
AMFM decompy
Release 1.0.12

Bernardo J. B. Schmitt

May 15, 2025

CONTENTS

1 pYAAPT 3
1.1 Quick start . 3
1.2 Classes . 5
1.3 Differences between pYAAPT and the original YAAPT . 12

2 pyQHM 13
2.1 Quick start . 13
2.2 Classes . 14

3 basic_tools 23
3.1 Classes . 23
3.2 Functions . 25

Bibliography 27

Index 29

i

ii

AMFM decompy, Release 1.0.12

Contents:

CONTENTS 1

AMFM decompy, Release 1.0.12

2 CONTENTS

CHAPTER

ONE

PYAAPT

This a ported version for Python from the YAAPT (Yet Another Algorithm for Pitch Tracking) algorithm. The original
MATLAB program was written by Hongbing Hu and Stephen A. Zahorian.

The YAAPT program, designed for fundamental frequency tracking, is extremely robust for both high quality and
telephone speech. The YAAPT program was created by the Speech Communication Laboratory of the state university
of New York at Binghamton. The original program is available at http://www.ws.binghamton.edu/zahorian as free
software. Further information about the program could be found at [ref1].

It must be noticed that, although this ported version is almost equal to the original, some few changes were made in
order to make the program more “pythonic” and improve its performance. Nevertheless, the results obtained with both
algorithms were similar.

1.1 Quick start

The pYAAPT basically contains the whole set of functions to extract the pitch track from a speech signal. These
functions, in their turn, are independent from the pyQHM package. Therefore, pYAAPT can be used in any other
speech processing application, not only in the AM-FM decomposition.

USAGE:

amfm_decompy.pYAAPT.yaapt(signal[, options])
Parameters

• signal (signal object) – created with amfm_decompy.basic_tools.

• options (Must be formatted as follow: **{‘option_name1’ : value1, ‘option_name2’ :
value2, . . . }) – the default configuration values for all of them are the same as in the orig-
inal version. A short description about them is presented in the next subitem. For more
information about them, please refer to [ref1].

Return type
pitch object

OPTIONS:

• ‘frame_length’ - length of each analysis frame (default: 35 ms)

• ‘tda_frame_length’ - frame length employed in the time domain analysis (default: 35 ms). IMPORTANT: in
the original YAAPT v4.0 MATLAB source code this parameter is called ‘frame_lengtht’. Since its name is
quite similar to ‘frame_length’, the alternative alias ‘tda_frame_length’ is employed by pYAAPT in order to
avoid confusion. Nevertheless, both inputs (‘frame_lengtht’ and ‘tda_frame_length’) are accepted by the yaapt
function.

• ‘frame_space’ - spacing between analysis frames (default: 10 ms)

3

http://www.ws.binghamton.edu/zahorian

AMFM decompy, Release 1.0.12

• ‘f0_min’ - minimum pitch searched (default: 60 Hz)

• ‘f0_max’ - maximum pitch searched (default: 400 Hz)

• ‘fft_length’ - FFT length (default: 8192 samples)

• ‘bp_forder’ - order of band-pass filter (default: 150)

• ‘bp_low’ - low frequency of filter passband (default: 50 Hz)

• ‘bp_high’ - high frequency of filter passband (default: 1500 Hz)

• ‘nlfer_thresh1’ - NLFER (Normalized Low Frequency Energy Ratio) boundary for voiced/unvoiced decisions
(default: 0.75)

• ‘nlfer_thresh2’ - threshold for NLFER definitely unvoiced (default: 0.1)

• ‘shc_numharms’ - number of harmonics in SHC (Spectral Harmonics Correlation) calculation (default: 3)

• ‘shc_window’ - SHC window length (default: 40 Hz)

• ‘shc_maxpeaks’ - maximum number of SHC peaks to be found (default: 4)

• ‘shc_pwidth’ - window width in SHC peak picking (default: 50 Hz)

• ‘shc_thresh1’ - threshold 1 for SHC peak picking (default: 5)

• ‘shc_thresh2’ - threshold 2 for SHC peak picking (default: 1.25)

• ‘f0_double’- pitch doubling decision threshold (default: 150 Hz)

• ‘f0_half’ - pitch halving decision threshold (default: 150 Hz)

• ‘dp5_k1’ - weight used in dynamic program (default: 11)

• ‘dec_factor’ - factor for signal resampling (default: 1)

• ‘nccf_thresh1’ - threshold for considering a peak in NCCF (Normalized Cross Correlation Function) (default:
0.3)

• ‘nccf_thresh2’ - threshold for terminating search in NCCF (default: 0.9)

• ‘nccf_maxcands’ - maximum number of candidates found (default: 3)

• ‘nccf_pwidth’ - window width in NCCF peak picking (default: 5)

• ‘merit_boost’ - boost merit (default. 0.20)

• ‘merit_pivot’ - merit assigned to unvoiced candidates in definitely unvoiced frames (default: 0.99)

• ‘merit_extra’ - merit assigned to extra candidates in reducing pitch doubling/halving errors (default: 0.4)

• ‘median_value’ - order of medial filter (default: 7)

• ‘dp_w1’ - DP (Dynamic Programming) weight factor for voiced-voiced transitions (default: 0.15)

• ‘dp_w2’ - DP weight factor for voiced-unvoiced or unvoiced-voiced transitions (default: 0.5)

• ‘dp_w3’ - DP weight factor of unvoiced-unvoiced transitions (default: 0.1)

• ‘dp_w4’ - Weight factor for local costs (default: 0.9)

Exclusive from pYAAPT:

This extra parameter had to be added in order to fix a bug in the original code. More information about it here.

