
Programming: Practical 5

We wish to determine the properties on which a player is most likely to land during a game of monopoly. To
simplify things, we assume there is only a single player, ignore everything to do with money and also ignore
the ‘Get out of Jail Free Cards’.

Monopoly: overview of the problem

The algorithm we will use is:

1) Begin the game on GO;
2) current := current + dice roll
3) Make a note of the new position.

• If we land on “Chance” or “Community Chest”, draw a card;
• If we land on “Go To Jail”, move to Jail;
• If we move, make a note of the new position;

4) Go back to step 2

After rolling the dice 100,000 times or so, stop.

Dice rolling

When we roll a single die, each side has an equal probability of occurring. This means we can use the
randint() function from the random library to simulate a die roll:
from random import randint
randint(1, 6)

3

To roll two dice, we simply call this function
def RollTwoDice():

total = randint(1, 6) + randint(1, 6)
return total

The Monopoly board

In monopoly there are 40 properties or squares, see table 1 at the end of this practical for a complete list.
The first square in Monopoly is ‘Go’, as Python indexes start at 0, we will set Go to be number 0. We can
represent all forty squares as a list in Python. For example
This creates a list of 40 values;
All values are initially zero
landings = [0]*40

Then, when we land on a square we simply increase the associated landings entry by one. Suppose we landed
on ‘Old Kent Rd’, we would represent this as:
landings[1] += 1

Since ‘Old Kent Road’ is square 2 on the board, it is index 1 in Python (see table 1).

1

Going round the monopoly board

Our first go at simulating Monopoly will ignore community chest, chance cards, and the ‘Go To Jail’ square.
This means that we are simply going round the board. The code in the SimulateMonopoly() function, rolls
the dice no_of_rolls time, and stores the squares that are landed on in the list landings. Notice any time
we go over the max index, 39, we are going to take 40 away from the total, this simulating the squares of a
monopoly game.
def SimulateMonopoly(no_of_rolls):

landings = [0]*40
Start at GO
current = 0
for i in range(0, no_of_rolls):

current = current + RollTwoDice()
if current > 39:

current = current - 40
landings[current] += 1

return landings

no_of_rolls = 100000

We can then call the function using:
sim = SimulateMonopoly(no_of_rolls)

We can then plot the probabilities of landing in each square:
import matplotlib.pyplot as plt
import numpy as np

sim = sim/np.sum(sim)
plt.plot(sim)
plt.ylim(0, 0.1)
plt.show()

(0, 0.1)

0 10 20 30 40
Square

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

Figure 1: Probability of landing on a monopoly square.

2

Incorporating Community Chest Cards

There are three community chest squares on the board - squares 3, 18 and 34. In the code below we will just
consider square 3. There are sixteen cards in total, hence the probability of drawing any particular card is
1/16. In the code below we will only implement the first two community chest cards:
from random import uniform

def CommunityChest(current):
goto = current
u = uniform(0, 1)
if u < 1/16:

goto = 0 # Move to Go
elif u < 2/16:

goto = 10 # Go to Jail :(
return goto

This function takes in the current position, with probability 1/16 we ‘Move to Go’, with probability 1/16 we
‘Go to Jail’ and with probability 14/16 we stay in our current position. We now alter the simulate function
to incorporate the CommunityChest() function:
def SimulateMonopoly(no_of_rolls):

landings = [0]*40
Start at GO
current = 0
for i in range(0, no_of_rolls):

current = current + RollTwoDice()
if current > 39:

current = current - 40
landings[current] += 1
if current == 3:

cc_move = CommunityChest(current)
if cc_move != current:

current = cc_move
landings[current] += 1

return landings
no_of_rolls = 1000000

We can then call this function
sim2 = SimulateMonopoly(no_of_rolls)

We then plot the results
sim2 = sim2/np.sum(sim2)
plt.plot(sim2)
plt.ylim(0, 0.06)
plt.show()

(0, 0.1)

Additional questions

Each question adds an additional layer of complexity to your code.

1) Add in the two other community squares, i.e. squares 18 and 34 into the SimulateMonopoly() code.
2) Add in ‘Go to Old Kent Road’ into your CommunityChest() function.

3

0 10 20 30 40
Square

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

Figure 2: Probability of landing on monopoly square with the first community chest card implemented.
Incorporating a single cummunity chest card has very little effect. For this graphic, I used 2 million simulations!

3) Square 31 is ‘Go To Jail.’ Implement this in your main simulation function.
4) Create a Chance() function, that implements the first six Chance cards. When you land on a Chance

square, call this function.
5) Add in Community Chest card four.
6) Add in Chance card 8.
7) Add in Chance card 7, ‘Go back 3 spaces’.
8) Rolling a double (a pair of 1’s, 2’s, . . . , 6’s) is special:

1) Roll two dice (total1): total_score = total1
2) If you get a double, roll again (total2) and total_score = total1 + total2
3) If you get a double, roll again (total3) and total_score = total1 + total2 + total3
4) If roll three is a double, Go To Jail, otherwise move total_score

4

Additional Information

Community Chest Cards

There are three community chest areas on the board (see Table 1). In total, there are 16 community chest
cards.

1) Advance to Go;
2) Go to jail;
3) Go to Old Kent Road;
4) Take a Chance card instead;

Chance Cards

A Chance card is most likely to move players. There are three chance areas on the board (see Table 1). There
are 16 chance cards in total, of which eight cards move the player:

1) Advance to Go;
2) Advance to Trafalgar Square;
3) Advance to Pall Mall;
4) Go directly to Jail;
5) Take a trip to Marylebone Station;
6) Advance to Mayfair;
7) Go back 3 spaces;
8) Advance token to nearest Utility. The utility squares are the water works and the electric company.

Square Number Name Square Number Name
1 Go 11 Jail
2 Old Kent Road 12 Pall Mall
3 Community Chest 13 Electric Company
4 WhiteChapel Road 14 Whitehall
5 Income Tax 15 Northumberland Avenue
6 King’s Cross Station 16 Marylebone Station
7 The Angel Islington 17 Bow Street
8 Chance 18 Community Chest
9 Euston Road 19 Marlborough Street
10 Pentonville Road 20 Vine Street
21 Free Parking 31 Go To Jail
22 Strand 32 Regent Street
23 Chance 33 Oxford Street
24 Fleet Street 34 Community Chest
25 Trafalgar Square 35 Bond Street
26 Fenchurch Street Station 36 Liverpool St Station
27 Leicester Square 37 Chance
28 Coventry St 38 Park Lane
29 Water Works 39 Super Tax
30 Piccadilly 40 Mayfair

Table 1: Monopoly squares with associated square numbers

5

	Programming: Practical 5
	Monopoly: overview of the problem
	Dice rolling
	The Monopoly board
	Going round the monopoly board
	Incorporating Community Chest Cards
	Additional questions
	Additional Information
	Community Chest Cards
	Chance Cards

