Source code for ms3.expand_dcml

""" This is the same code as in the corpora repo as copied on September 24, 2020
and then adapted.
"""
import sys, re
from collections import defaultdict

import pandas as pd
import numpy as np

from .utils import abs2rel_key, changes2list, DCML_REGEX, fifths2iv, fifths2name, fifths2pc, fifths2rn, fifths2sd, \
    labels2global_tonic, map2elements, name2fifths, rel2abs_key, resolve_relative_keys, roman_numeral2fifths, \
    series_is_minor, split_alternatives, split_scale_degree, str_is_minor, transform, sort_tpcs
from .logger import function_logger


################################################################################
# Constants
################################################################################



[docs]class SliceMaker(object): """ This class serves for storing slice notation such as ``:3`` as a variable or passing it as function argument. Examples -------- .. code-block:: python SM = SliceMaker() some_function( slice_this, SM[3:8] ) select_all = SM[:] df.loc[select_all] """ def __getitem__(self, item): return item
SM = SliceMaker()
[docs]@function_logger def expand_labels(df, column='label', regex=None, cols={}, dropna=False, propagate=True, volta_structure=None, relative_to_global=False, chord_tones=True, absolute=False, all_in_c=False): """ Split harmony labels complying with the DCML syntax into columns holding their various features and allows for additional computations and transformations. Uses: :py:func:`compute_chord_tones`, :py:func:`features2type`, :py:func:`~.utils.labels2global_tonic`, :py:func:`propagate_keys`, :py:func:`propagate_pedal`, :py:func:`replace_special`, :py:func:`~.utils.roman_numeral2fifths`, :py:func:`~.utils.split_alternatives`, :py:func:`split_labels`, :py:func:`~.utils.transform`, :py:func:`transpose` Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe where one column contains DCML chord labels. column : :obj:`str` Name of the column that holds the harmony labels. regex : :obj:`re.Pattern` Compiled regular expression used to split the labels. It needs to have named groups. The group names are used as column names unless replaced by ``cols``. cols : :obj:`dict`, optional Dictionary to map the regex's group names to deviating column names of your choice. dropna : :obj:`bool`, optional Pass True if you want to drop rows where ``column`` is NaN/<NA> propagate: :obj:`bool`, optional By default, information about global and local keys and about pedal points is spread throughout the DataFrame. Pass False if you only want to split the labels into their features. This ignores all following parameters because their expansions depend on information about keys. volta_structure: :obj:`dict`, optional {first_mc -> {volta_number -> [mc1, mc2...]} } dictionary as you can get it from ``Score.mscx.volta_structure``. This allows for correct propagation into second and other voltas. relative_to_global : :obj:`bool`, optional Pass True if you want all labels expressed with respect to the global key. This levels and eliminates the features `localkey` and `relativeroot`. chord_tones : :obj:`bool`, optional Pass True if you want to add four columns that contain information about each label's chord, added, root, and bass tones. The pitches are expressed as intervals relative to the respective chord's local key or, if ``relative_to_global=True``, to the globalkey. The intervals are represented as integers that represent stacks of fifths over the tonic, such that 0 = tonic, 1 = dominant, -1 = subdominant, 2 = supertonic etc. absolute : :obj:`bool`, optional Pass True if you want to transpose the relative `chord_tones` to the global key, which makes them absolute so they can be expressed as actual note names. This implies prior conversion of the chord_tones (but not of the labels) to the global tonic. all_in_c : :obj:`bool`, optional Pass True to transpose `chord_tones` to C major/minor. This performs the same transposition of chord tones as `relative_to_global` but without transposing the labels, too. This option clashes with `absolute=True`. Returns ------- :obj:`pandas.DataFrame` Original DataFrame plus additional columns with split features. """ assert sum((absolute, all_in_c)) < 2, "Chord tones can be either 'absolute' or 'all_in_c', not both." assert len(df.index.names) == 1, f"""df has a MultiIndex of {len(df.index.names)} levels, implying that it has information from several pieces. Apply expand_labels() to one piece at a time.""" df = df.copy() if regex is None: regex = DCML_REGEX ### If the index is not unique, it has to be temporarily replaced tmp_index = not df.index.is_unique if tmp_index: ix = df.index df.reset_index(drop=True, inplace=True) for col in ['numeral', 'form', 'figbass', 'localkey', 'globalkey', 'phraseend']: if not col in cols: cols[col] = col global_minor = f"{cols['globalkey']}_is_minor" ### Check for too many