• ‘spec_pitch_min_std’ - Weight factor that sets a minimum spectral pitch standard deviation,which is calculated
as min_std = pitch_avg*spec_pitch_min_std (default: 0.05, i.e. 5% of the average spectral pitch).

4 Chapter 1. pYAAPT

AMFM decompy, Release 1.0.12

EXAMPLES:

Example 1 - extract the pitch track from a signal using the default configurations:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal)

Example 2 - extract the pitch track from a signal with the minimum pitch set to 150 Hz, the frame length to 15 ms and
the frame jump to 5 ms:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal, **{'f0_min' : 150.0, 'frame_length' : 15.0, 'frame_space' :␣
→˓5.0})

1.2 Classes

1.2.1 PitchObj Class

The PitchObj Class stores the extracted pitch and all the parameters related to it. A pitch object is necessary for the
QHM algorithms. However, the pitch class structure was built in a way that it can be used by any other pitch tracker,
not only the YAAPT.

USAGE:

amfm_decompy.pYAAPT.PitchObj(frame_size, frame_jump[, nfft=8192])
Parameters

• frame_size (int) – analysis frame length.

• frame_jump (int) – distance between the center of a extracting frame and the center of its
adjacent neighbours.

• nfft (int) – FFT length.

Return type
pitch object.

PITCH CLASS VARIABLES:

These variables not related with the YAAPT algorithm itself, but with a post-processing where the data is smoothed
and halving/doubling errors corrected.

PitchObj.PITCH_HALF

This variable is a flag. When its value is equal to 1, the halving detector set the half pitch values to 0. If
PITCH_HALF is equal to 2, the half pitch values are multiplied by 2. For other PITCH_HALF values, the
halving detector is not employed (default: 0).

1.2. Classes 5

AMFM decompy, Release 1.0.12

PitchObj.PITCH_HALF_SENS

Set the halving detector sensibility. A pitch sample is considered half valued if it is not zero and lower than:

mean(pitch) - PITCH_HALF_SENS*std(pitch)

(default: 2.9).

PitchObj.PITCH_DOUBLE

This variable is a flag. When its value is equal to 1, the doubling detector set the double pitch values to 0. If
PITCH_DOUBLE is equal to 2, the double pitch values are divided by 2. For other PITCH_DOUBLE values,
the doubling detector is not employed (default: 0).

PitchObj.PITCH_DOUBLE_SENS

Set the doubling detector sensibility. A pitch sample is considered double valued if it is not zero and higher than:

mean(pitch) + PITCH_DOUBLE_SENS*std(pitch)

(default: 2.9).

PitchObj.SMOOTH_FACTOR

Determines the median filter length used to smooth the interpolated pitch values (default: 5).1

PitchObj.SMOOTH

This variable is a flag. When its value is not equal to 0, the interpolated pitch is smoothed by a median filter
(default: 5).1

PitchObj.PTCH_TYP

If there are less than 2 voiced frames in the file, the PTCH_TYP value is used in the interpolation (default: 100
Hz).1

EXAMPLE:

Example 1 - the pitch is extracted from sample.wav with different smoothing and interpolation configurations:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic

signal = basic.SignalObj('path_to_sample.wav')

pYAAPT.PitchObj.PITCH_DOUBLE = 2 # set new values
pYAAPT.PitchObj.PITCH_HALF = 2
pYAAPT.PitchObj.SMOOTH_FACTOR = 3

pitch = pYAAPT.yaapt(signal) # calculate the pitch track

PITCH OBJECT ATTRIBUTES:

PitchObj.nfft

Length in samples from the FFT used by the pitch tracker. It is set during the object’s initialization.

PitchObj.frame_size

Length in samples from the frames used by the pitch tracker. It is set during the object’s initialization.

1 don’t mistake this interpolation with the one performed by the pYAAPT.upsample method. For more explanation, please refer to the
pYAAPT.samp_interp and pYAAPT.values_interp attributes.

6 Chapter 1. pYAAPT

AMFM decompy, Release 1.0.12

PitchObj.frame_jump

Distance in samples between the center of a extracting frame and the center of its adjacent neighbours. It is set
during the object’s initialization.

PitchObj.noverlap

It’s the difference between the frame size and the frame jump. Represents the number of samples that two adjacent
frames share in common, i.e, how much they overlap each other. It is set during the object’s initialization.

PitchObj.mean_energy

Signal’s low frequency band mean energy. It is set by the PitchObj.set_energy method.

PitchObj.energy

Array that contains the low frequency band energy from each frame, normalized by PitchObj.mean_energy. It is
set by the PitchObj.set_energy method.

