sage knotinfo interface tutorial
January 3, 2023

1 SageMath interface to the KnotInfo and LinkInfo databases

1.1 Introduction
1.1.1 Instructions for use

This tutorial comes as a Jupyter notebook (ipynb) that may have been exported to a pdf, html, md
or a sage-file. The purpose of the html, md and pdf formats is for reading only. But, if you're using
it in a Jupyter client (i.e. the ipynb-version) you may experiment with the examples by running
the appropriate cells.

Working with the Jupyter notebook

Using your local device If you have a SageMath distribution with a version of at least 9.4 then
you can also run the cells of this tutorial on your own computer. To do this, enter

sage -n

in a bash shell located in a directory where you downloaded the
sage_knotinfo_interface_tutorial.ipynb file (or rather the entire contents of the folder
containing this file, so that local links work). This will open a new tab in your default browser
showing the contents of that directory. Clicking on the tutorial file there will open another tab
showing the file in a Jupyter client.

Note, that some of the examples require optional packages (as explained in the context of the
examples). These examples will fail unless you install the corresponding package.

If you don’t have a running Sage version of 9.4 (or newer) on your computer and are considering
installing it, please see the installation instructions.

Using Notebook Player You can run all cells that don’t rely on optional packages in the
Notebook Player. To do this first download the ipynb file. Then use the Browse-Button of the
Notebook Player to select the file from your local device.

Using Docker If you don’t want to install Sage on your machine but have Docker on it, you can
run all cells of this notebook (including those depending on optional packages) after entering

docker run -p8888:8888 -w /home/sage/tutorials soehms/sagemath_knots:latest sage-jupyter

and following the instructions shown in the shell to open it in your browser. For more information
see the Docker repository.

https://en.wikipedia.org/wiki/Project_Jupyter
https://github.com/soehms/database_knotinfo/blob/main/tutorials/sage_knotinfo_interface_tutorial.ipynb
https://github.com/soehms/database_knotinfo/blob/main/tutorials/sage_knotinfo_interface_tutorial.pdf
https://github.com/soehms/database_knotinfo/blob/main/tutorials/sage_knotinfo_interface_tutorial.html
https://github.com/soehms/database_knotinfo/blob/main/tutorials/sage_knotinfo_interface_tutorial.md
https://github.com/soehms/database_knotinfo/blob/main/tutorials/sage_knotinfo_interface_tutorial.sage
https://docs.jupyter.org/en/latest/start/index.html
https://en.wikipedia.org/wiki/SageMath
https://doc.sagemath.org/html/en/installation/index.html
https://dahn-research.eu/nbplayer/
https://en.wikipedia.org/wiki/Docker_(software)
https://hub.docker.com/r/soehms/sagemath_knots

Using Gitpod Open this pinned and shared Gitpod workspace in your browser
(this may take some minutes). Then click on the Open File menu and select
/workspace/sage/tutorials/sage_knotinfo_interface_tutorial.ipynb. After the notebook
has opened select the SageMath kernel in the right top corner of the sheet (see the screenshots on
this page). As for the Docker image you may run all cells of the notebook, here.

You're welcome to make your own experiments there. However, be aware that you share this
workspace with others. Thus, please make a copy of the original file for this (for example by saving
it under a different name).

Working in the command-line

Using your local device You can also copy-paste the contents of the cells into a Sage command
line session if the Sage version is at least 9.4. If you just want to use the tutorial examples for your
own experiments then you can import its variables by loading the corresponding sage file, that is

sage: load('https://raw.githubusercontent.com/soehms/database_knotinfo/main/tutorials/sage_kno

If this fails with a FeatureNotPresentError error install the missing optional packages or use the
reduced version of the file:

sage: load('https://raw.githubusercontent.com/soehms/database_knotinfo/main/tutorials/sage_kno

Using SageMathCell If you don’t want to install Sage on your machine you can also run most
of the examples in the SageMathCell. To pre-define the variables of this tutorial evaluate first

load('https://raw.githubusercontent.com/soehms/database_knotinfo/main/tutorials/sage_knotinfo_:

Using Docker You can also use the above Docker image to run all examples in a Sage command
line by typing

docker run -it soehms/sagemath_knots:latest

To have the variable declarations of the tutorial available load the
sage_interface_knotinfo_tutorial.sage file as described above. For more information
see the Docker repository.