immediate repetitions not_nan = df[column].dropna() immediate_repetitions = not_nan == not_nan.shift() k = immediate_repetitions.sum() if k > 0: if k / len(not_nan.index) > 0.1: logger.warning( "DataFrame has many direct repetitions of labels. This function is written for lists of labels only which should have no immediate repetitions.") else: logger.debug(f"Immediate repetition of labels:\n{not_nan[immediate_repetitions]}") ### Do the actual expansion df = split_alternatives(df, column=column, logger=logger) df = split_labels(df, column=column, regex=regex, cols=cols, dropna=dropna, logger=logger) df['chord_type'] = transform(df, features2type, [cols[col] for col in ['numeral', 'form', 'figbass']], logger=logger) df = replace_special(df, regex=regex, merge=True, cols=cols, logger=logger) ### Check phrase annotations p_col = df[cols['phraseend']] opening = p_col.fillna('').str.count('{') closing = p_col.fillna('').str.count('}') if opening.sum() != closing.sum(): o = df.loc[(opening > 0), ['mc', cols['phraseend']]] c = df.loc[(closing > 0), ['mc', cols['phraseend']]] compare = pd.concat([o.reset_index(drop=True), c.reset_index(drop=True)], axis=1).astype({'mc': 'Int64'}) logger.warning(f"Phrase beginning and endings don't match:\n{compare}") if propagate: key_cols = {col: cols[col] for col in ['localkey', 'globalkey']} try: df = propagate_keys(df, volta_structure=volta_structure, add_bool=True, **key_cols, logger=logger) except: logger.error(f"propagate_keys() failed with\n{sys.exc_info()[1]}") try: df = propagate_pedal(df, cols=cols, logger=logger) except: logger.error(f"propagate_pedal() failed with\n{sys.exc_info()[1]}") if chord_tones: ct = compute_chord_tones(df, expand=True, cols=cols, logger=logger) if relative_to_global or absolute or all_in_c: transpose_by = transform(df, roman_numeral2fifths, [cols['localkey'], global_minor]) if absolute: transpose_by += transform(df, name2fifths, [cols['globalkey']]) ct = pd.DataFrame([transpose(tpcs, fifths) for tpcs, fifths in zip(ct.itertuples(index=False, name=None), transpose_by.values)], index=ct.index, columns=ct.columns) df = pd.concat([df, ct], axis=1) if relative_to_global: labels2global_tonic(df, inplace=True, cols=cols, logger=logger) else: if chord_tones: logger.info("Chord tones cannot be calculated without propagating keys.") if relative_to_global: logger.info("Cannot transpose labels without propagating keys.") if tmp_index: df.index = ix return df
[docs]def transpose(e, n): """ Add `n` to all elements `e` recursively. """ return map2elements(e, lambda x: x + n)
[docs]@function_logger def split_labels(df, column, regex, cols={}, dropna=False, inplace=False, **kwargs): """ Split harmony labels complying with the DCML syntax into columns holding their various features. Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe where one column contains DCML chord labels. column : :obj:`str` Name of the column that holds the harmony labels. regex : :obj:`re.Pattern` Compiled regular expression used to split the labels. It needs to have named groups. The group names are used as column names unless replaced by `cols`. cols : :obj:`dict` Dictionary to map the regex's group names to deviating column names. dropna : :obj:`bool`, optional Pass True if you want to drop rows where ``column`` is NaN/<NA> inplace : :obj:`bool`, optional Pass True if you want to mutate ``df``. """ if regex.__class__ != re.compile('').__class__: regex = re.compile(regex, re.VERBOSE) features = regex.groupindex.keys() if not inplace: df = df.copy() if df[column].isna().any(): if dropna: logger.debug(f"Removing NaN values from label column {column}...") df = df[df[column].notna()] else: logger.debug(f"{column} contains NaN values.") logger.debug(f"Applying RegEx to column {column}...") spl = df[column].str.extract(regex, expand=True) # .astype('string') # needs pandas 1.0 for feature in features: name = cols[feature] if feature in cols else feature df[name] = spl[feature] mistakes = spl.isna().apply(all, axis=1) & df[column].notna() if mistakes.any(): logger.warning(f"The following labels do not match the regEx:\n{df.loc[mistakes, :column].to_string()}") if not inplace: return df
[docs]@function_logger def features2type(numeral, form=None, figbass=None): """ Turns a combination of the three chord features into a chord type. Returns ------- 'M': Major triad 'm': Minor triad 'o': Diminished triad '+': Augmented triad 'mm7': Minor seventh chord 'Mm7': Dominant seventh chord 'MM7': Major seventh chord 'mM7': Minor major seventh chord 'o7': Diminished seventh chord '%7': Half-diminished seventh chord '+7': Augmented (minor) seventh chord '+M7': Augmented major seventh chord """ if pd.isnull(numeral) or numeral in ['Fr', 'Ger', 'It']: return numeral form, figbass = tuple('' if pd.isnull(val) else val for val in (form, figbass)) # triads if figbass in ['', '6', '64']: if form in ['o', '+']: return form if form in ['%', 'M', '+M']: if figbass != '': logger.error(f"{form} is a seventh chord and cannot have figbass '{figbass}'") return None # else: go down, interpret as seventh chord else: return 'm' if numeral.islower() else 'M' # seventh chords if form in ['o', '%', '+', '+M']: return f"{form}7" triad = 'm' if numeral.islower() else 'M' seventh = 'M' if form == 'M' else 'm' return f"{triad}{seventh}7"