PitchObj.vuv

Boolean vector that indicates if each speech frame was classified as voiced (represented as ‘True’) or unvoiced
(represented as ‘False’). It is set by the PitchObj.set_energy method.

PitchObj.frames_pos

A numpy array that contains the temporal location of the center of each extraction frame, which is also referred
as time stamp. It is set by the PitchObj.set_frame_pos method. The locations are given in sample domain, so
their values in time domain are calculated as:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal)

time_stamp_in_seconds = pitch.frame_pos/signal.fs

PitchObj.nframes

Number of frames. It is set by the PitchObj.set_frame_pos method.

PitchObj.samp_values

PitchObj.samp_interp

Both arrays contain the pitch values from each of the nframes. The only difference is that, in
PitchObj.samp_interp the unvoiced segments are replaced by the interpolation from the adjacent voiced segments
edges. This provides a non-zero version from the pitch track, which can be necessary for some applications.

Example:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic
from matplotlib import pyplot as plt

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal)

plt.plot(pitch.samp_values, label='samp_values', color='blue')
plt.plot(pitch.samp_interp, label='samp_interp', color='green')

plt.xlabel('frames', fontsize=18)
plt.ylabel('pitch (Hz)', fontsize=18)

(continues on next page)

1.2. Classes 7

AMFM decompy, Release 1.0.12

(continued from previous page)

plt.legend(loc='upper right')
axes = plt.gca()
axes.set_xlim([0,90])
plt.show()

The output is presented below:

Both attributes are set by the PitchObj.set_values method.

PitchObj.values

PitchObj.values_interp

PitchObj.values and PitchObj.values_interp are the upsampled versions from PitchObj.samp_values and
PitchObj.samp_interp respectively. Therefore, their length is equal to the original file length (for more infor-
mation, check the PitchObj.upsample() method).

Example:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic
from matplotlib import pyplot as plt

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal)

plt.plot(pitch.values, label='samp_values', color='blue')
plt.plot(pitch.values_interp, label='samp_interp', color='green')

plt.xlabel('samples', fontsize=18)
plt.ylabel('pitch (Hz)', fontsize=18)
plt.legend(loc='upper right')
axes = plt.gca()

(continues on next page)

8 Chapter 1. pYAAPT

AMFM decompy, Release 1.0.12

(continued from previous page)

axes.set_xlim([0,16000])
plt.show()

The output is presented below:

Both attributes are set by the PitchObj.set_values method.

PitchObj.edges

A list that contains the index where occur the transitions between unvoiced-voiced and voiced-unvoiced in
PitchObj.values. It is set by the PitchObj.set_values method, which employs internally the PitchObj.edges_finder
method.

PITCH OBJECT METHODS:

PitchObj.set_energy(energy, threshold)

Parameters

• energy (numpy array) – contains the low frequency energy for each frame.

• threshold – normalized threshold.

Set the normalized low frequency energy by taking the input array and dividing it by its mean value. Normalized
values above the threshold are considered voiced frames, while the ones below it are unvoiced frames.

PitchObj.set_frames_pos(frames_pos)

Parameters
frames_pos – index with the sample positions.

Set the position from the center of the extraction frames.

1.2. Classes 9

AMFM decompy, Release 1.0.12

PitchObj.set_values(samp_values, file_size[, interp_tech='spline'])
Parameters

• samp_values (numpy array) – pitch value for each frame.

• file_size (int) – length of the speech signal.

• interp_tech (string) – interpolation method employed to upsample the data. Can be
‘pchip’ (default), ‘spline’ and ‘step’.

Set the pitch values and also calculates its interpolated version (for more information, check the
PitchObj.samp_values and PitchObj.samp_interp attributes). A post-process is employed then using the PitchObj
class attributes. After that, both arrays are upsampled, so that the output arrays have the same length as the orig-
inal speech signal. In this process, a second interpolation is necessary. The interpolation technique employed is
indicated by the parameter interp_tech.

Example:

import amfm_decompy.pYAAPT as pYAAPT
import amfm_decompy.basic_tools as basic
from matplotlib import pyplot as plt

signal = basic.SignalObj('path_to_sample.wav')
pitch = pYAAPT.yaapt(signal)

plt.plot(pitch.values, label='pchip interpolation', color='green')

pitch.set_values(pitch.samp_values, len(pitch.values), interp_tech='spline')
plt.plot(pitch.values, label='spline interpolation', color='red')

pitch.set_values(pitch.samp_values, len(pitch.values), interp_tech='step')
plt.plot(pitch.values, label='step interpolation', color='blue')

plt.xlabel('samples', fontsize=18)
plt.ylabel('pitch (Hz)', fontsize=18)
plt.legend(loc='upper right')
axes = plt.gca()
axes.set_xlim([0,16000])
axes.set_ylim([150,250])

plt.show()

The output is presented below:

10 Chapter 1. pYAAPT

AMFM decompy, Release 1.0.12

PitchObj.edges_finder(values)

Parameters
values (numpy array) – contains the low frequency energy for each frame.

Return type
list.

Returns the index of the samples where occur the transitions between unvoiced-voiced and voiced-unvoiced.

