6. formfactor (ff)

Particle form factors

The scattering intensity I(q) of a single particle with real scattering length densities is calculated. If the scattering length density is not defined as e.g. for beaucage model the normalized particle form factor F(q) is calculated.

The scattering per particle is I(q)= I_0 F(q) with particle form factor F(q)=<F_a(q)F^*_a(q)>=<|F_a(q)|^2>. <> indicates the ensemble average.

The particle scattering amplitude

F_a(q)= \int_V b(r) e^{iqr} \mathrm{d}r / \int_V b(r) \mathrm{d}r = \sum_N b_i e^{iqr} / \sum_N b_i

The forward scattering per particle is I_0=V_p^2(\rho-\rho_{solvent})^2 with particle volume V_p and scattering length density \rho.

In this module units for I(q) and I_0 are nm^2=10^{-14} cm^2 per particle.

The scattering of particles with concentration c in mol/liter in units of \frac{1}{cm} is I_{[1/cm]}(q)=N_A \frac{c}{1000} 10^{-14} I_{[nm^2]}(q).

The scattering of arbitrary shaped particles can be calculated by cloudScattering() as a cloud of points representing the desired shape.

In the same way distributions of particles as e.g. clusters of particles or nanocrystals can be calculated. Oriented scattering of e.g. magnetic nanoclusters in a magnetic field can be calculated by orientedCloudScattering().

Methods to build clouds of scatterers e.g. a cube decorated with spheres at the corners can be found in Lattice with examples. The advantage here is that there is no double counted overlap.

Some scattering length densities as guide to choose realistic values for SLD and solventSLD :
  • neutron scattering unit nm-2:
    • protonated polyethylene glycol = 0.71e-6 A-2 = 0.71e-4 nm-2
    • protonated polyethylene =-0.315e-6 A-2 =-0.315e-4 nm-2
    • SiO2 = 4.185e-6 A-2 = 4.185e-4 nm-2
    • D2O = 6.335e-6 A-2 = 6.335e-4 nm-2
    • H2O =-0.560e-6 A-2 =-0.560e-4 nm-2
    • protein ≈ 2.0e-6 A-2 ≈ 2.0e-4 nm-2
    • gold = 4.500e-6 A-2 = 4.500e-4 nm-2
  • Xray scattering unit nm^-2:
    • polyethylene glycol = 1.11e-3 nm-2 = 396 e/nm3
    • polyethylene = 0.85e-3 nm-2 = 302 e/nm3
    • SiO2 = 2.25e-3 nm-2 = 796 e/nm3
    • D2O = 0.94e-3 nm-2 = 332 e/nm3
    • H2O = 0.94e-3 nm-2 = 333 e/nm3
    • protein ≈ 1.20e-3 nm-2 ≈ 430 e/nm3
    • gold = 13.1e-3 nm-2 =4662 e/nm3

Density SiO2 = 2.65 g/ml quartz; ≈ 2.2 g/ml quartz glass

Return values are dataArrays were useful. To get only Y values use .Y

6.1. Form Factors

beaucage(q[, Rg, G, d]) Beaucage introduced a model based on the polymer fractal model.
genGuinier(q[, Rg, A, alpha]) Generalized Guinier approximation for low wavevector q scattering q*Rg< 1-1.3
guinier(q[, Rg, A]) Classical Guinier
gaussianChain(q, Rg[, nu]) General formfactor of a gaussian polymer chain with excluded volume parameter.
ringPolymer(q, Rg) General formfactor of a polymer ring in theta solvent.
sphere(q, radius[, contrast]) Scattering of a single homogeneous sphere.
sphereCoreShell(q, Rc, Rs, bc, bs[, solventSLD]) Scattering of a spherical core shell particle.
ellipsoid(q, Ra, Rb[, SLD, solventSLD, …]) Form factor for a simple ellipsoid (ellipsoid of revolution).
disc(q, R, D, SLD[, solventSLD, alpha]) Disc form factor .
multiShellSphere(q, shellthickness, shellSLD) Scattering of spherical multi shell particle including linear contrast variation in subshells.
multiShellEllipsoid(q, poleshells, …[, …]) Scattering of multi shell ellipsoidal particle with varying shell thickness at pole and equator.
multiShellDisc(q, radialthickness, …[, …]) Multi shell disc in solvent averaged over axis orientations.
multiShellCylinder(q, L, shellthickness, …) Multi shell cylinder with caps in solvent averaged over axis orientations.
multilamellarVesicles(Q, R, N, phi[, …]) Scattering intensity of a multilamellar vesicle with random displacements of the inner vesicles [1].
cuboid(q, a[, b, c, SLD, solventSLD, N]) Formfactor of cuboid with different edge lengths.
sphereFuzzySurface(q, R, sigmasurf, contrast) Scattering of a sphere with a fuzzy interface.
sphereGaussianCorona(q, R, Rg, Ncoil, coilequR) Scattering of a sphere surrounded by gaussian coils as model for grafted polymers on particle e.g.
pearlNecklace(Q, Rc, l, N[, A1, A2, A3, ms, mr]) Formfactor of a pearl necklace (freely jointed chain of pearls connected by rods)
wormlikeChain(q, N, a[, R, SLD, solventSLD, …]) Scattering of a wormlike chain, which correctly reproduces the rigid-rod and random-coil limits.
teubnerStrey(q, xi, d[, eta2]) Phenomenological model for the scattering intensity of a two-component system using the Teubner-Strey model [1].
ellipsoidFilledCylinder([q, R, L, Ra, Rb, …]) Scattering of a single cylinder filled with ellipsoidal particles.
superball(q, R, p[, SLD, solventSLD, nGrid, …]) A superball is a general mathematical shape that can be used to describe rounded cubes, sphere and octahedron’s.