[docs]@function_logger def replace_special(df, regex, merge=False, inplace=False, cols={}, special_map={}): """ | Move special symbols in the `numeral` column to a separate column and replace them by the explicit chords they stand for. | In particular, this function replaces the symbols `It`, `Ger`, and `Fr`. Uses: :py:func:`merge_changes` Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe containing DCML chord labels that have been split by split_labels(). regex : :obj:`re.Pattern` Compiled regular expression used to split the labels replacing the special symbols.It needs to have named groups. The group names are used as column names unless replaced by `cols`. merge : :obj:`bool`, optional False: By default, existing values, except `figbass`, are overwritten. True: Merge existing with new values (for `changes` and `relativeroot`). cols : :obj:`dict`, optional The special symbols appear in the column `numeral` and are moved to the column `special`. In case the column names for ``['numeral','form', 'figbass', 'changes', 'relativeroot', 'special']`` deviate, pass a dict, such as .. code-block:: python {'numeral': 'numeral_col_name', 'form': 'form_col_name 'figbass': 'figbass_col_name', 'changes': 'changes_col_name', 'relativeroot': 'relativeroot_col_name', 'special': 'special_col_name'} special_map : :obj:`dict`, optional In case you want to add or alter special symbols to be replaced, pass a replacement map, e.g. {'N': 'bII6'}. The column 'figbass' is only altered if it's None to allow for inversions of special chords. inplace : :obj:`bool`, optional Pass True if you want to mutate ``df``. """ if not inplace: df = df.copy() ### If the index is not unique, it has to be temporarily replaced tmp_index = not df.index.is_unique if tmp_index: ix = df.index df.reset_index(drop=True, inplace=True) special2label = { 'It': 'viio6(b3)/V', 'Ger': 'viio65(b3)/V', 'Fr': 'V7(b5)/V', } special2label.update(special_map) features = ['numeral', 'form', 'figbass', 'changes', 'relativeroot'] for col in features + ['special']: if not col in cols: cols[col] = col feature_cols = list(cols.values()) missing = [cols[f] for f in features if not cols[f] in df.columns] assert len( missing) == 0, f"These columns are missing from the DataFrame: {missing}. Either use split_labels() first or give correct `cols` parameter." select_all_special = df[df[cols['numeral']].isin(special2label.keys())].index logger.debug(f"Moving special symbols from {cols['numeral']} to {cols['special']}...") if not cols['special'] in df.columns: df.insert(df.columns.get_loc(cols['numeral']), cols['special'], np.nan) df.loc[select_all_special, cols['special']] = df.loc[select_all_special, cols['numeral']] def repl_spec(frame, special, instead): """Check if the selected parts are empty and replace ``special`` by ``instead``.""" new_vals = re.match(regex, instead) if new_vals is None: logger.warning(f"{instead} is not a valid label which could replace {special}. Skipped.") return frame else: new_vals = new_vals.groupdict() for f in features: if new_vals[f] is not None: replace_this = SM[:] # by default, replace entire column if f == 'figbass': # only empty figbass is replaced, with the exception of `Ger6` and `Fr6` if special in ['Fr', 'Ger']: # For these symbols, a wrong `figbass` == 6 is accepted and replaced replace_this = (frame[cols['figbass']] == '6') | frame[cols['figbass']].isna() else: replace_this = frame[cols['figbass']].isna() elif f != 'numeral': # numerals always replaced completely not_empty = frame[cols[f]].notna() if not_empty.any(): if f in ['changes', 'relativeroot'] and merge: if f == 'changes': frame.loc[not_empty, cols[f]] = frame.loc[not_empty, cols[f]].apply(merge_changes, args=(new_vals[f],)) elif f == 'relativeroot': frame.loc[not_empty, cols[f]] = frame.loc[not_empty, cols[f]].apply( lambda x: f"{new_vals[f]}/{x}") logger.debug( f"While replacing {special}, the existing '{f}'-values have been merged with '{new_vals[f]}', resulting in :\n{frame.loc[not_empty, cols[f]]}") replace_this = ~not_empty else: logger.warning( f"While replacing {special}, the following existing '{f}'-values have been overwritten with {new_vals[f]}:\n{frame.loc[not_empty, cols[f]]}") frame.loc[replace_this, cols[f]] = new_vals[f] return frame for special, instead in special2label.items(): select_special = df[cols['special']] == special df.loc[select_special, feature_cols] = repl_spec(df.loc[select_special, feature_cols].copy(), instead=instead, special=special) if df[cols['special']].isna().all(): df.drop(columns=cols['special'], inplace=True) if tmp_index: df.index = ix if not inplace: return df
