
 1

FOCUS MANUAL

Table of Contents

1. Installation .. 2

2. FOCUS installation from source ... 2
2.1.1. Overview of dependencies .. 3
2.1.2. OS X ... 3
2.1.3. Linux/Unix ... 3
2.1.4. Compiling ... 4

3. The FOCUS input file .. 4
3.1.1. Title ... 4
3.1.2. SpaceGroup .. 4
3.1.3. UnitCell .. 4
3.1.4. AtomType ... 5
3.1.5. Chemistry ... 5
3.1.6. MaxPotentiAlatoms .. 6
3.1.7. MaxRecycledAtoms .. 6
3.1.8. FwSearchMethod .. 6
3.1.9. MaxPeaksFwSearch ... 6
3.1.10. MaxPeaksFwFragmentSearch ... 6
3.1.11. MinNodeDistance .. 6
3.1.12. MaxNodeDistance ... 7
3.1.13. MaxSymNodes .. 7
3.1.14. MinSymNodes ... 7
3.1.15. NodeType ... 7
3.1.16. MinLoopSize .. 8
3.1.17. MaxLoopSize ... 8
3.1.18. EvenLoopSizesOnly .. 8
3.1.19. Checck3DimConnectifity .. 9
3.1.20. IdealT_NodeDistance ... 9
3.1.21. CheckTetrahedralGeometry ... 9
3.1.22. RandomInitialization ... 9
3.1.23. FeedBackCycles ... 9
3.1.24. FeedBackBreakIf ... 9
3.1.25. Grid_xyz .. 10
3.1.26. eDensityCutOff .. 10
3.1.27. MinPfI .. 10
3.1.28. CatchDistance .. 10
3.1.29. eD_PeaksSortElement .. 10
3.1.30. Lambda ... 11
3.1.31. FobsMin_d ... 11
3.1.32. FobsScale ... 11
3.1.33. SigmaCutOff .. 11
3.1.34. OverlapFactor .. 11
3.1.35. OverlapAction .. 11
3.1.36. ReflectionUsage .. 11
3.1.37. ScatteringFactorTable .. 12
3.1.38. ScatteringFactor ... 12
3.1.39. Reflections .. 12

 2

4. KRIBER ... 13

5. DLS76 .. 13

6. EXTRAS ... 13
6.1.1. fo2hist ... 13
6.1.2. multifocal ... 14
6.1.3. fo2cif .. 14
6.1.4. fo2strudat .. 14
6.1.5. strudat2cif ... 14
6.1.6. dlsall .. 14
6.1.7. cdlsall .. 15

7. Example.. 15

8. Further reading ... 16

Modified: 21 September 2016

Stef Smeets

stef.smeets@mmk.su.se

1. Installation

Download the FOCUS package from https://github.com/stefsmeets/focus_package/releases

It is recommended to install the pre-compiled versions for Windows 7+ (32 bit) OS X (Intel

x64) or Linux (debian x64).

1. Unzip or extract using tar -xvzf focus-osx.tar.gz

2. Install with python:
python setup.py install

After the installation step, setup will ask to move sginfo/focus to a directory on the system

path. Afterwards, the whole directory can be removed. The scripts have been tested to work

on recent versions of OS X (10.8+), Ubuntu 12.04 LTS x64, and Windows 7-10.

Note: Windows users need to install Python 2.7 (https://www.python.org/downloads/) and

Visual C++ Redistributable for Visual Studio 2015 (https://www.microsoft.com/en-

us/download/details.aspx?id=48145 => vc_redist.x86.exe)

2. FOCUS installation from source

The FOCUS package comes with several useful tools for working with and analyzing

FOCUS output. FOCUS and KRIBER are written in C and should therefore be compatible

with any C compiler. Additionally, FOCUS requires Scons (2.4.1), fftw (3.3.2), libtbx

(20000) and Python2.x (2.7) for compilation. More recent versions of libtbx cause the

installation to fail.

DLS76 was written in FORTRAN and should be compiled using gfortran.