6.2. Cloud of scatterers

cloudScattering(q, cloud[, relError, V, …]) Scattering of a cloud of scatterers with variable scattering length.
orientedCloudScattering(qxz, cloud[, rms, …]) 2D scattering of an oriented cloud of scatterers with equal or variable scattering length.

6.3. Distribution

scatteringFromSizeDistribution(q, …[, …]) Scattering of objects with one multimodal parameter as e.g.

Particle form factors

The scattering intensity I(q) of a single particle with real scattering length densities is calculated. If the scattering length density is not defined as e.g. for beaucage model the normalized particle form factor F(q) is calculated.

The scattering per particle is I(q)= I_0 F(q) with particle form factor F(q)=<F_a(q)F^*_a(q)>=<|F_a(q)|^2>. <> indicates the ensemble average.

The particle scattering amplitude

F_a(q)= \int_V b(r) e^{iqr} \mathrm{d}r / \int_V b(r) \mathrm{d}r = \sum_N b_i e^{iqr} / \sum_N b_i

The forward scattering per particle is I_0=V_p^2(\rho-\rho_{solvent})^2 with particle volume V_p and scattering length density \rho.

In this module units for I(q) and I_0 are nm^2=10^{-14} cm^2 per particle.

The scattering of particles with concentration c in mol/liter in units of \frac{1}{cm} is I_{[1/cm]}(q)=N_A \frac{c}{1000} 10^{-14} I_{[nm^2]}(q).

The scattering of arbitrary shaped particles can be calculated by cloudScattering() as a cloud of points representing the desired shape.

In the same way distributions of particles as e.g. clusters of particles or nanocrystals can be calculated. Oriented scattering of e.g. magnetic nanoclusters in a magnetic field can be calculated by orientedCloudScattering().

Methods to build clouds of scatterers e.g. a cube decorated with spheres at the corners can be found in Lattice with examples. The advantage here is that there is no double counted overlap.

Some scattering length densities as guide to choose realistic values for SLD and solventSLD :
  • neutron scattering unit nm-2:
    • protonated polyethylene glycol = 0.71e-6 A-2 = 0.71e-4 nm-2
    • protonated polyethylene =-0.315e-6 A-2 =-0.315e-4 nm-2
    • SiO2 = 4.185e-6 A-2 = 4.185e-4 nm-2
    • D2O = 6.335e-6 A-2 = 6.335e-4 nm-2
    • H2O =-0.560e-6 A-2 =-0.560e-4 nm-2
    • protein ≈ 2.0e-6 A-2 ≈ 2.0e-4 nm-2
    • gold = 4.500e-6 A-2 = 4.500e-4 nm-2
  • Xray scattering unit nm^-2:
    • polyethylene glycol = 1.11e-3 nm-2 = 396 e/nm3
    • polyethylene = 0.85e-3 nm-2 = 302 e/nm3
    • SiO2 = 2.25e-3 nm-2 = 796 e/nm3
    • D2O = 0.94e-3 nm-2 = 332 e/nm3
    • H2O = 0.94e-3 nm-2 = 333 e/nm3
    • protein ≈ 1.20e-3 nm-2 ≈ 430 e/nm3
    • gold = 13.1e-3 nm-2 =4662 e/nm3

Density SiO2 = 2.65 g/ml quartz; ≈ 2.2 g/ml quartz glass

Return values are dataArrays were useful. To get only Y values use .Y

jscatter.formfactor.beaucage(q, Rg=1, G=1, d=3)[source]

Beaucage introduced a model based on the polymer fractal model.

Beaucage used the numerical integration form (Benoit, 1957) although the analytical integral form was available [1]. This is an artificial connection of Guinier and Porod Regime . Better use the polymer fractal model [1] used in gaussianChain.

Parameters:
q : array

Wavevector

Rg : float

Radius of gyration in 1/q units

G : float

Guinier scaling factor, transition between Guinier and Porod

d : float

Porod exponent for large wavevectors

Returns:
dataArray [q,Fq]

Notes

Polymer fractals:

d = 5/3 fully swollen chains,
d = 2 ideal Gaussian chains and
d = 3 collapsed chains. (volume scattering)
d = 4 surface scattering at a sharp interface/surface
d = 6-dim rough surface area with a dimensionality dim between 2-3 (rough surface)
d = 3 Volume scattering
d < r mass fractals (eg gaussian chain)

The Beaucage model is used to analyze small-angle scattering (SAS) data from fractal and particulate systems. It models the Guinier and Porod regions with a smooth transition between them and yields a radius of gyration and a Porod exponent. This model is an approximate form of an earlier polymer fractal model that has been generalized to cover a wider scope. The practice of allowing both the Guinier and the Porod scale factors to vary independently during nonlinear least-squares fits introduces undesired artefact’s in the fitting of SAS data to this model.