[docs]def merge_changes(left, right, *args): """ Merge two `changes` into one, e.g. `b3` and `+#7` to `+#7b3`. Uses: :py:func:`changes2list` """ all_changes = [changes2list(changes, sort=False) for changes in (left, right, *args)] res = sum(all_changes, []) res = sorted(res, key=lambda x: int(x[3]), reverse=True) return ''.join(e[0] for e in res)
[docs]@function_logger def propagate_keys(df, volta_structure=None, globalkey='globalkey', localkey='localkey', add_bool=True): """ | Propagate information about global keys and local keys throughout the dataframe. | Pass split harmonies for one piece at a time. For concatenated pieces, use apply(). Uses: :py:func:`series_is_minor` Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe containing DCML chord labels that have been split by split_labels(). volta_structure: :obj:`dict`, optional {first_mc -> {volta_number -> [mc1, mc2...]} } dictionary as you can get it from ``Score.mscx.volta_structure``. This allows for correct propagation into second and other voltas. globalkey, localkey : :obj:`str`, optional In case you renamed the columns, pass column names. add_bool : :obj:`bool`, optional Pass True if you want to add two boolean columns which are true if the respective key is a minor key. """ df = df.copy() nunique = df[globalkey].nunique() assert nunique > 0, "No global key specified." if nunique > 1: raise NotImplementedError("Several global keys not accepted at the moment.") logger.debug('Extending global key to all harmonies') global_key = df[globalkey].iloc[0] if pd.isnull(global_key): global_key = df[globalkey].dropna().iloc[0] logger.warning( f"Global key is not specified in the first label. Using '{global_key}' from index {df[df[globalkey] == global_key].index[0]}") df.loc[:, globalkey] = global_key global_minor = series_is_minor(df[globalkey]) logger.debug('Extending local keys to all harmonies') if pd.isnull(df[localkey].iloc[0]): one = 'i' if global_minor.iloc[0] else 'I' df.iloc[0, df.columns.get_loc(localkey)] = one if volta_structure is not None and volta_structure != {}: if 'mc' in df.columns: volta_mcs = defaultdict(list) for volta_dict in volta_structure.values(): for volta_no, mcs in volta_dict.items(): volta_mcs[volta_no].extend(mcs) volta_exclusion = {volta_no: [mc for vn, mcs in volta_mcs.items() for mc in mcs if vn != volta_no] for volta_no in volta_mcs.keys()} for volta_no in sorted(volta_exclusion.keys(), reverse=True): selector = ~df.mc.isin(volta_exclusion[volta_no]) df.loc[selector, localkey] = df.loc[selector, localkey].fillna(method='ffill') else: logger.info("Dataframe needs to have a 'mc' column. Ignoring volta_structure.") df[localkey].fillna(method='ffill', inplace=True) else: df[localkey].fillna(method='ffill', inplace=True) if add_bool: local_minor = series_is_minor(df[localkey]) gm = f"{globalkey}_is_minor" lm = f"{localkey}_is_minor" df[gm] = global_minor df[lm] = local_minor return df
[docs]@function_logger def propagate_pedal(df, relative=True, drop_pedalend=True, cols={}): """ Propagate the pedal note for all chords within square brackets. By default, the note is expressed in relation to each label's localkey. Uses: :py:func:`rel2abs_key`, :py:func:`abs2rel_key` Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe containing DCML chord labels that have been split by split_labels() and where the keys have been propagated using propagate_keys(). relative : :obj:`bool`, optional Pass False if you want the pedal note to stay the same even if the localkey changes. drop_pedalend : :obj:`bool`, optional Pass False if you don't want the column with the ending brackets to be dropped. cols : :obj:`dict`, optional In case the column names for ``['pedal','pedalend', 'globalkey', 'localkey']`` deviate, pass a dict, such as .. code-block:: python {'pedal': 'pedal_col_name', 'pedalend': 'pedalend_col_name', 'globalkey': 'globalkey_col_name', 'localkey': 'localkey_col_name'} """ df = df.copy() ### If the index is not unique, it has to be temporarily replaced tmp_index = not df.index.is_unique if tmp_index: ix = df.index df.reset_index(drop=True, inplace=True) features = ['pedal', 'pedalend', 'globalkey', 'localkey'] for col in features: if not col in cols: cols[col] = col pedal, pedalend = cols['pedal'], cols['pedalend'] logger.debug('Extending pedal notes to concerned harmonies') beginnings = df.loc[df[pedal].notna(), ['mc', pedal]] endings = df.loc[df[pedalend].notna(), ['mc', pedalend]] n_b, n_e = len(beginnings), len(endings) def make_comparison(): return pd.concat([beginnings.reset_index(drop=True), endings.reset_index(drop=True)], axis=1).astype({'mc': 'Int64'}) assert n_b == n_e, f"{n_b} organ points started, {n_e} ended:\n{make_comparison()}" if relative: assert df[cols[ 'localkey']].notna().all(), "Local