1.2.2 BandpassFilter Class

Creates a bandpass filter necessary for the YAAPT algorithm.

USAGE:

amfm_decompy.pYAAPT.BandpassFilter(fs, parameters)

Parameters

• fs (float) – signal’s fundamental frequency

• parameters (dictionary) – contains the parameters options from the YAAPT algorithm.

Return type
bandpass filter object.

1.2. Classes 11

AMFM decompy, Release 1.0.12

BANDPASS FILTER ATTRIBUTES:

BandpassFilter.b

Bandpass filter zeros coefficients. It is set during the object’s initialization.

BandpassFilter.a

Bandpass filter poles coefficients. It is set during the object’s initialization.

BandpassFilter.dec_factor

Decimation factor used for downsampling the data. It is set during the object’s initialization.

1.3 Differences between pYAAPT and the original YAAPT

As stated before, the pYAAPT was conceived as a port of the original Matlab YAAPT package. However, with the
evolution of the YAAPT and also with the constant feedback from pYAAPT users, there are currently a few important
differences between both codes:

1.3.1 YAAPT 4.0 processing speed

The version 4.0 from the YAAPT came with an additional feature that allows the user to “skip” the spectral pitch
tracking, or alternatively, skip the time domain pitch tracking. Although I understand why the feature was implemented
(Matlab has some limitations in terms of optimizing the code performance), personally I consider this addition a bit
questionable.

The strong point of the YAAPT is its robustness. And by personal experience, I would say that most of my speech
processing projects relied on the efficiency of the pitch tracker. Thus, sacrificing the robustness of the algorithm can
cause a snowball effect that could eventually compromise an entire project.

Therefore, until the present moment the speed feature is not available at pYAAPT. Specially because Python still has
some better speeding options to be explored, like numba or CUDA. Eventually I might add this speed parameter to
some future major release, it does not require an extensive code refactoring anyway.

But since that this feature is a bit counter-productive, I do not see it currently as priority.

1.3.2 spec_pitch_min_std parameter

In the function tm_trk.m from the original YAAPT code, the spectral pitch standard deviation (pStd) is employed to
calculate the frequency threshold (freq_threshold) variable, which is later used to refine the merit of the pitch candidates.

However, in some corner cases it might happen that all spectral pitch values are the same, which results in a standard
deviation equal to zero. And since that the freq_threshold is employed as the denominator of a fraction, this will lead
to a division by 0, which will consequently crash the algorithm. This issue was reported in real-time applications using
the pYAAPT.

Since that this bug is also present in the original Matlab code, a custom solution had to be developed. Thus, the most rea-
sonable approach was to use a percentage of the average spectral pitch. This percentage was named spec_pitch_min_std,
which has default value of 0.05. Therefore, when the standard deviation of the spectral pitch is lower than 5% of its
mean value, this fraction of the average pitch is employed instead of the standard deviation.

12 Chapter 1. pYAAPT

CHAPTER

TWO

PYQHM

The algorithms here implemented were the QHM (Quasi-Harmonic Model), and its upgrades, aQHM (adaptive Quasi-
Harmonic Model) and eaQHM (extended adaptive Quasi-Harmonic Model). Their formulation can be found at refer-
ences [ref2], [ref3] and [ref4].

These algorithms perform the so-called AM-FM decomposition. This designation is used due the fact that, in this
method, the signal is modeled as a sum of amplitude- and frequency-modulated components. The goal is to overcome
the drawbacks from Fourier-alike techniques, e.g. SFFT, wavelets, etc, which are limited in the time-frequency analysis
by the so-called Heisenberg-Gabor inequality.

2.1 Quick start

The pyQHM module provides a function for each of the QHM family algorithms:

USAGE:

amfm_decompy.pyQHM.qhm(signal, pitch, window[, samp_jump=None, N_iter=1, phase_tech='phase'])
amfm_decompy.pyQHM.aqhm(signal, previous_HM, pitch, window[, samp_jump=None, N_iter=1,

N_runs=float('Inf'), phase_tech='phase'])
amfm_decompy.pyQHM.eaqhm(signal, previous_HM, pitch, window[, samp_jump=None, N_iter=1,

N_runs=float('Inf'), phase_tech='phase'])
Parameters

• signal (signal object) – contains the signal data and its parameters.

• pitch (pitch object) – contains the pitch track and its parameters.

• window (window object) – contains the sample window and some reference arrays.

• samp_jump (float) – distance in seconds between the center of a extracting frame and the
center of its adjacent neighbours (default: sample by sample).

• N_iter (int) – number of iterations for each frame estimation (default: 1).

• phase_tech (str) – has two options: ‘phase’ (default) and ‘freq’. The objective is to choose
the smoother base for further aQHM and eaQHM calculations in order to avoid the degra-
dation of their performance due the phase wild behaviour. Normally when a sample jump is
employed, the ‘phase’ option it’s enough, since that the interpolation process already smooths
the phase signal. However, in a sample by sample analysis, the use of ‘freq’ (cumulative fre-
quency) is favoured.

• previous_HM (modulated signal object) – previously extracted AM-FM signal, used
as base for the aQHM and eaQHM calculations.

