Source code for kedro.io.core

# Copyright 2018-2019 QuantumBlack Visual Analytics Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
# OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
# NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS
# BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo
# (either separately or in combination, "QuantumBlack Trademarks") are
# trademarks of QuantumBlack. The License does not grant you any right or
# license to the QuantumBlack Trademarks. You may not use the QuantumBlack
# Trademarks or any confusingly similar mark as a trademark for your product,
#     or use the QuantumBlack Trademarks in any other manner that might cause
# confusion in the marketplace, including but not limited to in advertising,
# on websites, or on software.
#
# See the License for the specific language governing permissions and
# limitations under the License.

"""This module provides a set of classes which underpin the data loading and
saving functionality provided by ``kedro.io``.
"""

import abc
import copy
import logging
import os
from collections import namedtuple
from datetime import datetime, timezone
from glob import iglob
from pathlib import Path, PurePath
from typing import Any, Callable, Dict, List, Optional, Type
from urllib.parse import urlparse
from warnings import warn

from kedro.utils import load_obj

MAX_DESCRIPTION_LENGTH = 70
VERSIONED_FLAG_KEY = "versioned"
VERSION_KEY = "version"


[docs]class DataSetError(Exception): """``DataSetError`` raised by ``AbstractDataSet`` implementations in case of failure of input/output methods. ``AbstractDataSet`` implementations should provide instructive information in case of failure. """ pass
class DataSetNotFoundError(DataSetError): """``DataSetNotFoundError`` raised by ``DataCatalog`` class in case of trying to use a non-existing data set. """ pass
[docs]class DataSetAlreadyExistsError(DataSetError): """``DataSetAlreadyExistsError`` raised by ``DataCatalog`` class in case of trying to add a data set which already exists in the ``DataCatalog``. """ pass
class AbstractDataSet(abc.ABC): """``AbstractDataSet`` is the base class for all data set implementations. All data set implementations should extend this abstract class and implement the methods marked as abstract. Example: :: >>> from kedro.io import AbstractDataSet >>> import pandas as pd >>> >>> class MyOwnDataSet(AbstractDataSet): >>> def __init__(self, param1, param2): >>> self._param1 = param1 >>> self._param2 = param2 >>> >>> def _load(self) -> pd.DataFrame: >>> print("Dummy load: {}".format(self._param1)) >>> return pd.DataFrame() >>> >>> def _save(self, df: pd.DataFrame) -> None: >>> print("Dummy save: {}".format(self._param2)) >>> >>> def _describe(self): >>> return dict(param1=self._param1, param2=self._param2) """ @classmethod def from_config( cls: Type, name: str, config: Dict[str, Any], load_version: str = None, save_version: str = None, ) -> "AbstractDataSet": """Create a data set instance using the configuration provided. Args: name: Data set name. config: Data set config dictionary. load_version: Version string to be used for ``load`` operation if the data set is versioned. Has no effect on the data set if versioning was not enabled. save_version: Version string to be used for ``save`` operation if the data set is versioned. Has no effect on the data set if versioning was not enabled. Returns: An instance of an ``AbstractDataSet`` subclass. Raises: DataSetError: When the function fails to create the data set from its config. """ config = copy.deepcopy(config) save_version = save_version or generate_timestamp() if VERSION_KEY in config: # remove "version" key so that it's not passed # to the 'unversioned' data set constructor message = ( "`%s` attribute removed from `%s` data set " "configuration since it is a reserved word and cannot " "be directly specified", VERSION_KEY, name, ) logging.getLogger(__name__).warning(*message) del config[VERSION_KEY] if config.pop(VERSIONED_FLAG_KEY, False): # data set is versioned config[VERSION_KEY] = Version(load_version, save_version) dataset_class_path = config.pop("type") try: class_obj = load_obj(dataset_class_path, "kedro.io") except ImportError: raise DataSetError( "Cannot import module when trying to load type " "`{}` for DataSet `{}`.".format(dataset_class_path, name) ) except AttributeError: raise DataSetError( "Class `{}` for DataSet `{}` not found.".format( dataset_class_path, name ) ) if not issubclass(class_obj, AbstractDataSet): raise DataSetError( "DataSet '{}' type `{}.{}` is invalid: " "all data set types must extend " "`AbstractDataSet`.".format( name, class_obj.__module__, class_obj.__qualname__ ) ) try: data_set = class_obj(**config) except TypeError as err: raise DataSetError( "\n{}.