keys must first be propagated using propagate_keys(), no NaNs allowed." for (fro, ped), to in zip(beginnings[pedal].items(), endings[pedalend].index): try: section = df.loc[fro:to].index except: logger.error( f"Slicing of the DataFrame did not work from {fro} to {to}. Index looks like this:\n{df.head().index}") localkeys = df.loc[section, cols['localkey']] if localkeys.nunique() > 1: first_localkey = localkeys.iloc[0] globalkeys = df.loc[section, cols['globalkey']].unique() assert len(globalkeys) == 1, "Several globalkeys appearing within the same organ point." global_minor = globalkeys[0].islower() key2pedal = { key: ped if key == first_localkey else abs2rel_key(rel2abs_key(ped, first_localkey, global_minor), key, global_minor) for key in localkeys.unique()} logger.debug( f"Pedal note {ped} has been transposed relative to other local keys within a global {'minor' if global_minor else 'major'} context: {key2pedal}") pedals = pd.Series([key2pedal[key] for key in localkeys], index=section) else: pedals = pd.Series(ped, index=section) df.loc[section, pedal] = pedals if drop_pedalend: df = df.drop(columns=pedalend) if tmp_index: df.index = ix return df
[docs]@function_logger def compute_chord_tones(df, bass_only=False, expand=False, cols={}): """ Compute the chord tones for DCML harmony labels. They are returned as lists of tonal pitch classes in close position, starting with the bass note. The tonal pitch classes represent intervals relative to the local tonic: -2: Second below tonic -1: fifth below tonic 0: tonic 1: fifth above tonic 2: second above tonic, etc. The labels need to have undergone :py:func:`split_labels` and :py:func:`propagate_keys`. Pedal points are not taken into account. Uses: :py:func:`features2tpcs` Parameters ---------- df : :obj:`pandas.DataFrame` Dataframe containing DCML chord labels that have been split by split_labels() and where the keys have been propagated using propagate_keys(add_bool=True). bass_only : :obj:`bool`, optional Pass True if you need only the bass note. expand : :obj:`bool`, optional Pass True if you need chord tones and added tones in separate columns. cols : :obj:`dict`, optional In case the column names for ``['mc', 'numeral', 'form', 'figbass', 'changes', 'relativeroot', 'localkey', 'globalkey']`` deviate, pass a dict, such as .. code-block:: python {'mc': 'mc', 'numeral': 'numeral_col_name', 'form': 'form_col_name', 'figbass': 'figbass_col_name', 'changes': 'changes_col_name', 'relativeroot': 'relativeroot_col_name', 'localkey': 'localkey_col_name', 'globalkey': 'globalkey_col_name'} You may also deactivate columns by setting them to None, e.g. {'changes': None} Returns ------- :obj:`pandas.Series` or :obj:`pandas.DataFrame` For every row of `df` one tuple with chord tones, expressed as tonal pitch classes. If `expand` is True, the function returns a DataFrame with four columns: Two with tuples for chord tones and added tones, one with the chord root, and one with the bass note. """ df = df.copy() ### If the index is not unique, it has to be temporarily replaced tmp_index = not df.index.is_unique if tmp_index: ix = df.index df.reset_index(drop=True, inplace=True) features = ['mc', 'numeral', 'form', 'figbass', 'changes', 'relativeroot', 'localkey', 'globalkey'] for col in features: if col in df.columns and not col in cols: cols[col] = col local_minor, global_minor = f"{cols['localkey']}_is_minor", f"{cols['globalkey']}_is_minor" if not local_minor in df.columns: df[local_minor] = series_is_minor(df[cols['localkey']], is_name=False) logger.debug(f"Boolean column '{local_minor}' created.'") if not global_minor in df.columns: df[global_minor] = series_is_minor(df[cols['globalkey']], is_name=True) logger.debug(f"Boolean column '{global_minor}' created.'") param_cols = {col: cols[col] for col in ['numeral', 'form', 'figbass', 'changes', 'relativeroot', 'mc'] if cols[col] is not None} param_cols['minor'] = local_minor param_tuples = list(df[param_cols.values()].itertuples(index=False, name=None)) #result_dict = {t: features2tpcs(**{a:b for a, b in zip(param_cols.keys(), t)}, bass_only=bass_only, merge_tones=not expand, logger=logger) for t in set(param_tuples)} result_dict = {} if bass_only: default = None elif not expand: default = tuple() else: default = { 'chord_tones': tuple(), 'added_tones': tuple(), 'root': None, } for t in set(param_tuples): try: result_dict[t] = features2tpcs(**{a: b for a, b in zip(param_cols.keys(), t)}, bass_only=bass_only, merge_tones=not expand, logger=logger) except: result_dict[t] = default logger.warning(str(sys.exc_info()[1])) if expand: res = pd.DataFrame([result_dict[t] for t in param_tuples], index=df.index) res['bass_note'] = res.chord_tones.apply(lambda l: np.nan if pd.isnull(l) or len(l) == 0 else l[0]) res[['root', 'bass_note']] = res[['root', 'bass_note']].astype('Int64') else: res = pd.Series([result_dict[t] for t in param_tuples], index=df.index) if tmp_index: res.index = ix return res
