Stan Math Library
2.15.0
reverse mode automatic differentiation
stan
math
fwd
scal
fun
log_rising_factorial.hpp
Go to the documentation of this file.
1
#ifndef STAN_MATH_FWD_SCAL_FUN_LOG_RISING_FACTORIAL_HPP
2
#define STAN_MATH_FWD_SCAL_FUN_LOG_RISING_FACTORIAL_HPP
3
4
#include <
stan/math/fwd/core.hpp
>
5
6
#include <
stan/math/prim/scal/fun/digamma.hpp
>
7
#include <
stan/math/prim/scal/fun/log_rising_factorial.hpp
>
8
9
namespace
stan
{
10
namespace
math {
11
12
template
<
typename
T>
13
inline
fvar<T>
log_rising_factorial
(
const
fvar<T>
& x,
const
fvar<T>
& n) {
14
return
fvar<T>
(
log_rising_factorial
(x.
val_
, n.
val_
),
15
digamma
(x.
val_
+ n.
val_
) * (x.
d_
+ n.
d_
)
16
-
digamma
(x.
val_
) * x.
d_
);
17
}
18
19
template
<
typename
T>
20
inline
fvar<T>
log_rising_factorial
(
const
fvar<T>
& x,
double
n) {
21
return
fvar<T>
(
log_rising_factorial
(x.
val_
, n),
22
(
digamma
(x.
val_
+ n) -
digamma
(x.
val_
)) * x.
d_
);
23
}
24
25
template
<
typename
T>
26
inline
fvar<T>
log_rising_factorial
(
double
x,
const
fvar<T>
& n) {
27
return
fvar<T>
(
log_rising_factorial
(x, n.
val_
),
28
digamma
(x + n.
val_
) * n.
d_
);
29
}
30
31
}
32
}
33
#endif
core.hpp
stan::math::fvar::d_
T d_
Definition:
fvar.hpp:16
stan
Definition:
log_sum_exp.hpp:8
digamma.hpp
stan::math::fvar::val_
T val_
Definition:
fvar.hpp:15
log_rising_factorial.hpp
stan::math::log_rising_factorial
fvar< T > log_rising_factorial(const fvar< T > &x, const fvar< T > &n)
Definition:
log_rising_factorial.hpp:13
stan::math::fvar
Definition:
fvar.hpp:14
stan::math::digamma
fvar< T > digamma(const fvar< T > &x)
Return the derivative of the log gamma function at the specified argument.
Definition:
digamma.hpp:22
[
Stan Home Page
]
© 2011–2016, Stan Development Team.