[1](1, 2) Analysis of the Beaucage model Boualem Hammouda J. Appl. Cryst. (2010). 43, 1474–1478 http://dx.doi.org/10.1107/S0021889810033856
jscatter.formfactor.cloudScattering(q, cloud, relError=50, V=0, formfactor=None, rms=0, ffpolydispersity=0, ncpu=0)[source]

Scattering of a cloud of scatterers with variable scattering length. Using multiprocessing.

Cloud can represent any object described by a cloud of scatterers with scattering amplitudes as constant, sphere scattering amplitude, Gaussian scattering amplitude or explicitly given one. The result is normalized by I_0=(\sum b_i)^2 to equal one for q=0 (except for polydispersity).

  • .I0 represents the forward scattering if b_i=b_vV_{unit cell} with b_v as scattering length density in the unit cell.
  • Remember that the atomic bond length are on the order 0.1-0.2 nm.
  • Methods to build clouds of scatterers e.g. a cube decorated with spheres at the corners can be found in Lattice with examples.
  • By default explicit spherical is done. If rms and polydispersity are not needed the Debye-function can be used (for particle numbers<500 faster).
Parameters:
q : array, ndim= Nx1

wavevectors in 1/nm

cloud : array Nx3 or Nx4
  • Center of mass positions (in nm) of the N scatterers in the cloud.
  • If given cloud[3] is the scattering length b_i at positions cloud[:3], otherwise b=1.
  • To compare with material scattering length density b_v use b=b_vV_{unit cell} with b_v as scattering length density and V_{unit cell} as cloud unit cell volume.
relError : float
Determines calculation method.
  • relError>1 Explicit calculation of spherical average with Fibonacci lattice on sphere
    of 2*relError+1 points. Already 150 gives good results (see Examples)
  • 0<relError<1 Monte Carlo integration on sphere until changes in successive iterations become smaller than relError.
    (Monte carlo integration with pseudo random numbers, see sphereAverage). This might take long for too small error.
  • relError=0 The Debye equation is used (no asymmetry factor beta, no rms, no ffpolydispersity).
    Computation of Order N^2 opposite to above which is order N. For about 1000 particles same computing time,for 500 Debye is 4 times faster than above. If beta, rms or polydispersity is needed use above.
rms : float, default=0

Root mean square displacement =<u**2>**0.5 of the positions in cloud as random (Gaussian) displacements in units nm. Displacement u is random for each orientation in sphere scattering. rms can be used to simulate a Debye-Waller factor.

V : float, default=0

Volume of the scatterers for scattering amplitude (see formfactor).

formfactor : None,’gauss’,’sphere’,’cube’
Gridpoint scattering amplitudes F(q) are described by:
  • None : const scattering amplitude.

  • ‘sphere’: Sphere scattering amplitude according to [3].

    The sphere radius is R=(\frac{3V}{4\pi})^{1/3}

  • ‘gauss’ : Gaussian function b_i(q)=b V exp(-\pi V^{2/3}q^2) according to [2].

    The Gaussian shows no artificial minima compared to the sphere.

  • Explicit isotropic form factor ff as array with [q,ff] e.g. from multishell. The normalized scattering amplitude fa for each gridpoint is calculated as fa=ff**0.5/fa(0). Missing values are linear interpolated (np.interp), q values outside interval are mapped to qmin or qmax. If explicit formfactor is from an asymmetric object (e.g. cube) it is implicated that the explicit ff orientation is isotropic.

ffpolydispersity : float

Polydispersity of the gridpoints in relative units for sphere, gauss, explicit. Assuming F(q*R) for each gridpoint F is scaled as F(q*f*R) with f as normal distribution around 1 and standard deviation ffpolydispersity. The scattering length b is scaled according to the respective volume change by f**3. (f<0 is set to zero . ) This results in a change of the forward scattering because of the stronger weight of larger objects.

ncpu : int, default 0
Number of cpus used in the pool for multiprocessing.
  • not given or 0 : all cpus are used
  • int>0 : min(ncpu, mp.cpu_count)
  • int<0 : ncpu not to use
  • 1 : single core usage for testing or comparing speed to Debye
Returns:
dataArray with columns [q, Pq, beta]
  • .I0 : =I(q=0)=(\sum_N b_i)^2
  • .sumblength : =\sum_N b_i
  • .formfactoramplitude : formfactor amplitude of cloudpoints according to type for all q values.
  • .formfactoramplitude_q : corresponding q values

Notes

We calculate the scattering amplitude F(q) for N particles in a volume V with scattering length density b(r)

F(q)= \int_V b(r) e^{i\mathbf{qr}} \mathrm{d}r / \int_V b(r) \mathrm{d}r = \sum_N b_i e^{i\mathbf{qr}} / \sum_N b_i

with the form factor P(Q) after explicit orientational average <>

P(Q)=< F(q) \cdot F^*(q) >=< |F(q)|^2 >

The scattering intensity of a single object represented by the cloud is

I(Q)=P(Q) \cdot (\int_V b(r) \mathrm{d}r)^2

beta is the asymmetry factor [1] beta =|< F(q) >|^2 / < |F(q)|^2 >

One has to expect a peak at q \approx 2\pi/d_{NN} with d_{NN} as the next neighbour distance between particles.