Using Gitpod The command line version can also be used in the terminal of the Gitpod
workspace. This is similar as for the Docker case.

1.1.2 About

This tutorial is about a class from the SageMath library which is available since release 9.4. It
implements an interface to the databases provided at the web-pages KnotInfo and LinkInfo which
contain a classification of mathematically knots and links.

The tutorial follows a talk held at the LKS-Seminar, University of Regensburg, on 2021/03/18

https://sagemath-sage-vvjhs5sv7yz.ws-eu77.gitpod.io/
https://gitpod.io/
https://soehms.github.io/gitpod_workspaces.html
https://doc.sagemath.org/html/en/reference/repl/index.html
https://doc.sagemath.org/html/en/reference/repl/index.html
https://sagecell.sagemath.org/
https://hub.docker.com/r/soehms/sagemath_knots
https://gitpod.io/start/#sagemath-sage-vvjhs5sv7yz
https://gitpod.io/start/#sagemath-sage-vvjhs5sv7yz
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html
http://www.sagemath.org/
https://wiki.sagemath.org/ReleaseTours/sage-9.4
https://doc.sagemath.org/html/en/reference/databases/sage/databases/knotinfo_db.html
https://knotinfo.math.indiana.edu/
https://linkinfo.sitehost.iu.edu/
https://en.wikipedia.org/wiki/Knot_(mathematics)
https://github.com/soehms/database_knotinfo/blob/main/tutorials/introduction_knotinfo.md

[1]:

[1]:

[2]:

1.2 Khnots, links and braids in SageMath

Reference manual as pdf

Sage has a mostly native implementation of knots and links but also uses some third party software
for this as libbraiding and libhomfly for the braid group class. Furthermore, many other interfaces
are used indirectly, for example Gap (for the braid group, as well) but also interfaces for graph
theory, polynomial rings or plotting.

1.2.1 Links

Construction Links can be constructed using pd_ code:

L3 = Link([[1, 5, 2, 41, [5, 3, 6, 21, [3, 1, 4, 611)
L3.plot

using braid_ notation:

B = BraidGroup(4)
b = B([-1, -1, -1, -2, 1, -2, 3, -2])
Lb = Link(b)

https://doc.sagemath.org/html/en/reference/knots/index.html
https://doc.sagemath.org/pdf/en/reference/knots/knots.pdf
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knot.html
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html
https://github.com/miguelmarco/libbraiding
https://github.com/miguelmarco/libhomfly
https://doc.sagemath.org/html/en/reference/groups/sage/groups/braid.html
http://www.gap-system.org
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.pd_code
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.braid

Lb.plot ()
[2]:

Links can also be constructed from oriented Gauss code.

1.2.2 Knots

Construction Construction methods for links work for knots, too. For example using the
pd_code:

[3]: K3 = KnOt([[l, 5’ 2, 4]) [5, 3) 6’ 2]’ [3, 1’ 4’ 6]])
K3 == L3

[3]: False

As element of a different parent it differs from the corresponding link, even though they are isotopic:

[4]: sage: L3.is_isotopic(K3)

[4]: True

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.oriented_gauss_code
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knot.html#sage.knots.knot.Knot
https://doc.sagemath.org/html/en/reference/structure/sage/structure/parent.html?highlight=parent#sage.structure.parent.Parent
https://en.wikipedia.org/wiki/Homotopy#Isotopy

[6]: K3.parent(), L3.parent()

[6]: (Knots, <class 'sage.knots.link.Link'>)

Some special things only apply to knots:
[6]: unicode_art(K3)

[6]:

[7]: unicode_art(L3)
[7]: Link with 1 component represented by 3 crossings

In addition to the construction methods for links, knots can be obtained using classical Gauss code
or the Dowker-Thistlethwaite code.