[docs]@function_logger def features2tpcs(numeral, form=None, figbass=None, changes=None, relativeroot=None, key='C', minor=None, merge_tones=True, bass_only=False, mc=None): """ Given the features of a chord label, this function returns the chord tones in the order of the inversion, starting from the bass note. The tones are expressed as tonal pitch classes, where -1=F, 0=C, 1=G etc. Uses: :py:func:`~.utils.changes2list`, :py:func:`~.utils.name2fifths`, :py:func:`~.utils.resolve_relative_keys`, :py:func:`~.utils.roman_numeral2fifths`, :py:func:`~.utils.sort_tpcs`, :py:func:`~.utils.str_is_minor` Parameters ---------- numeral: :obj:`str` Roman numeral of the chord's root form: {None, 'M', 'o', '+' '%'}, optional Indicates the chord type if not a major or minor triad (for which ``form`` is None). '%' and 'M' can only occur as tetrads, not as triads. figbass: {None, '6', '64', '7', '65', '43', '2'}, optional Indicates chord's inversion. Pass None for triad root position. changes: :obj:`str`, optional Added steps such as '+6' or suspensions such as '4' or any combination such as (9+64). Numbers need to be in descending order. relativeroot: :obj:`str`, optional Pass a Roman scale degree if `numeral` is to be applied to a different scale degree of the local key, as in 'V65/V' key : :obj:`str` or :obj:`int`, optional The local key expressed as the root's note name or a tonal pitch class. If it is a name and `minor` is `None`, uppercase means major and lowercase minor. If it is a tonal pitch class, `minor` needs to be specified. minor : :obj:`bool`, optional Pass True for minor and False for major. Can be omitted if `key` is a note name. This affects calculation of chords related to III, VI and VII. merge_tones : :obj:`bool`, optional Pass False if you want the function to return two tuples, one with (potentially suspended) chord tones and one with added notes. bass_only : :obj:`bool`, optional Return only the bass note instead of all chord tones. mc : int or str Pass measure count to display it in warnings. """ if pd.isnull(numeral) or numeral == '@none': if bass_only or merge_tones: return np.nan else: return { 'chord_tones': np.nan, 'added_tones': np.nan, 'root': np.nan, } form, figbass, changes, relativeroot = tuple( '' if pd.isnull(val) else val for val in (form, figbass, changes, relativeroot)) label = f"{numeral}{form}{figbass}{'(' + changes + ')' if changes != '' else ''}{'/' + relativeroot if relativeroot != '' else ''}" MC = '' if mc is None else f'MC {mc}: ' if minor is None: try: minor = str_is_minor(key, is_name=True) logger.debug(f"Mode inferred from {key}.") except: raise ValueError(f"If parameter 'minor' is not specified, 'key' needs to be a string, not {key}") key = name2fifths(key) if form in ['%', 'M', '+M']: assert figbass in ['7', '65', '43', '2'], f"{MC}{label}: {form} requires figbass (7, 65, 43, or 2) since it specifies a chord's seventh." if relativeroot != '': resolved = resolve_relative_keys(relativeroot, minor) rel_minor = str_is_minor(resolved, is_name=False) transp = roman_numeral2fifths(resolved, minor) logger.debug( f"{MC}Chord applied to {relativeroot}. Therefore transposing it by {transp} fifths.") return features2tpcs(numeral=numeral, form=form, figbass=figbass, relativeroot=None, changes=changes, key=key + transp, minor=rel_minor, merge_tones=merge_tones, bass_only=bass_only, mc=mc, logger=logger) if numeral.lower() == '#vii' and not minor: # logger.warning( # f"{MC}{label} in a major context is most probably an annotation error.") logger.warning(f"{MC}{numeral} in major context corrected to {numeral[1:]}.") numeral = numeral[1:] root_alteration, num_degree = split_scale_degree(numeral, count=True, logger=logger) # build 2-octave diatonic scale on C major/minor root = ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII'].index(num_degree.upper()) tpcs = 2 * [i + key for i in (0, 2, -3, -1, 1, -4, -2)] if minor else 2 * [i + key for i in (0, 2, 4, -1, 1, 3, 5)] # starting the scale from chord root, i.e. root will be tpcs[0], the chord's seventh tpcs[6] etc. tpcs = tpcs[root:] + tpcs[:root] root = tpcs[0] + 7 * root_alteration tpcs[0] = root # octave stays diatonic, is not altered logger.debug(f"{num_degree}: The {'minor' if minor else 'major'} scale starting from the root: {tpcs}") def set_iv(chord_interval, interval_size): """ Add to the interval of a given chord interval in `tpcs` (both viewed from the root note). Parameters ---------- chord_interval : :obj:`int` Pass 0 for the root note, 2 for the third, 8 for the ninth etc. interval_size : :obj:`int` Stack-of-fifths interval. """ nonlocal tpcs, root iv = root + interval_size tpcs[chord_interval] = iv tpcs[chord_interval + 7] = iv is_triad = figbass in ['', '6', '64'] is_seventh_chord = figbass in ['7', '65', '43', '2'] if not is_triad and not