LC3
Assembly Language

Based on slides © McGraw-Hill
Additional material © 2004/2005 Lewis/Martin
Modified by Diana Palsetia (2007-2008)

Assembly: Human-Readable Machine Language

Computers like ones and zeros...
0001110010000110

Humans like readable form ...

ADD R6, R2, R6 ; increment index reg.
Opcode Dest Srcl Src2 Comment

Assembler

* A program that turns human readable form into machine
instructions

« ISA specific

* One assembly instruction translates to one machine instruction

CIT 593

LC-3 Assembly Language Syntax

Each line of a program is one of the following:
= An instruction

m An assembler directive (or pseudo-op)
= A comment

Whitespace (between symbols) and Comments
(beginning with “;”) are ignored

An instruction has the following format:

LABEL: OPCODE OPERANDS ; COMMENTS
| I

optional mandatory

CIT 593

Opcodes and Operands
Opcodes

= Reserved symbols that correspond to LC-3 instructions
m Listed in Appendix A

»E.g. ADD, AND, LD, LDR, ...

» For BR use lower case

—n: negative, p: positive and z: zero
Operands

= Registers -- specified by RO, R1, ..., R7

= Literal/lmmediate -- indicated by # (decimal) or x (hex) or b (binary)
» E.g “#10” is “xA” is “b1010”
= Label: -- symbolic name of memory location

Opcode, registers and literals are separated by commas

= Number, order, and type correspond to instruction format
= E.g. ADD R1,R1,#3

CIT 593

Labels
Label
m Followed by colon (:) when declared

» The textbook does not say this. But for our assembler we use the
colon

m Placed at the beginning of the line
m Assigns a symbolic name to the memory address corresponding to

line
» LOOP: ADD R1,R1,#-1
BRp LOOP
» Instead Of
ADD R1,R1, #-1
BRp Xx1FF

» Instructions with PCOffset use labels i.e. literal offsets this will
not compile in our version of LC3

m Consists of:
» 1-20 alphanumeric characters
— Capital or lowercase alphabets or a decimal digit
— Always starts with a letter of alphabet e.g.Test1 or testl

CIT 593 5

Comments

Comment
m Anything after a semicolon (;) is a comment
m |gnored by assembler
m Tips for useful comments:
» State what each register is/will be holding
»Use comments to separate pieces of program
» Explain your approach

CIT 593

Assembler Directives

Pseudo-operations
= Operations are not part of the ISA
» More for convenience
= Used by assembler
= Look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

-ORIG address starting address of program

.END end of program

-FILL value allocate one word, initialize with
value

-BLKW number allocate multiple words of storage,

value unspecified

.STRINGZ |n-character |allocate n+1 locations,
string initialize w/characters and null
terminator

CIT 593 7

Assembler Directives (cont..)

.ORIG

= .ORIG x3050 — tells the assembler where in memory to place the 1st
instruction of the LC3 program

FILL
m FILL x0006 — initializes a memory location with value 6

.BLKW
m BLKW 2 —set aside 2 sequential memory locations
= Useful when the actual value of the operand is not known
= The locations will be initialized with zero

STRINGZ x3010: x0048
.ORIG x3010 x3011: x0065
.STRINGZ “Hello” x3012: X006C
X3013: X006C
x3014: X006F rermited
CIT 593 x3015: x0000 string

Trap Codes

LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them

Code |Equivalent |Description
HALT |TRAP x25 |Halt execution and return control to OS

IN TRAP x23 | Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO.

OUT | TRAP x21 |Write one character (in RO) to console.
GETC |TRAP x20 |Read one character from keyboard.
Character stored in RO.

PUTS |TRAP x22 |Write null-terminated string to console.
Address of string is in RO.

CIT 593 9

An Assembly Language Program

Program to multiply a number by the constant 6

-.ORIG x3000

LD R1, SIX

AND R2, R2, #0 ;Clear R2

ADD R2, R2, #4 R2 = number = 4

AND R3, R3, #0 :Clear R3. It will
;contain the product.