It is recommended that the installation scripts provided (see above) be used to compile

FOCUS, or at least be used as a guide.

mailto:stef.smeets@mmk.su.se
https://github.com/stefsmeets/focus_package/releases
https://www.python.org/downloads/
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145

 3

2.1.1. Overview of dependencies

 FOCUS

 gcc

 Scons

 libtbx

 fftw

 Kriber

 gcc

 DLS76

 gfortran

 install scripts

 curl

 svn

Curl and SVN are used in the install scripts to download the required packages, such as Scons

(curl), libtbx (svn) and fftw (curl), from the internet.

This installation script (build_all.sh) will download and compile dependencies, and compile

FOCUS and related programs in 4 steps by calling the following scripts:

1. focus_build_script.sh

 Downloads and compiles FFTW 3.3.2, libtbx, scons 2.4.1 and FOCUS

(focus/focus_build_script)

requires curl and svn

2. make

 Compiles and sets up KRIBER (src/dls76/makefile)

3. make

 Compiles and sets up DLS76 (src/kriber/makefile)

4. python setup.py install

 Moves all executables/scripts into to a directory on your system path

2.1.2. OS X

For OS X, C-compilers are available via the Command Line Tools for Xcode (type xcode-

select install in the terminal to initiate installation). Curl and Python come pre-installed, svn is

part of the Command Line Tools.

gfortran is available via http://hpc.sourceforge.net/ or a package manager like brew

(http://brew.sh).

2.1.3. Linux/Unix

Most Linux distributions come with their own compiler suite, otherwise compilers are usually

available via the package manager or http://gcc.gnu.org . Python usually also comes

preinstalled, but is otherwise available from the packages manager or http://www.python.org

SVN and Curl did not come preinstalled on the system used for testing the installation

procedure (Ubuntu 12.04), but both were available via the package manager.

http://hpc.sourceforge.net/
http://brew.sh/
http://gcc.gnu.org/
http://www.python.org/

 4

The installation script was tested successfully on Ubuntu 12.04 LTS x64.

2.1.4. Compiling

After compiling, all the files necessary to run FOCUS are in the ./focus_package directory.

Install with python:
python setup.py install

3. The FOCUS input file

A template for the input file can always be generated directly using:
 focus > template.inp

The template generated has sensible defaults for solving zeolite structures. Of course, some

parameters are more sample specific than others. Some of the parameters in the template can

be ignored or removed (e.g. all the profile related ones from GenerateFWHM to

NormalizeSurface).

A sample input file that solves a structure readily has been provided in the directory

./manuals/example/

The parameters relevant for structure solution are discussed below.

Formatting:

#hash denotes numerical values. #N is usually used for integers and #d for

distances in Å.

$dollar denotes an arbitrary string

x/y denotes a choice of keywords

(parentheses) denote optional input

[Square brackets] indicate repeated input.

3.1.1. Title

Title $title

Set a title for the calculation. It is recorded in the output file.

3.1.2. SpaceGroup

SpaceGroup $spgr

Spacegroup for the supplied data.

3.1.3. UnitCell

UnitCell #a #b #c #al #be #ga

Dimensions of the unit cell in Å and angles in degrees. Parameters can be given in shortened

form, i.e. by specifying only a for a cubic system.

 5

3.1.4. AtomType

AtomType +/- node/nodebridge/* $label #N (#occ) (#U) (#scattering factor)

The AtomType parameter defines the cell contents of the structure to be solved, as determined

by a chemical analysis or estimated by other means. One AtomType line for each type of atom

needs to be specified. The first item after the keyword AtomType is either "+" or "-". All atoms

specified with an AtomType line are used in the calculation of F000 (the Fourier magnitude at

the origin of reciprocal space), but only atoms with the "+" marker are considered in the atom

and/or the framework fragment recycling procedures. The next item is a "class label", Node,

NodeBridge, or " ", which determines how FOCUS should treat this atom type. The latter is

for non-framework atoms. Nodes are typically T atoms and NodeBridge denotes bridging (O)

atoms. For the following item, an "atom label" and the number of atoms of this type per unit

cell should be supplied. The rest is optional.