One might replace b_i = b_i(q) to include a formfactor amplitude of the particles as e.g. q dependent Xray scattering amplitude or the formfactor of the cloud particles.

Random displacements u_i lead to r_i=r_i+u_i and to the the Debye-Waller factor for Bragg peaks and diffusive scattering at higher q.

The explicit orientational average can be simplified using the Debye scattering equation [4]

I(Q)=\sum_i \sum_j b_i b_j \frac{\sin(qr_{ij})}{qr_{ij}} =\sum_i b_i^2 + 2\sum_i \sum_{j>i} b_i b_j \frac{\sin(qr_{ij})}{qr_{ij}}

Here no rms or ffpolydispersity are included. The calculation of beta requires an additional calculation.

The scattering of a cloud can represent the scattering of a cluster of particles with polydispersity and position distortion according to root mean square displacements (rms). Polydispersity and rms displacements are randomly changed within the orientational average to represent an ensemble average (opposite to the time average of a single cluster). See latticeStructureFactor() for nanocubes and example A nano cube build of different lattices .

References

[1](1, 2)
  1. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
[2](1, 2) An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules Fraser R MacRae T Suzuki E IUCr Journal of Applied Crystallography 1978 vol: 11 (6) pp: 693-694
[3](1, 2) X-ray diffuse scattering by proteins in solution. Consideration of solvent influence B. A. Fedorov, O. B. Ptitsyn and L. A. Voronin J. Appl. Cryst. (1974). 7, 181-186 doi: 10.1107/S0021889874009137
[4](1, 2) Zerstreuung von Röntgenstrahlen Debye P. Annalen der Physik 1915 vol: 351 (6) pp: 809-823 DOI: 10.1002/andp.19153510606

Examples

The example compares to the analytic solution for an ellipsoid then for a cube. For other shapes the grid may be better rotated away from the object symmetry or a random grid should be used. The example shows a good approximation with NN=20. Because of the grid peak at q=2\pi/d_{NN} the grid scatterer distance d_{NN} should be d_{NN} < \frac{1}{3} 2\pi/q_{max} .

Inspecting A nano cube build of different lattices shows other possibilities building a grid. Also a pseudo random grid can be used pseudoRandomLattice() .

# ellipsoid with grid build by mgrid
import jscatter as js
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# cubic grid points
R=3;NN=20;relError=50
grid= np.mgrid[-R:R:1j*NN, -R:R:1j*NN,-2*R:2*R:2j*NN].reshape(3,-1).T
# points inside of sphere with radius R
p=1;p2=1*2 # p defines a superball with 1->sphere p=inf cuboid ....
inside=lambda xyz,R1,R2,R3:(np.abs(xyz[:,0])/R1)**p2+(np.abs(xyz[:,1])/R2)**p2+(np.abs(xyz[:,2])/R3)**p2<=1
insidegrid=grid[inside(grid,R,R,2*R)]
q=np.r_[0:5:0.1]
p=js.grace()
p.title('compare form factors of an ellipsoid')
ffe=js.ff.cloudScattering(q,insidegrid,relError=relError)
p.plot(ffe,legend='cloud ff explicit')
ffa=js.ff.ellipsoid(q,2*R,R)
p.plot(ffa.X,ffa.Y/ffa.I0,li=1,sy=0,legend='analytic formula')
p.legend()
# show only each 20th point
js.mpl.scatter3d(insidegrid[::10,:])
# cube
# grid points generated by cubic grid
import jscatter as js
import numpy as np
q=np.r_[0.1:5:0.1]
p=js.grace()
R=3;N=10;relError=0.01  # random points on sphere
grid= js.sf.scLattice(R/N,N)
ffe=js.ff.cloudScattering(q,grid,relError=relError)
p.plot(ffe,legend='cloud ff explicit 10')
# each point has a cube around it including the border
ffa=js.ff.cuboid(q,2*R+R/N)
p.plot(ffa.X,ffa.Y/ffa.I0,li=1,sy=0,legend='analytic formula')
p.yaxis(scale='l')
p.title('compare form factors of an cube')
p.legend(x=2,y=0.1)

An objekt with explicit given formfactor for each gridpoint.

# 5 coreshell particles in line with polydispersity
rod0 = np.zeros([5, 3])
rod0[:, 1] = np.r_[0, 1, 2, 3, 4] * 4
q = js.loglist(0.01, 7, 100)
cs = js.ff.sphereCoreShell(q=q, Rc=1, Rs=2, bc=0.1, bs=1, solventSLD=0)
ffe = js.ff.cloudScattering(q, rod0, formfactor=cs,relError=100,ffpolydispersity=0.1)
p=js.grace()
p.plot(ffe)

Using cloudScattering as fit model.

We have to define a model that parametrizes the building of the cloud that we get fit parameters. As example we use two overlapping spheres. The model can be used to fit some data. The build of the model is important as it describes how the overlap is treated e.g. as average.

