
1

LC3
Assembly Language

Based on slides © McGraw-Hill
Additional material © 2004/2005 Lewis/Martin

Modified by Diana Palsetia (2007-2008)

Assembly: Human-Readable Machine Language

Computers like ones and zeros…

H lik d bl f

0001110010000110

Humans like readable form …

Assembler
• A program that turns human readable form into machine

ADD R6, R2, R6 ; increment index reg.
Opcode Dest Src1 Src2 Comment

CIT 593 2

A program that turns human readable form into machine
instructions

• ISA specific
• One assembly instruction translates to one machine instruction

LC-3 Assembly Language Syntax

Each line of a program is one of the following:
An instruction
An assembler directive (or pseudo-op)
A comment

Whitespace (between symbols) and Comments
(beginning with “;”) are ignored

An instruction has the following format:
LABEL OPCODE OPERANDS COMMENTS

CIT 593 3

LABEL: OPCODE OPERANDS ; COMMENTS

optional mandatory

Opcodes and Operands
Opcodes

Reserved symbols that correspond to LC-3 instructions
Listed in Appendix A

E.g. ADD, AND, LD, LDR, …
For BR use lower case

– n: negative, p: positive and z: zero
Operands

Registers -- specified by R0, R1, …, R7
Literal/Immediate -- indicated by # (decimal) or x (hex) or b (binary)

E.g “#10” is “xA” is “b1010”
Label: -- symbolic name of memory location

CIT 593 4

y y

Opcode, registers and literals are separated by commas
Number, order, and type correspond to instruction format
E.g. ADD R1,R1,#3

2

Labels
Label

Followed by colon (:) when declared
The textbook does not say this. But for our assembler we use the
colon

Placed at the beginning of the lineg g
Assigns a symbolic name to the memory address corresponding to
line

LOOP: ADD R1,R1,#-1
BRp LOOP

Instead Of
ADD R1,R1, #-1
BRp x1FF

CIT 593 5

Instructions with PCOffset use labels i.e. literal offsets this will
not compile in our version of LC3

Consists of:
1-20 alphanumeric characters

– Capital or lowercase alphabets or a decimal digit
– Always starts with a letter of alphabet e.g.Test1 or test1

Comments

Comment
Anything after a semicolon (;) is a comment
Ignored by assembler
Tips for useful comments:

State what each register is/will be holding
Use comments to separate pieces of program
Explain your approach

CIT 593 6

Assembler Directives
Pseudo-operations

Operations are not part of the ISA
More for convenience

Used by assembler
Look like instruction but “opcode” starts with dotLook like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.FILL value allocate one word, initialize with

value

CIT 593 7

.BLKW number allocate multiple words of storage,
value unspecified

.STRINGZ n-character
string

allocate n+1 locations,
initialize w/characters and null
terminator

Assembler Directives (cont..)
.ORIG

.ORIG x3050 – tells the assembler where in memory to place the 1st

instruction of the LC3 program

.FILL
.FILL x0006 – initializes a memory location with value 6

.BLKW
.BLKW 2 – set aside 2 sequential memory locations
Useful when the actual value of the operand is not known
The locations will be initialized with zero

x3010: x0048

CIT 593 8

.STRINGZ
.ORIG x3010
.STRINGZ “Hello”

x3010: x0048

x3011: x0065

x3012: x006C

x3013: x006C

x3014: x006F

x3015: x0000

Null
terminated

string

3

Trap Codes

LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them

C d E i l t D i tiCode Equivalent Description
HALT TRAP x25 Halt execution and return control to OS
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0.

OUT TRAP x21 Write one character (in R0) to console.
GETC TRAP 20 R d h t f k b d

CIT 593 9

GETC TRAP x20 Read one character from keyboard.
Character stored in R0.

PUTS TRAP x22 Write null-terminated string to console.
Address of string is in R0.