\nDataSet '{}' must only contain " "arguments valid for the constructor " "of `{}.{}`.".format( str(err), name, class_obj.__module__, class_obj.__qualname__ ) ) except Exception as err: raise DataSetError( "\n{}.\nFailed to instantiate DataSet " "'{}' of type `{}.{}`.".format( str(err), name, class_obj.__module__, class_obj.__qualname__ ) ) return data_set @property def _logger(self) -> logging.Logger: return logging.getLogger(__name__) def get_last_load_version(self) -> Optional[str]: """Versioned datasets should override this property to return last loaded version""" # pylint: disable=no-self-use return None # pragma: no cover def load(self) -> Any: """Loads data by delegation to the provided load method. Returns: Data returned by the provided load method. Raises: DataSetError: When underlying load method raises error. """ try: self._logger.debug("Loading %s", str(self)) return self._load() except DataSetError: raise except Exception as exc: # This exception handling is by design as the composed data sets # can throw any type of exception. message = "Failed while loading data from data set {}.\n{}".format( str(self), str(exc) ) raise DataSetError(message) from exc def get_last_save_version(self) -> Optional[str]: """Versioned datasets should override this property to return last saved version.""" # pylint: disable=no-self-use return None # pragma: no cover def save(self, data: Any) -> None: """Saves data by delegation to the provided save method. Args: data: the value to be saved by provided save method. Raises: DataSetError: when underlying save method raises error. """ if data is None: raise DataSetError("Saving `None` to a `DataSet` is not allowed") try: self._logger.debug("Saving %s", str(self)) self._save(data) except DataSetError: raise except Exception as exc: message = "Failed while saving data to data set {}.\n{}".format( str(self), str(exc) ) raise DataSetError(message) from exc def __str__(self): def _to_str(obj, is_root=False): """Returns a string representation where 1. The root level (i.e. the DataSet.__init__ arguments) are formatted like DataSet(key=value). 2. Dictionaries have the keys alphabetically sorted recursively. 3. Empty dictionaries and None values are not shown. 4. String representations of dictionary values are capped to MAX_DESCRIPTION_LENGTH. """ fmt = "{}={}" if is_root else "'{}': {}" # 1 if isinstance(obj, dict): sorted_dict = sorted(obj.items(), key=lambda pair: str(pair[0])) # 2 text = ", ".join( fmt.format(key, _to_str(value)) # 2 for key, value in sorted_dict if value or isinstance(value, bool) ) # 3 return text if is_root else "{" + text + "}" # 1 # not a dictionary value = str(obj) suffix = "" if len(value) <= MAX_DESCRIPTION_LENGTH else "..." return value[:MAX_DESCRIPTION_LENGTH] + suffix # 4 return "{}({})".format(type(self).__name__, _to_str(self._describe(), True)) @abc.abstractmethod def _load(self) -> Any: raise NotImplementedError( "`{}` is a subclass of AbstractDataSet and" "it must implement the `_load` method".format(self.__class__.__name__) ) @abc.abstractmethod def _save(self, data: Any) -> None: raise NotImplementedError( "`{}` is a subclass of AbstractDataSet and" "it must implement the `_save` method".format(self.__class__.__name__) ) @abc.abstractmethod def _describe(self) -> Dict[str, Any]: raise NotImplementedError( "`{}` is a subclass of AbstractDataSet and" "it must implement the `_describe` method".format(self.__class__.__name__) ) def exists(self) -> bool: """Checks whether a data set's output already exists by calling the provided _exists() method. Returns: Flag indicating whether the output already exists. Raises: DataSetError: when underlying exists method raises error. """ try: self._logger.debug("Checking whether target of %s exists", str(self)) return self._exists() except Exception as exc: message = "Failed during exists check for data set {}.\n{}".format( str(self), str(exc) ) raise DataSetError(message) from exc def _exists(self) -> bool: self._logger.warning( "`exists()` not implemented for `%s`. Assuming output does not exist.", self.__class__.__name__, ) return False def release(self) -> None: """Release any cached data. Raises: DataSetError: when underlying exists method raises error. """ try: self._logger.debug("Releasing %s", str(self)) self._release() except Exception as exc: message = "Failed during release for data set {}.\n{}".format( str(self), str(exc) ) raise DataSetError(message) from exc def _release(self) -> None: pass def generate_timestamp() -> str: """Generate the timestamp to be used by versioning. Returns: String representation of the current timestamp. """ current_ts = datetime.now(tz=timezone.utc) fmt = ( "{d.year:04d}-{d.month:02d}-{d.day:02d}T{d.hour:02d}" ".{d.minute:02d}.{d.second:02d}.