We have to consider some points:
  • It is important that the model is continuous in its parameters to avoid steps as any fit algorithm cannot handle this.
  • We have to limit some parameters that make giant grids. Fit algorithm make first a small step then a large one to estimate a good step size for parameter changes. If in the dumbbell example the radii R1 or R2 is increased to >1000 then the grid size burst the RAM and we get a Memory Error. Use hard limits for the radii to a reasonable value as shown below (see setlimit).
  • The argument “factor” limits the initial step size. Reduce it (default 100 -> [0.1..100]).
  • In the below example the first fit is fast but bad as we find a local minimum. A global fit algorithm takes quite long but finds the correct solution.
import jscatter as js
import numpy as np
#
#: test if distance from point on X axis
isInside=lambda x,A,R:((x-np.r_[A,0,0])**2).sum(axis=1)**0.5<R
#: model
def dumbbell(q,A,R1,b1,bgr=0,dx=0.3,relError=50):
    # D sphere distance
    # R1, R2 radii
    # b1,b2  scattering length
    # bgr background
    # dx grid distance not a fit parameter!!
    R2=R1
    b2=b1
    mR=max(R1,R2)
    # xyz coordinates
    grid=np.mgrid[-A/2-mR:A/2+mR:dx,-mR:mR:dx,-mR:mR:dx].reshape(3,-1).T
    insidegrid=grid[isInside(grid,-A/2.,R1) | isInside(grid,A/2.,R2)]
    # add blength column
    insidegrid=np.c_[insidegrid,insidegrid[:,0]*0]
    # set the corresponding blength; the order is important as here b2 overwrites b1
    insidegrid[isInside(insidegrid[:,:3],-A/2.,R1),3]=b1
    insidegrid[isInside(insidegrid[:,:3],A/2.,R2),3]=b2
    # and maybe a mix ; this depends on your model
    insidegrid[isInside(insidegrid[:,:3],-A/2.,R1) & isInside(insidegrid[:,:3],A/2.,R2),3]=(b2+b1)/2.
    # calc the scattering
    result=js.ff.cloudScattering(q,insidegrid,relError=relError)
    result.Y=result.Y*result.I0+bgr
    # add attributes for later usage
    result.A=A
    result.R1=R1
    result.b1=b1
    result.dx=dx
    result.insidegrid=insidegrid
    return result
#
# test it
q=np.r_[0.01:5:0.02]
data=dumbbell(q,3,2,1)

# show result configuration
js.mpl.scatter3d(data.insidegrid[:,0],data.insidegrid[:,1],data.insidegrid[:,2])
#
# Fit your data like this.
# It may be a good idea to use not the highest resolution in the beginning because of speed.
# If you have a good set of starting parameters you can decrease dx.
data2=data.prune(number=100)
data2.makeErrPlot(yscale='l')

data2=data.prune(number=100)
data2.makeErrPlot(yscale='l')
data2.setLimit(R1=[None,None,1,4],A=[None,None,1,10])

# this results in a fast but bad fit result
# a local minima is found but the basics is working.
data2.fit(model=dumbbell,
           freepar={'A':3,'R1':2.4,'b1':1},
           fixpar={'dx':0.3,'bgr':0},
           mapNames={'q':'X'},factor=1)

# To get a good result we need to find the global minimum by a different algorithm ('differential evolution')
# The limits are used as border to search in an limited area.
# The fit takes about 3500 iterations (1000s on Ryzen 1600X 6 cores)
data2.fit(model=dumbbell,method='differential_evolution',
           freepar={'A':3,'R1':2.4,'b1':1},
           fixpar={'dx':0.3,'bgr':0},
           mapNames={'q':'X'})

Fit a sphere formfactor.

The quality of the grid approximation (number of gridpoints) may improve the correct description of higher order minima.

import numpy as np
import jscatter as js

# a function to discriminate what is inside of the sphere
# basically a superball p2=2 is a sphere
inside=lambda xyz,R1,p2:(np.abs(xyz[:,0]))**p2+(np.abs(xyz[:,1]))**p2+(np.abs(xyz[:,2]))**p2<=R1**2

def test(q,R,b,p2=2,relError=20):
    # make cubic grid with right size (increase NN for better approximation)
    NN=20
    grid= np.mgrid[-R:R:1j*NN, -R:R:1j*NN,-R:R:1j*NN].reshape(3,-1).T
    # cut the edges to get a sphere
    insidegrid=grid[inside(grid,R,p2)]
    # add scattering length for points
    # the average scattering length density is sum(b)/sphereVolume
    insidegrid=np.c_[insidegrid,insidegrid[:,0]*0]
    insidegrid[:,3]=b
    # calc formfactor (normalised) for a single sphere
    ffs=js.ff.cloudScattering(q,insidegrid,relError=relError)
    # the total scattering is sumblength**2
    ffs.Y*=ffs.sumblength**2
    # save radius and the grid for later
    ffs.R=R
    ffs.insidegrid=insidegrid
    return ffs

####main
q=np.r_[0:3:0.01]
sp=js.formfactor.sphere(q,3,1)

sp.makeErrPlot(yscale='l')   # show intermediate results
sp.setlimit(R=[0.3,10])      # set some reasonable limits for R
sp.fit(model=test,
    freepar={'b':6,'R':2.1},
    fixpar={},
    mapNames={'q':'X'})

# show the resulting sphere grid
resultgrid=sp.lastfit.insidegrid
js.mpl.scatter3d(resultgrid[:,0],resultgrid[:,1],resultgrid[:,2])

Here we compare explicit calculation with the Debye equation as the later gets quite slow for larger numbers.