An Assembly Language Program
;
; Program to multiply a number by the constant 6
;

.ORIG x3000
LD R1, SIX
AND R2 R2 #0 ;Clear R2AND R2, R2, #0 ;Clear R2
ADD R2, R2, #4 R2 = number = 4
AND R3, R3, #0 ;Clear R3. It will

;contain the product.
; The inner loop

AGAIN: ADD R3, R3, R2
ADD R1, R1, #-1
BRp AGAIN ;loop until R1 > 0
HALT ;control back to OS

CIT 593 10

;DATA
SIX: .FILL x0006 ;initialize location with value 6

.END ;end of program

Assembly Process

Program that converts assembly language file (.asm)
into an executable file (.obj) for the LC-3 machine
(simulator)

First Pass:
• Scan program file
• Find all labels and calculate the corresponding addresses;

CIT 593 11

this is called the symbol table
Second Pass:

• Convert instructions to machine language, using information
from symbol table

First Pass: Constructing the Symbol Table

1. Begin with the .ORIG statement, which tells us the
address of the first instruction

Initialize location counter (LC), which keeps track of the
current instruction

2. For each non-blank line in the program:
a) If line contains a label, put label/LC pair into symbol table
b) Increment LC

– NOTE: If statement is .BLKW or .STRINGZ, increment LC
by the number of words allocated

CIT 593 12

by the number of words allocated
– A line with only a comment is considered “blank”

3. Stop when .END statement is reached

4

Assembly Process Example: First Pass
.ORIG x3000

x3000 AND R2,R2,#0
x3001 LD R3,PTR
x3002 TRAP x23
x3003 LDR R1,R3,#0
x3004 ADD R4 R1 #-4 AddressSymbolx3004 ADD R4,R1,# 4
x3005 TEST: BRz OUTPUT
x3006 NOT R1,R1
X3007 ADD R1,R1,#1
x3008 ADD R1,R1,R0
x3009 BRnp GETCHAR
x300A ADD R2,R2,#1
x300B GETCHAR:ADD R3,R3,#1
x300C LDR R1,R3,#0
x300D BRnzp TEST

3012ASCII

x300EOUTPUT

x300BGETCHAR

x3005TEST

y

CIT 593 13

x300E OUTPUT: LD R0,ASCII
x300F ADD R0,R0,R2
x3010 TRAP x21
x3011 TRAP x25
x3012 ASCII: .FILL x0030
x3013 PTR: .FILL x4000

.END

x3013PTR

x3012ASCII

Second Pass: Generating Machine Code

For each executable assembly language statement
Generate the corresponding machine language instruction
If operand is a label, look up the address from the symbol table

Potential errors:
Improper number or type of arguments

E.g. NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

Immediate argument too large

CIT 593 14

Immediate argument too large
E.g. ADD R1,R2,#1023

Address (associated with label) more than 256 from instruction
Can’t use PC-relative addressing mode

Assembly Process Example: Second Pass

.ORIG x3000
x3000 AND R2,R2,#0
x3001 LD R3,PTR
x3002 TRAP x23
3003 LDR R1 R3 #0

0101 010 010 1 00000
0010 011 000010001
1111 0000 00100011

x3003 LDR R1,R3,#0
x3004 ADD R4,R1,#-4
x3005 TEST: BRz OUTPUT
x3006 NOT R1,R1
x3007 ADD R1,R1,#1
x3008 ADD R1,R1,R0
x3009 BRnp GETCHAR
x300A ADD R2,R2,#1
x300B GETCHAR:ADD R3,R3,#1
x300C LDR R1,R3,#0

Symbol Address
TEST x3005

.

.

CIT 593 15

x300C LDR R1,R3,#0
x300D BRnzp TEST
x300E OUTPUT: LD R0,ASCII
x300F ADD R0,R0,R2
x3010 TRAP x21
x3011 TRAP x25
x3012 ASCII .FILL x0030
x3013 PTR .FILL x4000

.END

GETCHAR x300B
OUTPUT x300E

ASCII x3012
PTR x3013

Style Guidelines
Improve the readability of your programs

• Formatting: start labels, opcode, operands in same column
• Use comments to explain what each register does
• Give explanatory comment for most instructionsGive explanatory comment for most instructions
• Use meaningful symbolic names
• Provide comments between program sections
• Each line must fit on the page -- no wraparound or truncations

Long statements split in aesthetically pleasing manner

CIT 593 16