For a typical zeolite, such as ZSM-5, the AtomType parameters look like this:
 AtomType + Node Si 96
 AtomType - NodeBridge O 192

Also possible - but not used here - is the definition of the occupancy factor to be used in the

recycling (default: 1.0), the isotropic temperature factor (default: 0.035), and a "scattering

factor label" (default: derived from the preceding atom label).

For example, the line
 AtomType - * Ow 20 1.25 0.05 O

Describes an oxygen with an occupancy of 1.25 and an isotropic temperature factor of 0.05

Å^2, which is a commonly used approximation for water molecules in zeolite channels. The

scattering factor used is that of oxygen, and 20 water per unit cell are expected. However,

experience has shown that recycling extra framework atoms is not efficient, nor necessary,

and for the calculation of F000 it would be sufficient to supply one AtomType line for oxygen

and one for hydrogen using the default occupancy and temperature factors.

3.1.5. Chemistry

Chemistry MinDistance/MaxDistance $NodeType1 $label1 $NodeType2 $label2 #d

The Chemistry lines define the expected connectivity of the atom types specified before. This

is related to the atom recycling procedure. The Chemistry lines define the individual minimum

and/or maximum distances for each pair of atom types which are used in the atom recycling

procedure. Following Chemistry MinDistance/MaxDistance are two pairs of "class label" and

"atom label" as defined on AtomType lines, and the minimum distance for this pair of atom

types in the same units as the lattice constants, usually Å. It should be noted that bonding is

not considered in atom recycling mode. The minimum distances apply to all pairs of atoms,

whether they are bonded or not.

For ZSM-5, this section could look like this:

Chemistry MinDistance Node Si Node Si 2.6
Chemistry MinDistance NodeBridge O Node Si 1.4
Chemistry MinDistance NodeBridge O NodeBridge O 2.3

 6

Specification of the MaxDistance is also possible in the same way. Note: if there is a "-" on the

AtomType line as for

AtomType - NodeBridge O 192

this atom type is not used in the atom recycling procedure. Therefore it would be sufficient to

supply only the first Chemistry line for Si--Si.

3.1.6. MaxPotentiAlatoms

MaxPotentialAtoms #N

This parameter gives the maximum number of peaks which are considered in the assignment

algorithm.

Example: MaxPotentialAtoms 130

With this value, if the algorithm tries to assign a silicon atom to one of the peaks in the

asymmetric unit, but is not able to find a valid position among the peaks in the asymmetric

unit which generate the 130 highest peaks in the unit cell, the silicon is not assigned at all.

3.1.7. MaxRecycledAtoms

MaxRecycledAtoms #N

MaxRecycledAtoms prescribes the maximum number of atoms in the unit cell that are actually

assigned and is forced to be smaller or equal to MaxPotentialAtoms.

3.1.8. FwSearchMethod

FwSearchMethod FwTracking/AltFwTracking

The value can be either FwTracking or AltFwTracking, which are simple backtracking and

"colored" backtracking, respectively. The latter is only useful in case of strict alternation of

the T atoms, for example in case of a germanosilicate.

3.1.9. MaxPeaksFwSearch

MaxPeaksFwSearch #N

In the atom recylcing procedure, only complete frameworks are sought, and

MaxPeaksFwSearch defines the maximum number of peaks in the unit cell that are used in the

backtracking procedure.

3.1.10. MaxPeaksFwFragmentSearch

MaxPeaksFwFragmentSearch #N

In framework fragment recycling mode, MaxPeaksFwFragmentSearch determines the

maximum number of peaks. Since the fragment search is significantly slower than the search

for complete frameworks only, it is sometimes necessary to set MaxPeaksFwFragmentSearch

to a smaller value than MaxPeaksFwSearch in order to retain reasonable computing times.

3.1.11. MinNodeDistance

MinNodeDistance #d

 7

The MinNodeDistance and MaxNodeDistance parameters establish the lower and upper limits

for the node-node distances which are used in the preparation of the lists of potential node-

node bonds. In this case, a tolerance of 0.5 Å around the "ideal" distance of 3.1 Å is set:

MinNodeDistance 2.6
MaxNodeDistance 3.6

This is usually a good starting point for aluminosilicates. In case that no solutions are found,

increasing the upper limit may help.

3.1.12. MaxNodeDistance

MaxNodeDistance #d

See MinNodeDistance.