If the input represents a proper link In this case a ValueError is raised:

[8]: try:
Knot (b)
except ValueError as err:
print('Wrong input:', err)

Wrong input: the input has more than 1 connected component

1.2.3 Further examples
Obtaining polynomial invariants

e HOMFLY-PT polynomial
e Jones polynomial

e colored Jones polynomial
e Alexander polynomial

e Conway polynomial

e Links-Gould polynomial
e Khovanov polynomial

For example:

[9]: h = L3.homfly_polynomial(); h
[9]: -L74 + L~2*M~2 - 2xL"2

[10]: h.parent()

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.gauss_code
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knot.html#sage.knots.knot.Knots.from_dowker_code
https://docs.python.org/3/library/exceptions.html#ValueError
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.homfly_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.jones_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knot.html#sage.knots.knot.Knot.colored_jones_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.alexander_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.conway_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.links_gould_polynomial
https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.khovanov_polynomial

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[13]:

[14]:

[14]:

[15]:

[15]:

[16]:

[16]:

[17]:

[17]:

[18]:

[18]:

[19]:

[19]:

[20]:

Multivariate Laurent Polynomial Ring in L, M over Integer Ring

type (h)

<class 'sage.rings.polynomial.laurent_polynomial.LaurentPolynomial_mpair'>
h == K3.homfly_polynomial ()

True

h.variables()

M, L)

Other invariants
L3.1links_gould_polynomial()

1 - t17-1 - t07-1 + £t17-2 + 2*%t07-1xt17-1 + t07-2 - t07-1%t17-2 - t0"-2xt1"-1
L3.khovanov_polynomial ()

q~-1 + q”-3 + q"-5b*%t™-2 + q7-9*%t"-3

L3.khovanov_polynomial (base_ring=GF(2))

qQ7-1 + q"-3 + q7-b*%t7-2 + q7-7T*t"-2 + q"-9%t"-3

L3.khovanov_homology ()

{-9: : 7},

{-3

{-3: 0, -2: C2},

-5: {-3: 0, -2: Z, -1: 0, O: O},
{-3: 0, -2: 0, -1: 0, O: Z},
{

Using braid and braid group functionality:
br = L3.braid(); br

s™-3
brm = br.burau_matrix(); brm

[-t7-2 + t7-1 t7-2 - t7-1 + 1]
[t7-3 - t7-2 + t7-1 -t7-3 + t7-2 - t7-1 + 1]

brm.parent ()

https://doc.sagemath.org/html/en/reference/groups/sage/groups/braid.html#sage.groups.braid.Braid
https://doc.sagemath.org/html/en/reference/groups/sage/groups/braid.html#sage.groups.braid.BraidGroup

[20]: Full MatrixSpace of 2 by 2 dense matrices over Univariate Laurent Polynomial
Ring in t over Integer Ring

[21]: B = br.parent(); B

[21]: Braid group on 2 strands

[22] : mirr = B.mirror_involution(); mirr

[22] : Group endomorphism of Braid group on 2 strands
[23]: mirr(br) == br.mirror_image()

[23]: True

1.2.4 How to access knots and links in Sage by name?
Internally there is just a small list of Knots from the Rolfsen Table:

[24]: K10_165 = Knots() .from_table(10, 165)
K10_165m = K10_165.mirror_image ()
K10_165.is_isotopic(K10_165m)

[24] : False

More links can be defined by name if the optional package SnapPy is installed:

[25]: import snappy
K10_166 = snappy.Link('10_166"') .sage_link()
K10_166.is_isotopic(K10_165)

Plink failed to import tkinter.

[25]: True

2 Access to the KnotInfo and LinkInfo databases

This is possible since release 9.4.

Lets have a look at some of the examples:

2.0.1 Declaration using list selection (tab-completion)

The easiest way to define an interface instance for a special link or knot is to select it as an item of
the KnotInfo class. This can be done by tab-completion. For example if you type KnotInfo.L6a4
and than hit the Tab-key you can select a link whose name starts with L6a4 from a list.

