C{trilaterate}.
496 @return: A L{Trilaterate5Tuple}C{(min, minPoint, max, maxPoint, n)} with a
497 single trilaterated intersection C{minPoint I{is} maxPoint}, C{min
498 I{is} max} the nearest intersection margin and count C{n = 1}.
500 @raise NotImplementedError: Keyword argument C{B{area}=True} not (yet) supported.
502 @see: Method L{trilaterate} for other and more details.
503 '''
504 if area:
505 self._notImplemented(area=area)
507 t = _trilaterate(self, distance1, self.others(point2=point2), distance2,
508 self.others(point3=point3), distance3,
509 radius=radius, useZ=True, wrap=wrap,
510 LatLon=self.classof)
511 # ... and handle B{C{eps}} and C{IntersectionError}
512 # like function C{.latlonBase._trilaterate5}
513 d = self.distanceTo(t, radius=radius, wrap=wrap) # PYCHOK distanceTo
514 d = min(fabs(distance1 - d), fabs(distance2 - d), fabs(distance3 - d))
515 if d < eps: # min is max, minPoint is maxPoint
516 return Trilaterate5Tuple(d, t, d, t, 1) # n = 1
517 t = _SPACE_(_no_(_intersection_), Fmt.PAREN(min.__name__, Fmt.f(d, prec=3)))
518 raise IntersectionError(area=area, eps=eps, radius=radius, wrap=wrap, txt=t)
521def n_xyz2latlon(x_xyz, y=0, z=0, **name):
522 '''Convert C{n-vector} to (geodetic) lat- and longitude in C{degrees}.
524 @arg x_xyz: X component (C{scalar}) or (3-D) vector (C{Nvector},
525 L{Vector3d}, L{Vector3Tuple} or L{Vector4Tuple}).
526 @kwarg y: Y component of vector (C{scalar}), required if C{B{x_xyz} is
527 scalar} and same units as B{C{x_xyz}}, ignored otherwise.
528 @kwarg z: Z component of vector (C{scalar}), like B{C{y}}.
529 @kwarg name: Optional C{B{name}=NN} (C{str}).
531 @return: A L{LatLon2Tuple}C{(lat, lon)}.
533 @see: Function L{n_xyz2philam}.
534 '''
535 ll = map(degrees, n_xyz2philam(x_xyz, y, z))
536 return LatLon2Tuple(*ll, **name)
539def n_xyz2philam(x_xyz, y=0, z=0, **name):
540 '''Convert C{n-vector} to (geodetic) lat- and longitude in C{radians}.
542 @arg x_xyz: X component (C{scalar}) or (3-D) vector (C{Nvector},
543 L{Vector3d}, L{Vector3Tuple} or L{Vector4Tuple}).
544 @kwarg y: Y component of vector (C{scalar}), required if C{B{x_xyz} is
545 scalar} and same units as B{C{x_xyz}}, ignored otherwise.
546 @kwarg z: Z component of vector (C{scalar}), like B{C{y}}.
547 @kwarg name: Optional C{B{name}=NN} (C{str}).
549 @return: A L{PhiLam2Tuple}C{(phi, lam)}.
551 @see: Function L{n_xyz2latlon}.
552 '''
553 try:
554 x, y, z = x_xyz.xyz
555 except AttributeError:
556 x = x_xyz
557 return PhiLam2Tuple(atan2(z, hypot(x, y)), atan2(y, x), **name)
560def _nsumOf(nvs, h_None, Vector, Vector_kwds): # .sphericalNvector, .vector3d
561 '''(INTERNAL) Separated to allow callers to embellish exceptions.
562 '''
563 X, Y, Z, n = Fsum(), Fsum(), Fsum(), 0
564 H = Fsum() if h_None is None else n
565 for n, v in enumerate(nvs or ()): # one pass
566 X += v.x
567 Y += v.y
568 Z += v.z
569 H += v.h
570 if n < 1:
571 raise ValueError(_SPACE_(Fmt.PARENSPACED(len=n), _insufficient_))
573 x, y, z = map1(float, X, Y, Z)
574 h = H.fover(n) if h_None is None else h_None
575 return Vector3Tuple(x, y, z).to4Tuple(h) if Vector is None else \
576 Vector(x, y, z, **_xkwds(Vector_kwds, h=h))
579def sumOf(nvectors, Vector=None, h=None, **Vector_kwds):
580 '''Return the I{vectorial} sum of two or more n-vectors.
582 @arg nvectors: Vectors to be added (C{Nvector}[]).
583 @kwarg Vector: Optional class for the vectorial sum (C{Nvector})
584 or C{None}.
585 @kwarg h: Optional height, overriding the mean height (C{meter}).
586 @kwarg Vector_kwds: Optional, additional B{C{Vector}} keyword
587 arguments, ignored if C{B{Vector} is None}.
589 @return: Vectorial sum (B{C{Vector}}) or a L{Vector4Tuple}C{(x, y,
590 z, h)} if C{B{Vector} is None}.
592 @raise VectorError: No B{C{nvectors}}.