13

AMFM decompy, Release 1.0.12

• N_runs (int) – after the aQHM/eaQHM algorithm has been applied on the whole signal, the
function takes the output modulated signal object as new input and restart the aQHM/eaQHM
until N_runs are performed OR until the output SRER (Signal-to-Reconstruction Error Ra-
tio) stops growing. The goal is to refine the results. (default: keeps restarting the algorithm
infinitely until the maximum SRER).

Return type
modulated signal object

EXAMPLES:

Example 1 - the parameters of a speech signal are extracted sample by sample through QHM. After that, its output is
used as input for the first of two aQHM runs with 1 ms sample jump. Finally, the result is used to start one run of the
eaQHM with a 1 ms sample jump again. The three algorithms perform 3 iterations per frame extraction.:

import amfm_decompy.pYAAPT as pyaapt
import amfm_decompy.pyQHM as pyqhm
import amfm_decompy.basic_tools as basic

Declare the variables.
window_duration = 0.015
nharm_max = 25

Create the signal object.
signal = basic.SignalObj('path_to_sample.wav')

Create the window object.
window = pyqhm.SampleWindow(window_duration, signal.fs)

Create the pitch object and calculate its attributes.
pitch = pyaapt.yaapt(signal)

Use the pitch track to set the number of modulated components.
signal.set_nharm(pitch.values, nharm_max)

Perform the QHM extraction.
QHM = pyqhm.qhm(signal, pitch, window, N_iter = 3, phase_tech = 'freq')

Perform the aQHM extraction.
aQHM = pyqhm.aqhm(signal, QHM, pitch, window, 0.001, N_iter = 3, N_runs = 2)

Perform the eaQHM extraction.
eaQHM = pyqhm.eaqhm(signal, aQHM, pitch, window, 0.001, N_iter=3, N_runs=1)

2.2 Classes

2.2.1 ModulatedSign Class

The ModulatedSign Class stores the extracted modulated signal and all the parameters related to it. The data structure
provided by this class is used by all the QHM algorithms, since that the model for a modulated signal is basically the
same for all of them.

USAGE:

14 Chapter 2. pyQHM

AMFM decompy, Release 1.0.12

amfm_decompy.pyQHM.ModulatedSign(n_harm, file_size, fs[, phase_tech='phase'])
Parameters

• n_harm (int) – number of modulated components that form the signal.

• file_size (int) – length of the speech signal in samples.

• fs (float) – sampling frequency in Hz.

• phase_tech (str) – has two options: ‘phase’ (default) and ‘freq’. The objective is to choose
the smoother base for further aQHM and eaQHM calculations in order to avoid the degra-
dation of their performance due the phase wild behaviour. Normally when a sample jump is
employed, the ‘phase’ option it’s enough, since that the interpolation process already smooths
the phase signal. However, in a sample by sample analysis, the use of ‘freq’ (cumulative fre-
quency) is favoured.

Return type
modulated signal object.

MODULATED SIGNAL ATTRIBUTES:

ModulatedSign.n_harm

Number of modulated components that form the signal. It is set during the object’s initialization.

ModulatedSign.size

Length of the speech signal in samples. It is set during the object’s initialization.

ModulatedSign.fs

Sampling frequency in Hz. It is set during the object’s initialization.

ModulatedSign.H

3-dimension numpy array (n_harm, 3, file_size), which stores the magnitude, phase and frequency values from all
components. Its first dimension refers to the n_harm components, the second to the three composing parameters
(where 0 stands for the magnitude, 1 for the phase and 2 for the frequency) and the third dimension to the temporal
axis. It is created during the object’s initialization.

ModulatedSign.harmonics

List where each element is a modulated component. Read more about it in the ComponentObj Class section. It
is created during the object’s initialization.

ModulatedSign.error

Numpy array where each element is the mean squared error between the original signal frame and its synthesized
version. It is created during the object’s initialization.

ModulatedSign.phase_tech

Name of the phase smoothing method used to create a reference for future aQHM/eaQHM calculations. Can be
‘phase’ or ‘freq’. It is set during the object’s initialization.

ModulatedSign.signal

Final signal synthesized with the extracted parameters. It is created by the ModulatedSign.synthesize method.

ModulatedSign.SRER

Signal-to-Reconstruction Error Ratio, measures the similarity between the original signal and its synthesized
version. The bigger its value, the better the reconstruction. It is calculated by the ModulatedSign.srer method.

2.2. Classes 15

AMFM decompy, Release 1.0.12

ModulatedSign.extrap_phase

2-dimension numpy array (n_harm, file_size) which contains a modified version of the extracted phase track from
each component. The signals are smoothed (check the ModulatedSign.phase_tech attribute) and their edge values
are extrapolated for future aQHM/eaQHM runs. It is calculated by the ModulatedSign.phase_edges method.

MODULATED SIGNAL METHODS:

ModulatedSign.update_values(a, freq, frame)

Parameters

• a (numpy array) – contains the extracted complex coefficients from the harmonic model
(for more information about them, please check the references).

• freq (numpy array) – instantaneous frequency from each of the components.

• frame (int) – sample where the center of the moving sample window is located.

Updates the values of magnitude, phase and instantaneous frequency in the H matrix.