import jscatter as js
import numpy as np
R=6;NN=20
q=np.r_[0:5:0.1]
grid=js.formel.randomPointsInCube(10000)*R-R/2
ffe=js.ff.cloudScattering(q,grid,relError=150)    # takes about  1.3 s on six core
ffd=js.ff.cloudScattering(q,grid,relError=0)      # takes about 11.4 s on six core
grid=js.formel.randomPointsInCube(500)*R-R/2
ffe=js.ff.cloudScattering(q,grid,relError=150)    # takes about 132 ms on six core
ffd=js.ff.cloudScattering(q,grid,relError=0)      # takes about  33 ms on six core

p=js.grace()
p.plot(ffe)
p.plot(ffd)
p.yaxis(scale='l')
jscatter.formfactor.cuboid(q, a, b=None, c=None, SLD=1, solventSLD=0, N=30)[source]

Formfactor of cuboid with different edge lengths.

Parameters:
q : array

Wavevector in 1/nm

a,b,c : float, None

Edge length, for a=b=c its a cube, Units in nm. If b=None b=a. If c=None c=b.

SLD : float, default =1

Scattering length density of cuboid.unit nm^-2 e.g. SiO2 = 4.186*1e-6 A^-2 = 4.186*1e-4 nm^-2 for neutrons

solventSLD : float, default =0

Scattering length density of solvent. unit nm^-2 e.g. D2O = 6.335*1e-6 A^-2 = 6.335*1e-4 nm^-2 for neutrons

N : int

Order for Gaussian integration over both phi and theta.

Returns:
dataArray [q,Iq]
  • .I0 forward scattering
  • .edges
  • .contrast

Notes

I(q)=\rho^2V_{cube}^2 \int_{0}^{2\pi}\int_{0}^{\pi} \lvert sinc(aq_x ) sinc(bq_y) sinc(cq_z)\rvert^2 \sin\theta d\theta d\phi

with q = (q_x,q_y,q_z) = (q\sin\theta\cos\phi,q\sin\theta\sin\phi,q\cos\theta) and contrast \rho [1].

References

[1](1, 2) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting Pedersen, Jan Skov Advances in Colloid and Interface Science 70, 171 (1997) http://dx.doi.org/10.1016/S0001-8686(97)00312-6

Examples

import jscatter as js
import numpy as np
q=np.r_[0.1:5:0.01]
p=js.grace()
p.plot(js.ff.cuboid(q,60,4,6))
p.plot(js.ff.cuboid(q,10,4,60))
p.plot(js.ff.cuboid(q,11,11,11),li=1)
p.yaxis(scale='l')
p.xaxis(scale='l')
jscatter.formfactor.cylinder(q, L, radius, SLD, solventSLD=0, alpha=None)[source]

Cylinder form factor (open cap).

See multiShellCylinder

jscatter.formfactor.disc(q, R, D, SLD, solventSLD=0, alpha=None)[source]

Disc form factor .

Parameters:
q : array

Wavevectors, units 1/nm

R : float

Radius in nm

D : float

Thickness of shell

SLD,solventSLD : float

Scattering length density in nm^-2.

alpha : float, [float,float] , unit rad

Orientation, angle between the cylinder axis and the scattering vector q. 0 means parallel, pi/2 is perpendicular If alpha =[start,end] is integrated between start,end start > 0, end < pi/2

Notes

See multiShellCylinder

jscatter.formfactor.ellipsoid(q, Ra, Rb, SLD=1, solventSLD=0, alpha=None, tol=1e-06, beta=False)[source]

Form factor for a simple ellipsoid (ellipsoid of revolution).

Parameters:
q : float

scattering vector unit e.g. 1/A or 1/nm 1/Ra

Ra : float

radius rotation axis units in 1/unit(q)

Rb : float

radius rotated axis units in 1/unit(q)

SLD : float, default =1

Scattering length density of unit nm^-2 e.g. SiO2 = 4.186*1e-6 A^-2 = 4.186*1e-4 nm^-2 for neutrons

solventSLD : float, default =0

Scattering length density of solvent. unit nm^-2 e.g. D2O = 6.335*1e-6 A^-2 = 6.335*1e-4 nm^-2 for neutrons

alpha : [float,float] , default [0,90]

alpha is angle between rotation axis Ra and scattering vector q in unit grad between these angles orientation is averaged alpha=0 axis and q are parallel, other orientation is averaged

beta : bool,default False

beta is asymmetry factor according to [3]. beta = |<F(Q)>|²/<|F(Q)|²> with scattering amplitude F(Q) and form factor P(Q)=<|F(Q)|²>

tol : float

relative tolerance for integration between alpha

Returns:
dataArray with columns [q; Iq; beta ] # if beta=True
  • .RotationAxisRadius
  • .RotatedAxisRadius
  • .EllipsoidVolume
  • .I0 forward scattering q=0

References

[1]Structure Analysis by Small-Angle X-Ray and Neutron Scattering Feigin, L. A, and D. I. Svergun, Plenum Press, New York, (1987).
[2]http://www.ncnr.nist.gov/resources/sansmodels/Ellipsoid.html
[3](1, 2)
  1. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).
jscatter.formfactor.ellipsoidFilledCylinder(q=1, R=10, L=0, Ra=1, Rb=2, eta=0.1, SLDcylinder=0.1, SLDellipsoid=1, SLDmatrix=0, alpha=90, epsilon=None, fPY=1, dim=3)[source]

Scattering of a single cylinder filled with ellipsoidal particles.

