{% extends "base_site.html" %} {% load admin_static %} {% load i18n %} {% block extrastyle %} {% endblock %} {% block extrascript %} {% endblock %} {% block content %} {% if energy %}

Relative phase compositions

{{ pstr }}

ΔH = {{ energy | floatformat:-3}} eV/atom

Stable phases:

{% for p, amt in phase_comp.items %} {% endfor %}
Name Spacegroup Formation Energy Amount
{{ p.name }} {{ p.calculation.entry.input.spacegroup.symbol }} {{ p.energy | floatformat:-3 }} {{ amt | floatformat:-2}}
{% endif %} {% if phase_data %}

Phase data used to generate this ground state composition:

Add/remove/edit this data, and then recreate the phase diagram.
{% csrf_token %} {% for phase in phase_data %} {% endfor %}
Include in GCLP Composition Formation Energy
{% endif %}

Method background

Grand canonical linear programming is a method developed by Wolverton et. al. for analyzing the complex ground state thermodynamics of metal hydrides. The method works by mapping a free energy minimization problem to a linear algebra problem. Using linear programming allows this problem to be solved nearly instantaneously even with a very large number of phases in a very high-dimensional phase space.

References

1. R. Akbarzadeh, A., Ozoliņš, V. & Wolverton, C. First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System. Advanced Materials 19, 3233–3239 (2007).
2. Kirklin, S., Meredig, B. & Wolverton, C. High-Throughput Computational Screening of New Li-Ion Battery Anode Materials. Advanced Energy Materials 3, 252–262 (2013).
{% endblock %} {% block sidebar %} {% endblock %}