3.1.13. MaxSymNodes

MaxSymNodes #N

MinSymNodes and MaxSymNodes set the lower and upper limits for the number of framework

nodes per unit cell. While MinSymNodes just prevents frameworks with too low a density

from being evaluated and printed and can usually be left at 0, MaxSymNodes cuts complete

branches of the search tree. On the one hand, this can reduce the computing time for

frameworks with a well-established low density, but on the other, one has to be careful not to

prescribe a value that is too small. Normally, the choice for MaxSymNodes is based on the

consideration that the number of T-sites per 1000 Å^3 in a zeolite must be less than 20.

3.1.14. MinSymNodes

MinSymNodes #N

See MaxSymNodes.

3.1.15. NodeType

NodeType #Nbonds #Natoms [$symaxis ...]

The NodeType keyword defines the number of bonds for a given node type, the maximum

number of nodes of this type in the asymmetric unit and a list of the symmetry elements

which can not be occupied by a node of this type.

For example, by default, this NodeType should always be specified:
 NodeType 4 * -6 -3 -1 4 6

In the example, only one node type with tetrahedral connectivity is defined. The asterisk "*"

specifies that an unlimited number of nodes in the asymmetric unit can be of this type. The

following numbers "-6 -3 -1 4 6" specify that this node type cannot be on a six- or threefold

rotoinversion axis, an inversion center, or a four- or sixfold rotation axis.

Multiple NodeTypes can be specified, for example adding: NodeType 3 1 -6 -3 -1 4 6

tells FOCUS that there is a single Q^3 T atom in the asymmetric unit that is not on any of the

specified axes of symmetry. If such information is known, it should be specified, as it can

mean the difference between solving the structure and and finding no solutions at all.

 8

However, adding NodeTypes means that the algorithm has to check every possible atom

position for given connectivities, which will exponentially increase the time taken for the

framework search.

3.1.16. MinLoopSize

MinLoopSize #N

Example: MinLoopSize 4

Supplying a value greater than three for MinLoopSize has two consequences: when atoms are

recycled and only complete frameworks are sought, frameworks which have loops with less

than MinLoopSize members are rejected (that just means they are not printed). In framework

fragment recycling mode, the fragments which are candidates for the "largest fragment" for

recycling are checked for MinLoopSize. Unfortunately, the present implementation of the loop

size test is very time consuming. The time spent for the fragment search increases by roughly

40%. In this example, MinLoopSize was therefore kept at its default value of three, although

four is perhaps more appropriate for high silica frameworks. (However, the structure of the

high silica ZSM-18 (MEI) does contain 3-rings).

3.1.17. MaxLoopSize

MaxLoopSize #N

Example: MaxLoopSize 24

MaxLoopSize is less critical than MinLoopSize and just specifies the maximum loop size up to

which the LC algorithm advances. The default value of 24 is sufficient for all known zeolite

topologies. For loops with more than MaxLoopSize members, a "0" is printed. Cases where

smaller values would result in a speed gain for the price of having some zeros in the LC are

hardly imaginable.

3.1.18. EvenLoopSizesOnly

EvenLoopSizesOnly On/Off

If EvenLoopSizesOnly is turned Off, this means that all loop sizes greater than or equal to

MinLoopSize are allowed. The EvenLoopSizesOnly option was introduced for the search for

frameworks where a strict alternation of two atom types is expected. In these cases, only even

loop sizes are possible. A special problem arises for aluminophosphates. Since the scattering

powers of Al, and P are only slightly different, it is often not possible to determine the true

space group from the powder profile. Only after the structure is known, can one introduce the

strict Al-P alternation, which in many cases reduces the symmetry. For this situation,

EvenLoopSizesOnly provides a more robust alternative to AltFwTracking.

It has to be noted that in framework fragment search mode the impact of EvenLoopSizesOnly

on the computing time requirements is similar to setting MinLoopSize to a value greater than

three. However, since loop sizes have to be computed only once per framework or framework

fragment, MinLoopSize greater than three does not result in more time consumption if

EvenLoopSizesOnly is switched On.