A cylinder filled with ellipsoids of revolution with cylinder formfactor and ellipsoid scattering. Ellipsoids have a fluid like distribution and hard core interaction leading to Percus-Yevick structure factor between ellipsoids. Ellipsoids can be oriented along cylinder axis. If cylinders are in a lattice, the ellipsoid scattering (column 2) is observed in the diffusive scattering and the dominating cylinder contributes only to the bragg peaks as a form factor.

Parameters:
q : array

Wavevectors in units 1/nm

R : float

Cylinder radius in nm

L : float

Length of the cylinder in nm If zero infinite length is assumed, but absolute intensity is not valid, only relative intensity.

Ra : float

Radius rotation axis units in nm

Rb : float

Radius rotated axis units in nm

eta : float

Volume fraction of ellipsoids in cylinder for use in Percus-Yevick structure factor. Radius in PY corresponds to sphere with same Volume as the ellipsoid.

SLDcylinder : float,default 1

Scattering length density cylinder material in nm**-2

SLDellipsoid : float,default 1

Scattering length density of ellipsoids in cylinder in nm**-2

SLDmatrix : float

Scattering length density of the matrix outside the cylinder in nm**-2

alpha : float, default 90

Orientation of the cylinder axis to wavevector in degrees

epsilon : [float,float], default [0,90]

Orientation range of ellipsoids rotation axis relative to cylinder axis in degrees.

fPY : float

Factor between radius of ellipsoids Rv (equivalent volume) and radius used in structure factor Rpy Rpy=fPY*(Ra*Rb*Rb)**(1/3)

dim : 3,1, default 3

Dimensionality of the Percus-Yevick structure factor 1 is one dimensional stricture factor, anything else is 3 dimensional (normal PY)

Returns:
dataArray : [q,n*conv(ellipsoids,cylinder)*sf_b + cylinder, n *conv(ellipsoids,cylinder)*sf_b, cylinder, n * ellipsoids , sf , beta_ellipsoids]
  • Each contributing formfactor is given with its absolute contribution V**2*contrast**2 (NOT normalized to 1)
  • The observed structurefactor is sf\_b = S_{\beta}(q)=1+\beta*(S(q)-1) (see [1]).
    \beta(q) ellipsoids is the asymmetry factor of Kotlarchyk and Chen [1].
  • conv(ellipsoids,cylinder): ellipsoid formfactor convoluted with cylinder formfactor
  • .ellipsoidNumberDensity : n ellipsoid number density in cylinder volume
  • .cylinderRadius
  • .cylinderLength
  • .cylinderVolume
  • .ellipsoidRa
  • .ellipsoidRb
  • .ellipsoidRg
  • .ellipsoidVolume
  • .ellipsoidVolumefraction
  • .ellipsoidNumberDensity unit 1/nm**3
  • .alpha orientation range
  • .ellipdoidAxisOrientation

References

to be published

[1](1, 2, 3)
  1. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).

Examples

import jscatter as js
p=js.grace()
q=js.loglist(0.01,5,800)
ff=js.ff.ellipsoidFilledCylinder(q,L=100,R=5.4,Ra=1.63,Rb=1.63,eta=0.4,alpha=90,epsilon=[0,90])
p.plot(ff.X,ff[2],legend='convolution cylinder x ellipsoids')
p.plot(ff.X,ff[3],legend='cylinder only')
p.plot(ff.X,ff[4],legend='ellipsoid only')
p.plot(ff.X,ff[5],legend='structure factor ellipsoids')
p.plot(ff.X,ff.Y,legend='conv. ellipsoid + filled cylinder')
p.legend()
p.yaxis(scale='l',label='I(q)')
p.xaxis(scale='n',label='q / nm\S-1')

# an angular averaged formfactor
def averageEFC(q,R,L,Ra,Rb,eta,alpha=[alpha0,alpha1],fPY=fPY):
    res=js.dL()
    alphas=np.deg2rad(np.r_[alpha0:alpha1:13j])
    for alpha in alphas:
        ffe=js.ff.ellipsoidFilledCylinder(q,R=R,L=L,Ra=Ra,Rb=Rb,eta=ata,alpha=alpha,)
        res.append(ffe)
    result=res[0].copy()
    result.Y=scipy.integrate.simps(res.Y,alphas)/(alpha1-alpha0)
    return result
jscatter.formfactor.gaussianChain(q, Rg, nu=0.5)[source]

General formfactor of a gaussian polymer chain with excluded volume parameter.

For nu=0.5 this is the Debye model for Gaussian chain in theta solvent. nu>0.5 for good solvents,nu<0.5 for bad solvents.

Parameters:
q : array

Scattering vector, unit eg 1/A or 1/nm

Rg : float

Radius of gyration, units in 1/unit(q)

nu : float, default=0.5

ν is the excluded volume parameter, which is related to the Porod exponent d as ν = 1/d and [5/3 <= d <= 3].

Returns:
dataArray [q,Fq]
  • .radiusOfGyration
  • .nu excluded volume parameter

Notes

  • Rg^2=l^2 N^{2\nu} with monomer length l and monomer number N.