[26]: L6 = KnotInfo.L6a4_0_0; L6

https://en.wikipedia.org/wiki/List_of_prime_knots
https://snappy.math.uic.edu/index.html
https://wiki.sagemath.org/ReleaseTours/sage-9.4
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html#sage.knots.knotinfo.KnotInfoBase
https://en.wikipedia.org/wiki/Command-line_completion
https://en.wikipedia.org/wiki/Tab_key

[26] : <KnotInfo.L6a4_0_0: 'L6a4{0,0}'>

The properties of the link can be obtained by the methods of the interface instance. Available
methods can be viewed by tab-completion, too:

[27]: Lé6pd = L6.pd_notation(); L6pd
(271: [le, 1, 7, 2],

[12, 8, 9, 7],

[4, 12, 1, 11],

[10, 5, 11, 6],

(8, 4, 5, 31,

[2, 9, 3, 10]]

The default behavior of the methods of the KnotInfo class is to convert the string from the original
table to a Sage or Python object:

[28]: type(L6pd)
[28]: <class 'list'>

To obtain the original string from the table you have to use the keyword original:

[29]: Lépdo = L6.pd_notation(original=True); L6pdo

[291: '{{6, 1, 7, 2}, {12, 8, 9, 7}, {4, 12, 1, 11}, {10, 5, 11, 6}, {8, 4, 5, 3}, {2,
9, 3, 10}}'

[30]: type(L6pdo)

[30]: <class 'str'>

[31]: L6.is_knot()

[31]: False

[32]: L6.num_components ()

[32]: 3

2.0.2 Knots need a prefix K

[33]: K4 = KnotInfo.K4_1
K4.is_amphicheiral()

[33]: True

2.0.3 Declaring a link directly by its internal name
Using the inject method you may easily declare the interface instance by its name:

[34]: KnotInfo.K5_1.inject()
K5_1.dt_notation()

Defining K5_1

[34]: [6, 8, 10, 2, 4]

2.0.4 Obtaining a link by its original name
This is possible by using the string of the original name as an argument of the class:

[35]: KnotInfo('L6al{1}').inject()
L6al_1.is_alternating()

Defining L6al_1

[35]: True

2.0.5 Obtaining Sage (and SnapPy) instances

[36]: L6br = L6.braid(); L6br

[36]: (s0*s17-1)"3

[37]: Lébr.parent()

[37]: Braid group on 3 strands

[38]: /16 = L6.1ink(); 16

[38]: Link with 3 components represented by 6 crossings
[39]: 16.alexander_polynomial ()

[39]: £7-2 - 4%t™-1 + 6 - 4%t + t72

[40]: 16s = L6.link(snappy=True); 16s

[40]: <Link: 3 comp; 6 cross>

2.0.6 Conversion methods

KnotInfo and LinkInfo list more than 120 properties (in sum). Not all of them have already
conversion methods to Sage. At the moment this holds for about a quarter of them including all
polynomial invariants:

https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html#sage.knots.knotinfo.KnotInfoBase.inject

[41]:

[41] :

[42] :

[42] :

[43]:

[43]:

[44] .

[44] :

[45] :

[45] :

[46] :

[46] :

[47] :

[47] :

[48] :

h6 = L6.homfly_polynomial(); h6

“VT2%272 + 274 + 2%z72 4+ vT2%z27-2 - vT-2%z72 - 2%xz7-2 + v -2%z7-2
h6.parent ()

Multivariate Laurent Polynomial Ring in v, z over Integer Ring
h6 == L6.1link() .homfly_polynomial (normalization='vz"')

True

Everyone is invited to extend the amount of conversions! But anyway, as a string all
properties can be obtained, right now:

K4[K4.items.arc_index]

|6|

2.0.7 Launching web pages
The following examples will launch the corresponding web-pages in your default browser:

L6.diagram()
L6.knot_atlas_webpage()
L6.items. jones_polynomial .description_webpage ()

True

The following example launches the web-pages of all diagrams of knots with less than 9 crossings
and three genus equal to three:

listg3 = [K for K in KnotInfo if K.is_knot() and K.crossing number() < 9 and K.
~three_genus() == 3]

len(listg3)

10

all(K.diagram() for K in listg3)

True

Now declare all of them:

any(K.inject() for K in listg3)
K7_1.is_alternating() == K8_10.is_alternating()

Defining K7_1
Defining K8_2

10

https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html#sage.knots.knotinfo.KnotInfoBase.three_genus

[48]:

[49]:

[49] :

[50]:

[50]:

[51]:

[51]:

[52]:

[53]:

[563]:

Defining K8_5
Defining K8_7
Defining K8_9
Defining K8_10
Defining K8_16
Defining K8_17
Defining K8_18
Defining K8_19