ModulatedSign.interpolate_samp(samp_frames, pitch)

Parameters

• samp_frames (numpy array) – contains the sample locations where the algorithm was
employed.

• pitch (pitch object) – pitch information.

Interpolate the parameters values when the extraction is not performed sample-by-sample.

ModulatedSign.synthesize([N=None])
Parameters
N – select which of the components are going to be synthesized (default: all of them).

Runs the ComponentObj.synthesize method for each of the n_harm components, and after that, sum them to
construct the final synthesized signal.

ModulatedSign.srer(orig_signal, pitch_track)

Parameters

• orig_signal (numpy array) – original signal.

• pitch_track (numpy array) – pitch values for each sample.

Calculates the SRER (Signal-to-Reconstruction Error Ratio) for the synthesized signal. It is defined mathemat-
ically as

20*log10(std(orig_signal) / std(orig_signal - synth_signal)).

ModulatedSign.phase_edges(edges, window)

Parameters

• edges – index where occur the pitch transitions between unvoiced-voiced and voiced-
unvoiced.

• window (window object) – sample window and its parameters.

16 Chapter 2. pyQHM

AMFM decompy, Release 1.0.12

Extrapolates the phase at the border of the voiced frames by integrating the edge frequency value. This procedure
is necessary for posterior aQHM calculations. Additionally, the method allows the replacement of the extracted
phase by the cumulative frequency. The objective is to provide smoother bases for further aQHM and eaQHM
calculations. Normally this is not necessary, since that the interpolation process already smooths the phase vector.
But in a sample-by-sample extraction case, this substitution is very helpful to avoid the degradation of aQHM
and eaQHM performance due the phase wild behaviour.

2.2.2 ComponentObj Class

Creates a single component object, whose data is stored in the ModulatedSign.H matrix. The ComponentObj Class
provides thus an alternative interface to separately access and manipulate each component.

USAGE:

amfm_decompy.pyQHM.ComponentObj(H, harm)

Parameters

• H (numpy array) – 3-dimensional array where the component data is stored (for more in-
formation, check the ModulatedSign.H attribute).

• harm (int) – the component index.

Return type
component object.

MODULATED COMPONENT ATTRIBUTES:

ComponentObj.mag

Magnitude envelope of the component. It is set during the object’s initialization.

ComponentObj.phase

Phase angle track of the component in radians. It is set during the object’s initialization.

ComponentObj.freq

Instantaneous normalized frequency track of the component. To get the value in Hz just multiply this array by
the sample frequency. It is set during the object’s initialization.

ComponentObj.signal

Component signal synthesized with the extracted parameters. It is created by the ComponentObj.synthesize
method.

EXAMPLES:

Example 1 - Shows how to to access the component data of a specific component:

import amfm_decompy.pYAAPT as pyaapt
import amfm_decompy.pyQHM as pyqhm
import amfm_decompy.basic_tools as basic
from matplotlib import pyplot as plt

Declare the variables.
window_duration = 0.015
nharm_max = 25

Create the signal object.
(continues on next page)

2.2. Classes 17

AMFM decompy, Release 1.0.12

(continued from previous page)

signal = basic.SignalObj('path_to_sample.wav')

Create the window object.
window = pyqhm.SampleWindow(window_duration, signal.fs)

Create the pitch object and calculate its attributes.
pitch = pyaapt.yaapt(signal)

Use the pitch track to set the number of modulated components.
signal.set_nharm(pitch.values, nharm_max)

Perform the QHM extraction.
QHM = pyqhm.qhm(signal, pitch, window, 0.001, N_iter = 3)

fig1 = plt.figure()

Plot the instaneous frequency of the fundamental harmonic.
The ComponentObj objects are stored inside the harmonics list.
For more information, please check the ModulatedSign.harmonics attribute.
plt.plot(QHM.harmonics[0].freq*signal.fs)

plt.xlabel('samples', fontsize=18)
plt.ylabel('pitch (Hz)', fontsize=18)

fig2 = plt.figure()

Plot the envelope magnitude of the third harmonic.
The ComponentObj objects are stored inside the harmonics list.
For more information, please check the ModulatedSign.harmonics attribute.
plt.plot(QHM.harmonics[2].mag, color='green')

plt.xlabel('samples', fontsize=18)
plt.ylabel('magnitude', fontsize=18)

plt.show()

The results are presented in the next two pictures:

18 Chapter 2. pyQHM

AMFM decompy, Release 1.0.12

NOTE:
It must noticed that the ComponentObj can be normally sliced. For example:

QHM.harmonics[0].freq[920:1000]

will return a array containing only the segment of the fundamental frequency between the samples from 920 to
999, while:

QHM.harmonics[2].mag[950]

2.2. Classes 19

AMFM decompy, Release 1.0.12

will return the magnitude of the third harmonic at the 950th sample. However, due the way that the python
language is internally built, unfortunately it’s not possible to slice the harmonics list. For example:

QHM.harmonics[0:3].freq[920:1000]
QHM.harmonics[0:2].mag[950]

will raise an ERROR message. Therefore, the only way to simultaneously get the data of a group of components
is by directly accessing the ModulatedSign.H matrix (or using a for loop, but this option is slower):

QHM.H[0:3, 2, 920:1000]
QHM.H[0:2, 0, 950]

MODULATED COMPONENT METHODS:

ComponentObj.synthesize()

Synthsize the modulated component by using the extracted magnitude and phase.