 9

3.1.19. Checck3DimConnectifity

Check3DimConnectivity On/Off

If On, a filter procedure is called for each framework topology found. Only 3-dimensionally

connected frameworks can pass this filter, layer or chain structures are rejected.

3.1.20. IdealT_NodeDistance

IdealT_NodeDistance #d

specifies the "ideal" node-node distance for four-connected nodes. This is the basic value for

the geometrical tests and is normally set to 3.1 Å for aluminosilicates.

3.1.21. CheckTetrahedralGeometry

CheckTetrahedralGeometry Off/Normal/Hard

This parameter adds to the geometrical tests and checks for Tetrahedral connectivity of the

framework. In most cases, this can be set to Normal. Turning this parameter Off tends to result

in unrealistic frameworks. For high silica and Si-Al frameworks such as Dodecasil-1H, the

Hard test is appropriate.

3.1.22. RandomInitialization

RandomInitialization Time/#seed

Defines the "seed" value for a portable pseudo random number generator, which is used to

generate the starting phases. The special value Time tells FOCUS to use the machine time for

the automatic determination of the seed value, which is then printed on the output file. This

integer value - like any positive integer value - can be resupplied with RandomInitialization in

order to rerun FOCUS with different output options or for testing or debugging purposes.

3.1.23. FeedBackCycles

FeedBackCycles [#Natom #Nfw]

Example: FeedBackCycles 1 1 1 1 1 1 1 1 1 1

This keyword is followed by an arbitrarily long sequence of nonnegative integers (including

zero). The first integer specifies the number of times the atom recycling procedure is to be

used in one trial, the second integer is for the number of framework fragment recycling loops,

the third again for atom recycling, and so on. In the example, ten cycles with alternation of

atom and framework fragment recycling are requested. Experience has shown that a simple

alternation of atom recycling and framework fragment recycling, as in the example, is usually

the most efficient approach.

3.1.24. FeedBackBreakIf

FeedBackBreakIf PhaseDiff < 5.00 % and DeltaR < 1.00 %

The recycling is prematurely terminated if both the phase set and the RF residual value have

converged. Another special situation is, when no fragment which can be recycled is found. In

this case, a trial continues with atom recycling (but the cycle is still counted as framework

fragment recycling cycle).

 10

3.1.25. Grid_xyz

Grid_xyz #Nx #Ny #Nz

Sets grid for the electron density map is defined such that a resolution of about 1/3 Å is

achieved. One has also to take care that all symmetry elements pass through grid points. In its

present form, FOCUS does not automatically generate an appropriate grid, but it does refuse

to work with grid sizes that do not conform to this requirement. For example, in space group

P-1 the grid sizes for all directions have to be a multiple of two, in order to have all inversion

centers laying on a grid point. In the case of space group P6/mmm, the grid size in the z-

direction has to be a multiple of two, and the grid sizes for the x- and y-direction have to be a

multiple of six.

3.1.26. eDensityCutOff

eDensityCutOff #cutoff (%)

Default: eDensityCutOff 1 %

specifies the lower cut-off value for the peak search in the electron density maps. This

specification can either be an absolute value, e.g. eDensityCutOff 1.0, or relative to the

maximum value of the whole map, as is in the default. The overall maximum value of

MaxPotentialAtoms, MaxPeaksFwSearch, and MaxPeaksFwFragmentSearch is the maximum

number of peaks in the unit cell which are put on the peaklist by the peaksearch procedure.

However, if there are less than this number of peaks with a maximum peak height above the

value set by eDensityCutOff, the list will contain fewer peaks.

3.1.27. MinPfI

MinPfI #N

Default: MinPfI 17

MinPfI ("minimum number of points for interpolation") defines the minimum number of grid

points with a positive electron density value surrounding a grid peak position. If the actual

number is fewer than MinPfI, no interpolation for the peak position is carried out and the

coordinates of the grid point are retained.

3.1.28. CatchDistance

CatchDistance #d

Default: CatchDistance 0.5

CatchDistance is the minimum distance a peak has to have to all of its symmetrically

equivalent peaks (self-distance). For self-distances smaller than CatchDistance, a procedure is

activated, which moves the peak onto the symmetry element which is responsible for the

close contact.