593 '''
594 try:
595 return _nsumOf(nvectors, h, Vector, Vector_kwds)
596 except (TypeError, ValueError) as x:
597 raise VectorError(nvectors=nvectors, Vector=Vector, cause=x)
600def _triangulate(point1, bearing1, point2, bearing2, height=None,
601 wrap=False, **LatLon_and_kwds):
602 # (INTERNAL) Locate a point given two known points and initial
603 # bearings from those points, see C{LatLon.triangulate} above
605 def _gc(p, b, _i_):
606 n = p.toNvector()
607 de = NorthPole.cross(n, raiser=_pole_).unit() # east vector @ n
608 dn = n.cross(de) # north vector @ n
609 s, c = sincos2d(Bearing(b, name=_bearing_ + _i_))
610 dest = de.times(s)
611 dnct = dn.times(c)
612 d = dnct.plus(dest) # direction vector @ n
613 return n.cross(d) # great circle point + bearing
615 if wrap:
616 point2 = _unrollon(point1, point2, wrap=wrap)
617 if _isequalTo(point1, point2, eps=EPS):
618 raise _ValueError(points=point2, wrap=wrap, txt=_coincident_)
620 gc1 = _gc(point1, bearing1, _1_) # great circle p1 + b1
621 gc2 = _gc(point2, bearing2, _2_) # great circle p2 + b2
623 n = gc1.cross(gc2, raiser=_point_) # n-vector of intersection point
624 h = point1._havg(point2, h=height)
625 kwds = _xkwds(LatLon_and_kwds, height=h)
626 return n.toLatLon(**kwds) # Nvector(n.x, n.y, n.z).toLatLon(...)
629def _trilaterate(point1, distance1, point2, distance2, point3, distance3,
630 radius=R_M, height=None, useZ=False,
631 wrap=False, **LatLon_and_kwds):
632 # (INTERNAL) Locate a point at given distances from
633 # three other points, see LatLon.triangulate above
635 def _nr2(p, d, r, _i_, *qs): # .toNvector and angular distance squared
636 for q in qs:
637 if _isequalTo(p, q, eps=EPS):
638 raise _ValueError(points=p, txt=_coincident_)
639 return p.toNvector(), (Scalar(d, name=_distance_ + _i_) / r)**2
641 p1, r = point1, Radius_(radius)
642 p2, p3, _ = _unrollon3(p1, point2, point3, wrap)
644 n1, r12 = _nr2(p1, distance1, r, _1_)
645 n2, r22 = _nr2(p2, distance2, r, _2_, p1)
646 n3, r32 = _nr2(p3, distance3, r, _3_, p1, p2)
648 # the following uses x,y coordinate system with origin at n1, x axis n1->n2
649 y = n3.minus(n1)
650 x = n2.minus(n1)
651 z = None
653 d = x.length # distance n1->n2
654 if d > EPS_2: # and y.length > EPS_2:
655 X = x.unit() # unit vector in x direction n1->n2
656 i = X.dot(y) # signed magnitude of x component of n1->n3
657 Y = y.minus(X.times(i)).unit() # unit vector in y direction
658 j = Y.dot(y) # signed magnitude of y component of n1->n3
659 if fabs(j) > EPS_2:
660 # courtesy of U{Carlos Freitas<https://GitHub.com/mrJean1/PyGeodesy/issues/33>}
661 x = fsumf_(r12, -r22, d**2) / (d * _2_0) # n1->intersection x- and ...
662 y = fsumf_(r12, -r32, i**2, j**2, x * i * _N_2_0) / (j * _2_0) # ... y-component
663 # courtesy of U{AleixDev<https://GitHub.com/mrJean1/PyGeodesy/issues/43>}
664 z = fsumf_(max(r12, r22, r32), -(x**2), -(y**2)) # XXX not just r12!
665 if z > EPS:
666 n = n1.plus(X.times(x)).plus(Y.times(y))
667 if useZ: # include Z component
668 Z = X.cross(Y) # unit vector perpendicular to plane
669 n = n.plus(Z.times(sqrt(z)))
670 if height is None:
671 h = fidw((point1.height, point2.height, point3.height),
672 map1(fabs, distance1, distance2, distance3))
673 else:
674 h = Height(height)
675 kwds = _xkwds(LatLon_and_kwds, height=h)
676 return n.toLatLon(**kwds) # Nvector(n.x, n.y, n.z).toLatLon(...)
678 # no intersection, d < EPS_2 or fabs(j) < EPS_2 or z < EPS
679 t = _SPACE_(_no_, _intersection_, NN)
680 raise IntersectionError(point1=point1, distance1=distance1,
681 point2=point2, distance2=distance2,
682 point3=point3, distance3=distance3,
683 txt=unstr(t, z=z, useZ=useZ, wrap=wrap))
686__all__ += _ALL_DOCS(LatLonNvectorBase, NvectorBase, sumOf) # classes
688# **) MIT License
689#
690# Copyright (C) 2016-2025 -- mrJean1 at Gmail -- All Rights Reserved.
691#
692# Permission is hereby granted, free of charge, to any person obtaining a
693# copy of this software and associated documentation files (the "Software"),
694# to deal in the Software without restriction, including without limitation
695# the rights to use, copy, modify, merge, publish, distribute, sublicense,
696# and/or sell copies of the Software, and to permit persons to whom the
697# Software is furnished to do so, subject to the following conditions:
698#
699# The above copyright notice and this permission notice shall be included
700# in all copies or substantial portions of the Software.
701#
702# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
703# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
704# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
705# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
706# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
707# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
708# OTHER DEALINGS IN THE SOFTWARE.