is_seventh_chord: raise ValueError(f"{MC}{figbass} is not a valid chord inversion.") if form == 'o': set_iv(2, -3) set_iv(4, -6) if is_seventh_chord: set_iv(6, -9) elif form == '%': set_iv(2, -3) set_iv(4, -6) set_iv(6, -2) elif form == '+': set_iv(2, 4) set_iv(4, 8) if is_seventh_chord: set_iv(6, -2) elif form == '+M': set_iv(2, 4) set_iv(4, 8) set_iv(6, 5) else: # triad with or without major or minor seven set_iv(4, 1) if num_degree.isupper(): set_iv(2, 4) else: set_iv(2, -3) if form == 'M': set_iv(6, 5) elif is_seventh_chord: set_iv(6, -2) tone_functions = (0, 2, 4, 6) if is_seventh_chord else (0, 2, 4) root_position = {i: [tpcs[i]] for i in tone_functions} replacements = {i: [] for i in tone_functions} def replace_chord_tone(which, by): nonlocal root_position, replacements if which in root_position: root_position[which] = [] replacements[which].insert(0, by) else: logger.warning(f"Only chord tones [0,2,4,(6)] can be replaced, not {which}") # apply changes alts = changes2list(changes, sort=False) added_notes = [] for full, add_remove, acc, chord_interval in alts: added = add_remove == '+' substracted = add_remove == '-' replacing_upper = add_remove == '^' replacing_lower = add_remove == 'v' chord_interval = int(chord_interval) - 1 ### From here on, `chord_interval` is decremented, i.e. the root is 0, the seventh is 6 etc. (just like in `tpcs`) if (chord_interval == 0 and not substracted) or chord_interval > 13: logger.warning( f"{MC}Change {full} is meaningless and ignored because it concerns chord tone {chord_interval + 1}.") continue next_octave = chord_interval > 7 shift = 7 * (acc.count('#') - acc.count('b')) new_val = tpcs[chord_interval] + shift if substracted: if chord_interval not in tone_functions: logger.warning( f"{MC}The change {full} has no effect because it concerns an interval which is not implied by {numeral}{form}{figbass}.") else: root_position[chord_interval] = [] elif added: added_notes.append(new_val) elif next_octave: if any((replacing_lower, replacing_upper, substracted)): logger.warning(f"{MC}{full[0]} has no effect in {full} because the interval is larger than an octave.") added_notes.append(new_val) elif chord_interval in [1, 3, 5]: # these are changes to scale degree 2, 4, 6 that replace the lower neighbour unless they have a # or ^ if '#' in acc or replacing_upper: if '#' in acc and replacing_upper: logger.warning(f"{MC}^ is redundant in {full}.") if chord_interval == 5 and is_triad: # leading tone to 7 but not in seventh chord added_notes.append(new_val) else: replace_chord_tone(chord_interval + 1, new_val) else: if replacing_lower: logger.warning(f"{MC}v is redundant in {full}.") replace_chord_tone(chord_interval - 1, new_val) else: # chord tone alterations if replacing_lower: # TODO: This must be possible, e.g. V(6v5) where 5 is suspension of 4 logger.warning(f"{MC}{full} -> chord tones cannot replace neighbours, use + instead.") elif chord_interval == 6 and figbass != '7': # 7th are a special case: if figbass == '': # in root position triads they are added # TODO: The standard is lacking a distinction, because the root in root pos. can also be replaced from below! added_notes.append(new_val) elif figbass in ['6', '64'] or '#' in acc: # in inverted triads they replace the root, as does #7 replace_chord_tone(0, new_val) else: # otherwise they are unclear logger.warning( f"{MC}In seventh chords, such as {label}, it is not clear whether the {full} alters the 7 or replaces the 8 and should not be used.") elif tpcs[chord_interval] == new_val: logger.warning( f"{MC}The change {full} has no effect in {numeral}{form}{figbass}") else: root_position[chord_interval] = [new_val] figbass2bass = { '': 0, '7': 0, '6': 1, '65': 1, '64': 2, '43': 2, '2': 3 } bass = figbass2bass[figbass] chord_tones = [] for tf in tone_functions[bass:] + tone_functions[:bass]: chord_tone, replacing_tones = root_position[tf], replacements[tf] if chord_tone == replacing_tones == []: logger.debug(f"{MC}{label} results in a chord without {tf + 1}.") if chord_tone != []: chord_tones.append(chord_tone[0]) if replacing_tones != []: logger.warning(f"{MC}{label} results in a chord tone {tf + 1} AND its replacement(s) {replacing_tones}.") chord_tones.extend(replacing_tones) bass_tpc = chord_tones[0] if bass_only: return bass_tpc elif merge_tones: return tuple(sort_tpcs(chord_tones + added_notes, start=bass_tpc)) else: return { 'chord_tones': tuple(chord_tones), 'added_tones': tuple(added_notes), 'root': root, }
######################################################################################################################## # MOMENTARILY NOT IN USE: ########################################################################################################################