{ms:03d}Z" ) return fmt.format(d=current_ts, ms=current_ts.microsecond // 1000) class Version(namedtuple("Version", ["load", "save"])): """This namedtuple is used to provide load and save versions for versioned data sets. If ``Version.load`` is None, then the latest available version is loaded. If ``Version.save`` is None, then save version is formatted as YYYY-MM-DDThh.mm.ss.sssZ of the current timestamp. """ __slots__ = () _PATH_CONSISTENCY_WARNING = ( "Save path `{}` did not match load path `{}` for {}. This is strongly " "discouraged due to inconsistencies it may cause between `save` and " "`load` operations. Please refrain from setting exact load version for " "intermediate data sets where possible to avoid this warning." ) def _local_exists(filepath: str) -> bool: filepath = Path(filepath) return filepath.exists() or any(par.is_file() for par in filepath.parents) def is_remote_path(filepath: str) -> bool: """ Check if the given path looks like a remote URL (has scheme). """ # Get rid of Windows-specific "C:\" start, # which is treated as a URL scheme. _, filepath = os.path.splitdrive(filepath) return bool(urlparse(filepath).scheme) class AbstractVersionedDataSet(AbstractDataSet, abc.ABC): """ ``AbstractVersionedDataSet`` is the base class for all versioned data set implementations. All data sets that implement versioning should extend this abstract class and implement the methods marked as abstract. Example: :: >>> from kedro.io import AbstractVersionedDataSet >>> import pandas as pd >>> >>> class MyOwnDataSet(AbstractVersionedDataSet): >>> def __init__(self, param1, param2, filepath, version): >>> super().__init__(filepath, version) >>> self._param1 = param1 >>> self._param2 = param2 >>> >>> def _load(self) -> pd.DataFrame: >>> load_path = self._get_load_path() >>> return pd.read_csv(load_path) >>> >>> def _save(self, df: pd.DataFrame) -> None: >>> save_path = self._get_save_path() >>> df.to_csv(save_path) >>> >>> def _describe(self): >>> return dict(version=self._version, param1=self._param1, param2=self._param2) """ # pylint: disable=abstract-method def __init__( self, filepath: PurePath, version: Optional[Version], exists_function: Callable[[str], bool] = None, glob_function: Callable[[str], List[str]] = None, ): """Creates a new instance of ``AbstractVersionedDataSet``. Args: filepath: Path to file. version: If specified, should be an instance of ``kedro.io.core.Version``. If its ``load`` attribute is None, the latest version will be loaded. If its ``save`` attribute is None, save version will be autogenerated. exists_function: Function that is used for determining whether a path exists in a filesystem. glob_function: Function that is used for finding all paths in a filesystem, which match a given pattern. """ self._filepath = filepath self._version = version self._exists_function = exists_function or _local_exists self._glob_function = glob_function or iglob self._last_load_version = None # type: Optional[str] self._last_save_version = None # type: Optional[str] def get_last_load_version(self) -> Optional[str]: return self._last_load_version def _get_load_path(self) -> PurePath: if not self._version: # When versioning is disabled, load from provided filepath self._last_load_version = None return self._filepath if self._version.load: # When load version is pinned, get versioned path self._last_load_version = self._version.load return self._get_versioned_path(self._version.load) # When load version is unpinned, fetch the most recent existing # version from the given path pattern = str(self._get_versioned_path("*")) version_paths = sorted(self._glob_function(pattern), reverse=True) most_recent = next( (path for path in version_paths if self._exists_function(path)), None ) if not most_recent: raise DataSetError("Did not find any versions for {}".format(str(self))) versioned_path = PurePath(most_recent) self._last_load_version = versioned_path.parent.name return versioned_path def get_last_save_version(self) -> Optional[str]: return self._last_save_version def _get_save_path(self) -> PurePath: if not self._version: # When versioning is disabled, return given filepath self._last_save_version = None return self._filepath self._last_save_version = self._version.save or generate_timestamp() versioned_path = self._get_versioned_path(self._last_save_version) if self._exists_function(str(versioned_path)): raise DataSetError( "Save path `{}` for {} must not exist if versioning " "is enabled.".format(versioned_path, str(self)) ) return versioned_path def _get_versioned_path(self, version: str) -> PurePath: return self._filepath / version / self._filepath.name def _check_paths_consistency(self, load_path: PurePath, save_path: PurePath): if load_path != save_path: warn(_PATH_CONSISTENCY_WARNING.format(save_path, load_path, str(self)))