3.1.29. eD_PeaksSortElement

eD_PeaksSortElement Grid_eD/Maximum/Integral.

Defines how the peaks are sorted.

 11

3.1.30. Lambda

Lambda #d/$code

Sets the wavelength either in Å or one of the codes for the internally stored wavelengths.

CrA1: 2.28970 CrA2: 2.29361 Cr: 2.2909
FeA1: 1.93604 FeA2: 1.93998 Fe: 1.9373
CuA1: 1.54056 CuA2: 1.54439 Cu: 1.5418
MoA1: 0.70930 MoA2: 0.71359 Mo: 0.7107
AgA1: 0.55941 AgA2: 0.56380 Ag: 0.5608

3.1.31. FobsMin_d

FobsMin_d #d

Sets the minimum d-spacing for the reflections to be used in Å.

3.1.32. FobsScale

FobsScale #N

Defines the scale factor.

3.1.33. SigmaCutOff

SigmaCutOff #cutoff

This is normally set to 3. If standard deviations are available, reflections with an intensity

smaller than SigmaCutOff times their standard deviation can be excluded.

3.1.34. OverlapFactor

OverlapFactor #of

Usually, a good value for the overlap factor is 0.3. Together with the individual FWHM for

each reflection is used to determine the overlap groups, which are then processed according

to OverlapAction.

3.1.35. OverlapAction

OverlapAction NoAction/EqualF2/EqualMF2

NoAction specifies that no action should be taken if reflections are in the same overlap groups.

In case of EqualF2, overlapped reflections are equipartitioned to have equal structure factor

amplitudes and in case of EqualMF2, the reflections are equipartitioned based on the structure

factor amplitude times multiplicity. In case of electron diffraction, this value should be set to

NoAction, while for powder diffraction data, EqualMF2 is usually the most appropriate.

3.1.36. ReflectionUsage

ReflectionUsage #N

This parameter specifies the number of reflections that are actually used. This can be

absolute, for example ReflectionUsage 80 will select the 80 highest reflections, or it can be

relative, as in the example. In the latter case, reflections are selected in descending order of

(equipartitioned) intensity times multiplicity (M.F) until the prescribed percentage of the

 12

total sum of M.F over all input reflections is accumulated. Usually, no more th an 400

reflections are necessary.

3.1.37. ScatteringFactorTable

ScatteringFactorTable xray/electron

This parameter specifies whether given structure factor amplitudes are from an electron or X-

ray diffraction experiment.

3.1.38. ScatteringFactor

ScatteringFactor $label

Custom scattering factors can be specified by supplying a list of sin(θ)/λ with corresponding

scattering factor values. The list should start with the keyword and the label for this particular

scatterer, and end with &. The label can then be used the Chemistry and AtomType keywords

for example. As an example using the conventional X-ray scattering factors for silicon:

ScatteringFactor $label
 0.00 13.99892
 0.05 13.43532
 0.10 12.13342
 0.15 10.76817
 0.20 9.67481
 0.25 8.85950
 0.30 8.22972
 0.35 7.69734
 0.40 7.20320
 0.45 6.71934
 0.50 6.23962
 0.55 5.76816
 0.60 5.31198
 0.65 4.87773
 0.70 4.47063
 0.75 4.09426
 0.80 3.75063
 0.85 3.44035
 0.90 3.16292
 0.95 2.91693
 1.00 2.70033
&

3.1.39. Reflections

The last part of the input file is a listing of the extracted Fourier magnitudes. The data are

given as reflection indices hkl, observed relative Fourier magnitude, the estimated standard

deviation of the Fourier magnitude and the FWHM as derived from the refined profile

parameters. If estimated standard deviations are not available, asterisks can be supplied

instead. The reflection list should always end with the word "End". For example:

h k l Fobs Sigma FWHM
 0 2 1 4.02 * 0.0535
 0 4 0 2.75 * 0.0534
 1 1 0 4.91 * 0.0534
End

 13

4. KRIBER

Kriber can be used to analyze the results of the FOCUS output file. Kriber expects a strudat

file to be present in the current directory. A strudat can be created from the FOCUS output

file by using the focus2strudat script (See below).

