Meteorological, 2D{1,1,2,1,1} dataset

The following dataset is obtained from NOAA/NCEP Global Forecast System (GFS) Atmospheric Model and subsequently converted to the CSD model file-format. The dataset consists of two spatial dimensions describing the geographical coordinates of the earth surface and five dependent variables with 1) surface temperature, 2) air temperature at 2 m, 3) relative humidity, 4) air pressure at sea level as the four scalar quantity_type dependent variable, and 5) wind velocity as the two-component vector, quantity type dependent variable.

Let’s import the csdmpy module and load this dataset.

>>> import csdmpy as cp

>>> filename = 'Test Files/correlatedDataset/forecast/NCEI.csdfe'
>>> multi_dataset = cp.load(filename)

Let’s get the tuple of dimension and dependent variable objects from multi_dataset instance.

>>> x = multi_dataset.dimensions
>>> y = multi_dataset.dependent_variables

The dataset contains two dimension objects representing the longitude and latitude of the earth’s surface. The respective dimensions are labeled as

>>> x[0].label
'longitude'

>>> x[1].label
'latitude'

There are a total of five dependent variables stored in this dataset. The first dependent variable is the surface air temperature. The data structure of this dependent variable is

>>> print(y[0].data_structure)
{
  "type": "internal",
  "description": "The label 'tmpsfc' is the standard attribute name for 'surface air temperature'.",
  "name": "Surface temperature",
  "unit": "K",
  "quantity_name": "temperature",
  "numeric_type": "float64",
  "quantity_type": "scalar",
  "component_labels": [
    "tmpsfc - surface air temperature"
  ],
  "components": [
    [
      "292.8152160644531, 293.0152282714844, ..., 301.8152160644531, 303.8152160644531"
    ]
  ]
}

If you have followed all previous examples, the above data structure should be self-explanatory. The following snippet plots a dependent variable of scalar quantity_type.

Tip

Plotting a scalar intensity plot

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.axes_grid1 import make_axes_locatable

>>> def plot_scalar(yx):
...     fig, ax = plt.subplots(1,1, figsize=(6,3))
...
...     # Set the extents of the image plot.
...     extent = [x[0].coordinates[0].value, x[0].coordinates[-1].value,
...               x[1].coordinates[0].value, x[1].coordinates[-1].value]
...
...     # Add the image plot.
...     im = ax.imshow(yx.components[0], origin='lower', extent=extent,
...                    cmap='coolwarm')
...
...     # Add a colorbar.
...     divider = make_axes_locatable(ax)
...     cax = divider.append_axes("right", size="5%", pad=0.05)
...     cbar = fig.colorbar(im, cax)
...     cbar.ax.set_ylabel(yx.axis_label[0])
...
...     # Set up the axes label and figure title.
...     ax.set_xlabel(x[0].axis_label)
...     ax.set_ylabel(x[1].axis_label)
...     ax.set_title(yx.name)
...
...     # Set up the grid lines.
...     ax.grid(color='k', linestyle='--', linewidth=0.5)
...
...     plt.tight_layout(pad=0, w_pad=0, h_pad=0)
...     plt.show()

Now to plot the data from the dependent variable.

>>> plot_scalar(y[0])
../../_images/NCEI.csdfeSurfacetemperature.png

Similarly, other dependent variables with their respective plots are

>>> y[1].name
'Air temperature at 2m'
>>> plot_scalar(y[1])
../../_images/NCEI.csdfeAirtemperatureat2m.png
>>> y[3].name
'Relative humidity'
>>> plot_scalar(y[3])
../../_images/NCEI.csdfeRelativehumidity.png
>>> y[4].name
'Air pressure at sea level'
>>> plot_scalar(y[4])
../../_images/NCEI.csdfeAirpressureatsealevel.png

Notice, we didn’t plot the dependent variable at index 2. This is because this particular dependent variable is a vector dataset representing the wind velocity.

>>> y[2].quantity_type
'vector_2'
>>> y[2].name
'Wind velocity'

To visualize the vector data, we use matplotlib streamline plot.

Tip

Plotting a vector quiver plot

>>> def plot_vector(yx):
...     fig, ax = plt.subplots(1,1, figsize=(6,3))
...     X, Y = np.meshgrid(x[0].coordinates, x[1].coordinates)
...     magnitude = np.sqrt(yx.components[0]**2 + yx.components[1]**2)
...
...     cf = ax.quiver(x[0].coordinates, x[1].coordinates,
...                    yx.components[0], yx.components[1],
...                    magnitude, pivot ='middle', cmap='inferno')
...     divider = make_axes_locatable(ax)
...     cax = divider.append_axes("right", size="5%", pad=0.05)
...     cbar = fig.colorbar(cf, cax)
...     cbar.ax.set_ylabel(yx.name+' / '+str(yx.unit))
...
...     ax.set_xlim([x[0].coordinates[0].value, x[0].coordinates[-1].value])
...     ax.set_ylim([x[1].coordinates[0].value, x[1].coordinates[-1].value])
...
...     # Set axes labels and figure title.
...     ax.set_xlabel(x[0].axis_label)
...     ax.set_ylabel(x[1].axis_label)
...     ax.set_title(yx.name)
...
...     # Set grid lines.
...     ax.grid(color='gray', linestyle='--', linewidth=0.5)
...
...     plt.tight_layout(pad=0, w_pad=0, h_pad=0)
...     plt.show()
>>> plot_vector(y[2])
../../_images/NCEI.csdfeWindvelocity.png