2.2.3 SampleWindow Class

Creates the sample hamming window object and some related index arrays.

USAGE:

amfm_decompy.pyQHM.SampleWindow(window_duration, fs)

Parameters

• window_duration (float) – window duration in seconds.

• fs (float) – sample frequency in Hz.

Return type
sample window object.

SAMPLE WINDOW ATTRIBUTES:

SampleWindow.dur

Window duration in seconds. It is set during the object’s initialization.

SampleWindow.length

Window length in samples. It is set during the object’s initialization.

SampleWindow.data

Array containing the hamming window data. It is set during the object’s initialization.

SampleWindow.data2

Array containing the hamming window data with each element raised to the 2 power. It is set during the object’s
initialization.

SampleWindow.N

Half-window length, i.e., SampleWindow.length/2 -1. It is set during the object’s initialization.

SampleWindow.half_len_vec

Numpy array that contains the indexes from zero to N, i.e, [0, 1 . . . N]. It is set during the object’s initialization.

20 Chapter 2. pyQHM

AMFM decompy, Release 1.0.12

SampleWindow.len_vec

Numpy array that contains the indexes from -N to N, i.e, [-N, -N+1 . . . N-1, N]. It is set during the object’s
initialization.

2.2. Classes 21

AMFM decompy, Release 1.0.12

22 Chapter 2. pyQHM

CHAPTER

THREE

BASIC_TOOLS

This module contains a set of basic classes and functions that are commonly used by the other modules of the package.

3.1 Classes

3.1.1 SignalObj Class

The SignalObj Class stores the speech signal and all the parameters related to it.

USAGE:

amfm_decompy.basic_tools.SignalObj(*args, **kwargs)

Parameters

• args – the input argument can be a string with the wav file path OR two arguments, where
the first one is a numpy array containing the speech signal data and the second one represents
its fundamental frequency in Hz.

• kwargs – please check below for the options.

Return type
speech signal object.

KWARGS OPTIONS:

• ‘data’ - instead of initializing a SignalObj with two arguments, the input signal data can be alternatively passed
using this kwarg. It must used along with the ‘fs’ kwarg.

• ‘fs’ - instead of initializing a SignalObj with two arguments, the input signal sample frequency can be alternatively
passed using this kwarg. It must used along with the ‘data’ kwarg.

• ‘name’ - instead of initializing a SignalObj with one argument, the input wav file path can be alternatively passed
using this kwarg.

• ‘output_dtype’ - the numpy dtype of the output signal data.

23

AMFM decompy, Release 1.0.12

SIGNAL OBJECT ATTRIBUTES:

SignalObj.data

Numpy array containing the speech signal data. It is set during the object’s initialization.

SignalObj.fs

Sample frequency in Hz. It is set during the object’s initialization.

SignalObj.size

Speech signal length. It is set during the object’s initialization.

SignalObj.filtered

Bandpassed version from the speech data. It is set by the SignalObj.filtered_version method.

SignalObj.new_fs

Downsampled fundamental frequency from the speech data. It is set by the SignalObj.filtered_version method.

SignalObj.clean

When the SignalObj.noiser method is called, this attribute is created and used to store a clean copy from the
original signal.

SIGNAL OBJECT METHODS:

SignalObj.filtered_version(bp_filter)

Parameters
bp_filter – BandpassFilter object.

Filters the signal data by a bandpass filter.

SignalObj.set_nharm(pitch_track, n_harm_max)

Parameters

• pitch_track (numpy array) – pitch extracted values for each signal sample.

• n_harm_max (int) – represents the maximum number of components that can be extracted
from the signal.

Uses the pitch values to estimate the number of modulated components in the signal.

SignalObj.noiser(pitch_track, SNR)

Parameters

• pitch_track (numpy array) – pitch extracted values for each signal sample.

• SNR (float) – desired signal-to-noise ratio from the output signal.

Adds a zero-mean gaussian noise to the signal.

24 Chapter 3. basic_tools

AMFM decompy, Release 1.0.12

3.2 Functions

3.2.1 pcm2float

USAGE:

amfm_decompy.basic_tools.pcm2float(sig[, dtype=numpy.float64])
Parameters

• sig (numpy array) – PCM speech signal data.

• dtype (float) – data type from the elements of the output array (default: numpy.float64).

Return type
numpy array.

Transform a PCM raw signal into a float one, with values limited between -1 and 1.

3.2. Functions 25

AMFM decompy, Release 1.0.12

26 Chapter 3. basic_tools

BIBLIOGRAPHY

[ref1] Stephen A. Zahorian, and Hongbing Hu, “A spectral/temporal method for robust fundamental frequency track-
ing,” J. Acosut. Soc. Am. 123(6), June 2008.

[ref2] Y.Pantazis, “Decomposition of AM-FM signals with applications in speech processing”, PhD Thesis, University
of Creta, 2010.

