
Practical 4
Jumping Rivers

In this question, we are going to use a for statement to loop over a
large data set and construct some scatter plots. To generate the data,
run the following piece of code

import jrpyprogramming

exper = jrpyprogramming.datasets.experiment.load_data()

change the column names
exper.columns = ["measure", "time", "treat"]

The data frame exper represents an experiment, where we have ten
treatments: A,B, . . . , J and measurements at some time points. We
want to create a scatter plot of measurement against time, for each
treatment type.

2. First we create a scatter plot of one treatment:

group = exper[exper.treat == "A"]

import matplotlib.pyplot as plt

group.plot.scatter(x="time", y="measure")

0 1 2 3 4 5 6
time

1

0

1

2

m
ea

su
re

3. To generate a scatter-plot for each treatment, we need to iterate
over the different treatment types:

for i in exper.treat.unique():
group = exper[exper.treat == i]

practical 4 2

group.plot.scatter(x="time", y="measure")
plt.show()
input("Hit enter for next plot")

• What does exper.treat.unique() give?

• In the for loop, what variable is changing? What are it’s possible
values?

• What does the input() function do?

Questions

1. The default axis labels aren’t great. So we can change the x-axis
label using plt.xlab():

group.plot.scatter(x="time", y="measure")
plt.xlabel("Time")

0 1 2 3 4 5 6
Time

1

0

1

2

m
ea

su
re

0 1 2 3 4 5 6
Time

1

0

1

2

M
ea

su
re

m
en

t

practical 4 3

Use the ylab argument to alter the y-axis label.

2. To add a title to a plot we use the plt.title() argument, viz:

group.plot.scatter(x="time", y="measure")
plt.title("Treatment")

0 1 2 3 4 5 6
time

1

0

1

2

m
ea

su
re

Treatment

3. We can concatentate strings/characters using +,

"Treatment "+"A"

Rather than have a static title, make the title of each plot display
the treatment type.

4. The y-axis range should really be the same in all graphics. Add a
ylim argument to fix the range.
Hint: Work out the range before the for loop.

5. At each iteration, use the print() function to print the average
measurement level across all time points.
Hint: You will have to convert the mean to a string, to do this use
the str() function.

6. On each graph, highlight any observations with a blue point if they
are larger than the mean + standard deviations or less than the
mean - standard deviations. Store your graph as a variable, then
use the .scatter() method to plot additional points.
Hint: You don’t need if statements here. Just subset your data
frame and pass this new data frame to the points function. For ex-
ample, to highlight the points (1,3) and (2, 4) we use the command:

p = group.plot.scatter(x="time", y="measure")
p.scatter([1, 2], [3, 4], color="red")

practical 4 4

0 1 2 3 4 5 6
time

0

2

4
m

ea
su

re

7.. Put your code, i.e. the for loop and plotting commands, in a
function which takes the data frame as an argument.

