MonotonicDimension

Generalized Class

Dimension

Description

A monotonic dimension is a quantitative dimension where the coordinates along the dimension are explicitly defined and, unlike a LinearDimension, may not be derivable from the ordered array of indexes along the dimension. Let \(\mathbf{A}_k\) be an ordered set of strictly ascending or descending physical quantities and \(o_k\), the origin offset along the \(k^{th}\) dimension, then the coordinates, \(\mathbf{X}_k\), and the absolute coordinates, \(\mathbf{X}_k^\mathrm{abs}\), along a monotonic dimension follow

\[\begin{split}\begin{align} \mathbf{X}_k &= \mathbf{A}_k\\ \mathbf{X}_k^\mathrm{abs} &= \mathbf{X}_k + o_k \mathbf{1}, \end{align}\end{split}\]

where \(\mathbf{1}\) is an array of ones.

Attributes

Name

Type

Description

coordinates

[ScalarQuantity, ScalarQuantity, … ]

An array of strictly ascending or descending ScalarQuantity.

origin_offset

ScalarQuantity

The origin offset, \(o_k\), of the dimension.

quantity_name

String

The quantity name associated with the physical quantities describing the dimension.

period

ScalarQuantity

The period of the dimension.

reciprocal

ReciprocalDimension

The ReciprocalDimension object.

Example

The following MonotonicDimension object,

{
    "type": "monotonic",
    "coordinates": ["1 µs", "10 µs", "100 µs", "1 ms", "10 ms", "100 ms", "1 s", "10 s"]
}

will generate a dimension where coordinates \(\mathbf{X}_k\) are

[1 µs, 10 µs, 100 µs, 1 ms, 10 ms, 100 ms, 1 s, 10 s]