; The inner loop

AGAIN: ADD R3, R3, R2
ADD R1, R1, #-1

BRp AGAIN ;loop until R1 > 0
HALT ;control back to 0S
;DATA
SIX: .FILL x0006 ;initialize location with value 6
-END s;end of program
CIT 593 10

Assembly Process

Program that converts assembly language file (.asm)
into an executable file (.obj) for the LC-3 machine
(simulator)

Iﬁ.ssemblv_.‘ 1st Pass I—>I2nd Pass
N

Pmugra;l image

First Pass:
» Scan program file
» Find all labels and calculate the corresponding addresses;
this is called the symbol table
Second Pass:

e Convert instructions to machine language, using information
from symbol table

CIT 593 1

First Pass: Constructing the Symbol Table

1. Begin with the _ORIG statement, which tells us the
address of the first instruction

m Initialize location counter (LC), which keeps track of the
current instruction

2. For each non-blank line in the program:
a) If line contains a label, put label/LC pair into symbol table
b) Increment LC
— NOTE: If statement is .BLKW or .STRINGZ, increment LC
by the number of words allocated
— Alline with only a comment is considered “blank”

3. Stop when _END statement is reached

CIT 593 12

Assembly Process Example: First Pass

_ORIG x3000
x3000 AND R2,R2,#0
x3001 LD R3,PTR
x3002 TRAP x23
x3003 LDR R1,R3,#0
x3004 ADD R4.RL,#-4 Symbol Address
x3005 TEST: BRz OUTPUT
x3006 NOT R1,R1 TEST x3005
X3007 ADD R1,R1,#1
x3008 ADD R1,R1,R0
x3009 BRnp GETCHAR GETCHAR x300B
X300A ADD R2,R2,#1
x300B GETCHAR:ADD R3,R3,#1
x300C LDR R1,R3,#0 OouTPUT x300E
x300D BRnzp TEST
x300E OUTPUT: LD RO,ASCII ASCII x3012
X300F ADD RO,RO,R2
x3010 TRAP x21
x3011 TRAP x25 PTR x3013
x3012 ASCII: .FILL x0030
x3013 PTR: _FILL x4000

_END

CIT 593

13

Second Pass: Generating Machine Code

For each executable assembly language statement
m Generate the corresponding machine language instruction
m |f operand is a label, look up the address from the symbol table

Potential errors:
= Improper number or type of arguments

»E.g. NOT R1#7
ADD R1,R2
ADD R3,R3,NUMBER

= Immediate argument too large
»E.g. ADD R1,R2,#1023

m Address (associated with label) more than 256 from instruction
»Can't use PC-relative addressing mode

CIT 593 14

Assembly Process Example: Second Pass

-ORIG x3000

%3000 AND R2,R2,#0 — | 0101 010 010 1 00000
x3001 LD R3,PTR — [0010 011 000010001
%3002 TRAP x23—| 1111 0000 00100011
x3003 LDR R1,R3,#0

x3004 ADD R4,R1,#-4

x3005 TEST: BRz OUTPUT

x3006 NOT R1,R1

x3007 ADD R1,R1,#1

x3008 ADD R1,R1,RO

x3009 BRnp GETCHAR Symbol Address
X300A ADD R2,R2,#1

x300B GETCHAR:ADD R3,R3,#1 TEST %3005
x300C LDR R1,R3,#0

x300D BRnzp TEST GETCHAR x300B
x300E OUTPUT: LD RO,ASCII

X300F ADD RO,RO,R2 OUTPUT x300E
x3010 TRAP x21

x3011 TRAP x25 ASCII x3012
x3012 ASCI1 _FILL x0030

x3013 PTR _FILL x4000 PTR x3013

CIT 593 -END

15

Style Guidelines

Improve the readability of your programs
» Formatting: start labels, opcode, operands in same column
« Use comments to explain what each register does
» Give explanatory comment for most instructions
* Use meaningful symbolic names
¢ Provide comments between program sections
e Each line must fit on the page -- no wraparound or truncations
»Long statements split in aesthetically pleasing manner

CIT 593 16