True

2.0.8 From Sage to KnotInfo

If you want to identify a link defined in Sage with an isotopic link from the KnotInfo or LinkInfo
databases you can use the get_ knotinfo method:

L = Link([[3,1,2,4], [8,9,1,71, [5,6,7,3], [4,18,6,5],
[17,19,8,18], [9,10,11,14], [10,12,13,11],
[12,19,15,13], [20,16,14,15], [16,20,17,2]11)

L.get_knotinfo()

(<KnotInfo.KO_1: '0_1'>, None)
K10_165.get_knotinfo()

(<KnotInfo.K10_165: '10_165'>, True)

KnotInfoSeries To each interface instance there is a series of knots or links where the instance
belongs to. Use the series method to declare it:

L6.series() .inject ()
list(L6a)

Defining L6a

[Series of links L6al,
Series of links L6a2,
Series of links L6a3,
Series of links L6a4,
Series of links L6a5]

L6a[0] .inject)

Defining L6al

list(L6al)

[<KnotInfo.L6al_0: 'L6ai1{0}'>, <KnotInfo.L6al_1: 'L6ai{1}'>]

11

https://doc.sagemath.org/html/en/reference/knots/sage/knots/link.html#sage.knots.link.Link.get_knotinfo
https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html#sage.knots.knotinfo.KnotInfoBase.series

[54]:

[55] :

[55]:

[]1:

Another way to define a series is to use the constructor of the corresponding class directly:

KnotInfoSeries(10, True, True).inject()
for i in range(160, 166):

K = K10(i)
k = K.1link(K.items.name, snappy=True)
print(k, '--->', k.sage_link().get_knotinfo())

Defining K10
<Link 10_160:
<Link 10_161:
<Link 10_162:
<Link 10_163:
<Link 10_164:
<Link 10_165:

comp; 10 cross> ---> (<KnotInfo.K10_160: '10_160'>, False)
comp; 10 cross> ---> (<KnotInfo.K10_161: '10_161'>, True)
comp; 10 cross> ---> (<KnotInfo.K10_161: '10_161'>, False)
comp; 10 cross> ---> (<KnotInfo.K10_162: '10_162'>, False)
comp; 10 cross> ---> (<KnotInfo.K10_163: '10_163'>, False)
comp; 10 cross> ---> (<KnotInfo.K10_164: '10_164'>, False)

N e

Note the differences to the naming of SnapPy concerning the Perko-Pair.
import snappy
snappy.Link('10_166"') .sage_link() .get_knotinfo()

(<KnotInfo.K10_165: '10_165'>, True)

2.0.9 What does # optional - snappy and # optional - database_knotinfo mean in
the examples of the reference manual?

This is needed in the development proccess. After each commit which is pushed to the repository
all examples are automatically tested by patchbots. The examples marked as optional prevent the
patchbot to do that if the corresponding package is not installed.

Conversely this means that all examples which are not marked like this will be tested permanently
on further development of Sage. They are perfomed on a subset of 20 links and about 20 properties
hold statically in the Sage library for demonstration purpose. This prevents the interface to run
out of compatibility.

2.1 How can you use KnotInfo in Sage?

The demonstration cases are shipped with the binaries of Sage since release 9.4. The complete
Database can be installed typing

sage -i database_knotinfo

in a comand line. If you don’t have Sage of a release 9.4 or newer please see the hints in the
introduction section.

12

https://doc.sagemath.org/html/en/reference/knots/sage/knots/knotinfo.html#sage.knots.knotinfo.KnotInfoSeries
https://en.wikipedia.org/wiki/Perko_pair

	SageMath interface to the KnotInfo and LinkInfo databases
	Introduction
	Instructions for use
	About

	Knots, links and braids in SageMath
	Links
	Knots
	Further examples
	How to access knots and links in Sage by name?

	Access to the KnotInfo and LinkInfo databases
	Declaration using list selection (tab-completion)
	Knots need a prefix K
	Declaring a link directly by its internal name
	Obtaining a link by its original name
	Obtaining Sage (and SnapPy) instances
	Conversion methods
	Launching web pages
	From Sage to KnotInfo
	What does # optional - snappy and # optional - database_knotinfo mean in the examples of the reference manual?

	How can you use KnotInfo in Sage?