[ref3] Y.Pantazis, O. Rosec and Y. Stylianou, “Adaptive AM-FM signal decomposition with application to speech
analysis”, IEEE Transactions on Audio, Speech and Language Processing, vol. 19, n 2, 2011.

[ref4] G.P. Kafentzis, Y. Pantazis, O. Rosec and Y. Stylianou, “An extension of the adaptive quasi-harmonic model”,
em IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.

27

AMFM decompy, Release 1.0.12

28 Bibliography

INDEX

A
a (in module BandpassFilter), 12
aqhm() (in module amfm_decompy.pyQHM), 13

B
b (in module BandpassFilter), 12
BandpassFilter() (in module

amfm_decompy.pYAAPT), 11

C
clean (in module SignalObj), 24
ComponentObj() (in module amfm_decompy.pyQHM),

17

D
data (in module SampleWindow), 20
data (in module SignalObj), 24
data2 (in module SampleWindow), 20
dec_factor (in module BandpassFilter), 12
dur (in module SampleWindow), 20

E
eaqhm() (in module amfm_decompy.pyQHM), 13
edges (in module PitchObj), 9
edges_finder() (in module PitchObj), 11
energy (in module PitchObj), 7
error (in module ModulatedSign), 15
extrap_phase (in module ModulatedSign), 15

F
filtered (in module SignalObj), 24
filtered_version() (in module SignalObj), 24
frame_jump (in module PitchObj), 6
frame_size (in module PitchObj), 6
frames_pos (in module PitchObj), 7
freq (in module ComponentObj), 17
fs (in module ModulatedSign), 15
fs (in module SignalObj), 24

H
H (in module ModulatedSign), 15

half_len_vec (in module SampleWindow), 20
harmonics (in module ModulatedSign), 15

I
interpolate_samp() (in module ModulatedSign), 16

L
len_vec (in module SampleWindow), 20
length (in module SampleWindow), 20

M
mag (in module ComponentObj), 17
mean_energy (in module PitchObj), 7
ModulatedSign() (in module amfm_decompy.pyQHM),

14

N
N (in module SampleWindow), 20
n_harm (in module ModulatedSign), 15
new_fs (in module SignalObj), 24
nfft (in module PitchObj), 6
nframes (in module PitchObj), 7
noiser() (in module SignalObj), 24
noverlap (in module PitchObj), 7

P
pcm2float() (in module amfm_decompy.basic_tools),

25
phase (in module ComponentObj), 17
phase_edges() (in module ModulatedSign), 16
phase_tech (in module ModulatedSign), 15
PITCH_DOUBLE (in module PitchObj), 6
PITCH_DOUBLE_SENS (in module PitchObj), 6
PITCH_HALF (in module PitchObj), 5
PITCH_HALF_SENS (in module PitchObj), 5
PitchObj() (in module amfm_decompy.pYAAPT), 5
PTCH_TYP (in module PitchObj), 6

Q
qhm() (in module amfm_decompy.pyQHM), 13

29

AMFM decompy, Release 1.0.12

S
samp_interp (in module PitchObj), 7
samp_values (in module PitchObj), 7
SampleWindow() (in module amfm_decompy.pyQHM),

20
set_energy() (in module PitchObj), 9
set_frames_pos() (in module PitchObj), 9
set_nharm() (in module SignalObj), 24
set_values() (in module PitchObj), 9
signal (in module ComponentObj), 17
signal (in module ModulatedSign), 15
SignalObj() (in module amfm_decompy.basic_tools),

23
size (in module ModulatedSign), 15
size (in module SignalObj), 24
SMOOTH (in module PitchObj), 6
SMOOTH_FACTOR (in module PitchObj), 6
SRER (in module ModulatedSign), 15
srer() (in module ModulatedSign), 16
synthesize() (in module ComponentObj), 20
synthesize() (in module ModulatedSign), 16

U
update_values() (in module ModulatedSign), 16

V
values (in module PitchObj), 8
values_interp (in module PitchObj), 8
vuv (in module PitchObj), 7

Y
yaapt() (in module amfm_decompy.pYAAPT), 3

30 Index

	pYAAPT
	Quick start
	Classes
	PitchObj Class
	PITCH CLASS VARIABLES:
	PITCH OBJECT ATTRIBUTES:
	PITCH OBJECT METHODS:

	BandpassFilter Class
	BANDPASS FILTER ATTRIBUTES:

	Differences between pYAAPT and the original YAAPT
	YAAPT 4.0 processing speed
	spec_pitch_min_std parameter

	pyQHM
	Quick start
	Classes
	ModulatedSign Class
	MODULATED SIGNAL ATTRIBUTES:
	MODULATED SIGNAL METHODS:

	ComponentObj Class
	MODULATED COMPONENT ATTRIBUTES:
	MODULATED COMPONENT METHODS:

	SampleWindow Class
	SAMPLE WINDOW ATTRIBUTES:

	basic_tools
	Classes
	SignalObj Class
	SIGNAL OBJECT ATTRIBUTES:
	SIGNAL OBJECT METHODS:

	Functions
	pcm2float

	Bibliography
	Index