The strudat file contains a listing of all the frameworks reported by FOCUS (i.e. the ones in

the fo2hist output).

The main commands of interest are:

help Prints out a summary of all commands.

reacs This command is used to read in a framework from the strudat file. The user is then

prompted for the framework to load, which is any framework in the strudat file

(without the *).

dise Show all entries in the strudat file.

addo O atoms are added in the expected positions between T atoms.

wricif Save the current framework to a cif file named 'structure.cif'.

dett Calculate the coordination sequence of the current framework.

wriid Write an input file for DLS named 'dlsinp' (See below).

exit Exit the program.

5. DLS76

DLS can be used to perform distance least squares calculations on the framework. The easiest

way to generate an input file for DLS is by running Kriber with the 'addo' command and then

the 'wriid' command. Then, DLS can be run on the resulting 'dlsinp' file.

6. EXTRAS

6.1.1. fo2hist

Fo2hist is essential for the analysis of the FOCUS output file. It will parse the FOCUS output

file, count all identical frameworks, and report the histogram of solutions to the terminal. The

idea is that the framework with the most occurences is the correct one. Fo2hist takes multiple

files.

All coordination sequences are referenced against a database of known frameworks (see ascii

file coseq). Fo2hist will show a note when a match is found. In the output, the first column

gives the framework name of the first occurence in the FOCUS output file, the second

column the number of occurences of this framework and the third column the percentage.

Example: fo2hist focus.out

In case fo2hist recognizes the framework type, the framework type code will be given.

 14

6.1.2. multifocal

multifocal is a python program written to make it easier to run several focus runs in parallel,

and thus to speed up the structure solution process. The help file can be accessed with the -h

command line parameter.

The program can run a single input file in parallel, or run several input files at the same time.

The number of processes to run can be specified via the -p flag, and the number of trials per

process via -n

Example: multifocal focus.inp -p8 -n1000

This will spawn 8 FOCUS processes, each performing 1000 trials.

There is a 1 second delay between the start of every process on the same input file, in order to

avoid having the same seed for the random number generator, which is based on system time.

6.1.3. fo2cif

This script automatically converts all the frameworks in a focus output file to cif format. It

uses focus2strudat and then strudat2cif.

Example: fo2cif focus.out

6.1.4. fo2strudat

Converts the given focus file to a strudat file, ready to be used with Kriber.

Example: fo2strudat focus.out

6.1.5. strudat2cif

Convert all frameworks in a strudat file to cif format. This script calls Kriber for parsing and

writing the cif file via the wricif command. Any command line argument specified will be

passed on directly to Kriber, which can be useful to generate cif files of framework structures

with oxygens added.

For example: strudat2cif addo

Will read every framework from the strudat file, add oxygens in the expected positions and

write a cif file.

6.1.6. dlsall

Run DLS76 on all frameworks in the strudat file. Frameworks that minimize with an R-value

of lower than 0.01 are converted to a cif file via KRIBER. This threshold can be changed via

an optional command line argument:

dlsall 0.1

will convert all frameworks with an R-value of lower than 0.1 to cif files.

 15

6.1.7. cdlsall

cdlsall works in the same way as dlsall, but will instead perform a cell-DLS refinement on all

frameworks in the strudat file.

7. Example

This example shows the general workflow when using FOCUS using the example in the

example directory.

Create a template input file:
 focus > template.inp

Not all of the input parameters in the template are relevant for structure solution, but those

that are have been discussed in the FOCUS input file chapter.

In this case, a working example file has been supplied for the DOH framework (doh.inp).