[docs]def transform_columns(df, func, columns=None, param2col=None, inplace=False, **kwargs): """ Wrapper function to use transform() on df[columns], leaving the other columns untouched. Parameters ---------- df : :obj:`pandas.DataFrame` DataFrame where columns (or column combinations) work as function arguments. func : :obj:`callable` Function you want to apply to all elements in `columns`. columns : :obj:`list` Columns to which you want to apply `func`. param2col : :obj:`dict` or :obj:`list`, optional Mapping from parameter names of `func` to column names. If you pass a list of column names, the columns' values are passed as positional arguments. Pass None if you want to use all columns as positional arguments. inplace : :obj:`bool`, optional Pass True if you want to mutate `df` rather than getting an altered copy. **kwargs: keyword arguments for transform() """ if not inplace: df = df.copy() param_cols = [] if columns is None: columns = df.columns elif param2col is None: pass elif param2col.__class__ == dict: param_cols = list(param2col.values()) else: param_cols = list(param2col) tmp_index = not df.index.is_unique if tmp_index: ix = df.index df.reset_index(drop=True, inplace=True) df.loc[:, columns] = transform(df[columns + param_cols], func, param2col, **kwargs) if tmp_index: df.index = ix if not inplace: return df
[docs]def transform_note_columns(df, to, note_cols=['chord_tones', 'added_tones', 'bass_note', 'root'], minor_col='localkey_is_minor', inplace=False, **kwargs): """ Turns columns with line-of-fifth tonal pitch classes into another representation. Uses: transform_columns() Parameters ---------- df : :obj:`pandas.DataFrame` DataFrame where columns (or column combinations) work as function arguments. to : {'name', 'iv', 'pc', 'sd', 'rn'} The tone representation that you want to get from the `note_cols`. * 'name': Note names. Should only be used if the stacked fifths actually represent absolute tonal pitch classes rather than intervals over the local tonic. In other words, make sure to use 'name' only if 0 means C rather than I. * 'iv': Intervals such that 0 = 'P1', 1 = 'P5', 4 = 'M3', -3 = 'm3', 6 = 'A4', -6 = 'D5' etc. * 'pc': (Relative) chromatic pitch class, or distance from tonic in semitones. * 'sd': Scale degrees such that 0 = '1', -1 = '4', -2 = 'b7' in major, '7' in minor etc. This representation requires a boolean column `minor_col` which is True in those rows where the stacks of fifths occur in a local minor context and False for the others. Alternatively, if all pitches are in the same mode or you simply want to express them as degrees of particular mode, you can pass the boolean keyword argument `minor`. * 'rn': Roman numerals such that 0 = 'I', -2 = 'bVII' in major, 'VII' in minor etc. Requires boolean 'minor' values, see 'sd'. note_cols : :obj:`list`, optional List of columns that hold integers or collections of integers that represent stacks of fifth (0 = tonal center, 1 = fifth above, -1 = fourth above, etc). minor_col : :obj:`str`, optional If `to` is 'sd' or 'rn', specify a boolean column where the value is True in those rows where the stacks of fifths occur in a local minor context and False for the others. """ transformations = { 'name': fifths2name, 'names': fifths2name, 'iv': fifths2iv, 'pc': fifths2pc, 'sd': fifths2sd, 'rn': fifths2rn, } assert to in transformations, "Parameter to needs to be one of {'name', 'iv', 'pc', 'sd', 'rn'}" cols = [col for col in note_cols if col in df.columns] if len(cols) < len(note_cols): logger.warning(f"Columns {[[col for col in note_cols if not col in df.columns]]}") param2col = None if to in ['sd', 'rn']: assert minor_col in df.columns or 'minor' in kwargs, f"'{to} representation requires a boolean column for the 'minor' argument, e.g. 'globalkey_is_minor'." if not 'minor' in kwargs: param2col = {'minor': minor_col} func = transformations[to] res = transform_columns(df, func, columns=note_cols, inplace=inplace, param2col=param2col, column_wise=True, **kwargs) if not inplace: return res
[docs]@function_logger def chord2tpcs(chord, regex=None, **kwargs): """ Split a chord label into its features and apply features2tpcs(). Uses: features2tpcs() Parameters ---------- chord : :obj:`str` Chord label that can be split into the features ['numeral', 'form', 'figbass', 'changes', 'relativeroot']. regex : :obj:`re.Pattern`, optional Compiled regex with named groups for the five features. By default, the current version of the DCML harmony annotation standard is used. **kwargs : arguments for features2tpcs (pass MC to show it in warnings!) """ if regex is None: regex = DCML_REGEX chord_features = re.match(regex, chord) assert chord_features is not None, f"{chord} does not match the regex." chord_features = chord_features.groupdict() numeral, form, figbass, changes, relativeroot = tuple(chord_features[f] for f in ('numeral', 'form', 'figbass', 'changes', 'relativeroot')) return features2tpcs(numeral=numeral, form=form, figbass=figbass, changes=changes, relativeroot=relativeroot, logger=logger, **kwargs)