To start, run FOCUS on the input file:
 focus doh.inp 100 > doh.out

The number 100 here specifies how many trials FOCUS should start. In the case of this

simple structure, 100 trials is enough. This should take about 10-20 seconds. However, more

complex problems can take several hours, or sometimes days to solve. The output file,

doh.out, can be analyzed using the 'fo2hist' program:
 fo2hist doh.out

In this case, the framework is known and fo2hist will identify the correct framework as DOH:

>> fo2hist doh.out

doh.out

fw # % Natoms ftc

F0003 297 0.705 4 DOH

F0019 66 0.157 4 -

F0000 47 0.112 4 -

F0037 3 0.007 5 -

F0205 3 0.007 4 -

F0035 2 0.005 4 -

F0255 2 0.005 4 -

F0340 1 0.002 3 -

Total: 421

In case of an unknown structure, it is useful to look at all frameworks in more detail. To do

so, a CIF file can be created by using fo2cif:

 fo2cif doh.out

This creates a cif file for every framework reported in the fo2hist output. In this case, Fw0000

is the correct framework. When it is decided to use this framework for refinement, the

framework structure can be optimized using distance least-squares with the program DLS76.

The easiest way to generate a DLS input file is by using Kriber. First, a strudat file should be

created (in this case a strudat file is already available, as fo2cif will write one) with

focus2strudat:

 16

 foc2strudat doh.out

Then running Kriber:
 kriber

And issuing the following commands:
 reacs
 Fw0000
 addo
 wriid
 exit

'reacs' will tell the program to read a structure, in this case Fw0000, 'addo' will add oxygens in

the expected bridging positions and 'wriid' will write a DLS76 input file called 'dlsinp'.

Finally, run DLS76:
 dls76 dlsinp

This will generate 2 files, dlsout with the results of the least-squares refinement and nfilea.inp

with the atomic parameters. The easiest way to use the new atomic parameters is to replace

them in an existing CIF file, for example one written using the command 'wricif' in Kriber.

Alternatively, the program dlsall can be used:

>> dlsall 0.1

Threshold = 0.1

framework Rval

Fw0000 0.0239 ** >> Wrote file Fw0000_dls.cif

Fw0003 0.0166 ** >> Wrote file Fw0003_dls.cif

Fw0019 0.0187 ** >> Wrote file Fw0019_dls.cif

Fw0035 0.0256 ** >> Wrote file Fw0035_dls.cif

Fw0037 0.0324 ** >> Wrote file Fw0037_dls.cif

Fw0205 0.0273 ** >> Wrote file Fw0205_dls.cif

Fw0255 0.0136 ** >> Wrote file Fw0255_dls.cif

Fw0340 0.0225 ** >> Wrote file Fw0340_dls.cif

This generates dls-optimized cif files directly.

8. Further reading

For further information, please consult the following literature:

Smeets, S; McCusker, L. B.; Baerlocher, C.; Mugnaioli, E. & Kolb, U.

Using FOCUS to solve zeolite structures from three-dimensional electron diffraction data

Journal of Applied Crystallography, 2013, 46(4), 1017–1023

http://dx.doi.org/10.1107/S0021889813014817

Grosse-Kunstleve, R. W.; McCusker, L. B. & Baerlocher, C.

Powder Diffraction Data and Crystal Chemical Information Combined in an Automated

Structure Determination Procedure for Zeolites

Journal of Applied Crystallography, 1997, 30, 985-995

http://dx.doi.org/10.1107/S0021889897005013

http://dx.doi.org/10.1107/S0021889813014817
http://dx.doi.org/10.1107/S0021889897005013

 17

Grosse-Kunstleve, R. W.

Zeolite Structure Determination from Powder Data: Computer-based Incorporation of Crystal

Chemical Information

PhD thesis, ETH Zurich, 1996

http://cci.lbl.gov/~rwgk/Dissertation/Dissertation.pdf

Grosse-Kunstleve, R. W.; McCusker, L. B. & Baerlocher, C.

Powder Diffraction Data and Crystal Chemical Information Combined in an Automated

Structure Determination Procedure for Zeolites

Journal of Applied Crystallography, 1997, 30, 985-995

http://dx.doi.org/10.1107/S0021889897005013

Grosse-Kunstleve, R. W.; McCusker, L. B. & Baerlocher, C.

Zeolite structure determination from powder diffraction data: applications of the it FOCUS

method

Journal of Applied Crystallography, 1999, 32, 536-542

http://dx.doi.org/10.1107/S0021889899003453

http://cci.lbl.gov/~rwgk/Dissertation/Dissertation.pdf
http://dx.doi.org/10.1107/S0021889897005013
http://dx.doi.org/10.1107/S0021889899003453