  • calcs

    F(Q) = \frac{1}{\nu U^{\frac{1}{2\nu}}} \gamma_{inc}(\frac{1}{2\nu}, U) - \frac{1}{\nu U^{\frac{1}{\nu}}} \gamma_{inc}(\frac{1}{\nu}, U)

    with U=(qR_g)^2 and \gamma_{inc} as lower incomplete gamma function.

  • The absolute scattering is proportional to b^2 N^2=b^2 (R_g/l)^{1/\nu} with monomer number N and monomer scattering length b.

  • From [1]: “Note that this model describing polymer chains with excluded volume applies only in the mass fractal range ([5/3 <= d <= 3]) and does not apply to surface fractals ([3 < d < 4]). It does not reproduce the rigid-rod limit (d = 1) because it assumes chain flexibility from the outset, nor does it describe semi-flexible chains ([1 < d < 5/3]). “

  • This model should be favoured compared to the Beaucage model as it is not an artificial connection between two regimes.

References

[1](1, 2) Analysis of the Beaucage model Boualem Hammouda J. Appl. Cryst. (2010). 43, 1474–1478 http://dx.doi.org/10.1107/S0021889810033856
[2]SANS from homogeneous polymer mixtures: A unified overview. Hammouda, B. in Polymer Characteristics 87–133 (Springer-Verlag, 1993). doi:10.1007/BFb0025862

Examples

import jscatter as js
import numpy as np
q=js.loglist(0.1,8,100)
p=js.grace()
for nu in np.r_[0.3:0.61:0.05]:
   iq=js.ff.gaussianChain(q,2,nu)
   p.plot(iq,le='nu= $nu')
p.yaxis(scale='l')
p.xaxis(scale='l')
p.legend(x=0.2,y=0.5)
jscatter.formfactor.genGuinier(q, Rg=1, A=1, alpha=0)[source]

Generalized Guinier approximation for low wavevector q scattering q*Rg< 1-1.3

Parameters:
q : array of float

Wavevector

Rg : float

Radius of gyration in units=1/q

alpha : float

Shape [α = 0] spheroid, [α = 1] rod-like [α = 2] plane

A : float

Amplitudes

Returns:
dataArray [q,Fq]

Notes

Quantitative analysis of particle size and shape starts with the Guinier approximations.
  • For three-dimensional objects the Guinier approximation is given by I(q) = A e^{− Rg^2q^2/3}
  • This approximation can be extended also to rod-like and plane objects by I(q) =(\alpha \pi q^{-\alpha}) A e^{ − Rg^2q^2/(3-\alpha) }

If the particle has one dimension of length L that is much larger than the others (i.e., elongated, rod-like, or worm-like), then there is a q range such that qR_c < 1 << qL, where α = 1.

References

[1]Form and structure of self-assembling particles in monoolein-bile salt mixtures Rex P. Hjelm, Claudio Schteingart, Alan F. Hofmann, and Devinderjit S. Sivia J. Phys. Chem., 99:16395–16406, 1995
jscatter.formfactor.guinier(q, Rg=1, A=1)[source]

Classical Guinier

see genGuinier with alpha=0

Parameters:
q :array
A : float
Rg : float
jscatter.formfactor.multiShellCylinder(q, L, shellthickness, shellSLD, solventSLD=0, alpha=None, h=None, nalpha=30, ncap=31)[source]

Multi shell cylinder with caps in solvent averaged over axis orientations.

Each shell has a constant SLD and may have a cap with same SLD sequence. Caps may be globular (barbell) or small (like lenses). For zero length L a lens shaped disc or a double sphere like shape is recovered.

Parameters:
q : array

Wavevectors, units 1/nm

L : float

Length of cylinder, units nm L=0 infinite cylinder if h=None.

shellthickness : list of float or float, all >0

Thickness of shells in sequence, units nm. radii r=cumulativeSum(shellthickness)

shellSLD : list of float/list

Scattering length density of shells in nm^-2. A shell can be divided in sub shells if instead of a single float a list of floats is given. These list values are used as scattering length of equal thickness subshells. E.g. [1,2,[3,2,1]] results in the last shell with 3 subshell of equal thickness. The sum of subshell thickness is the thickness given in shellthickness. See second example. SiO2 = 4.186*1e-6 A^-2 = 4.186*1e-4 nm^-2

solventSLD : float

Scattering length density of surrounding solvent in nm^-2. D2O = 6.335*1e-6 A^-2 = 6.335*1e-4 nm^-2

h : float, default=None

Geometry of the caps with cap radii R=(r**2+h**2)**0.5 h is distance of cap center with radius R from the flat cylinder cap and r as radii of the cylinder shells.

  • None No caps, flat ends as default.
  • 0 cap radii equal cylinder radii (same shellthickness as cylinder shells)
  • >0 cap radius larger cylinder radii as barbell
  • <0 cap radius smaller cylinder radii as lens caps
alpha : float, [float,float] , unit rad

Orientation, angle between the cylinder axis and the scattering vector q. 0 means parallel, pi/2 is perpendicular If alpha =[start,end] is integrated between start,end start > 0, end < pi/2

nalpha : int, default 30

Number of points in Gauss integration along alpha.

ncap : int, default=31

Number of points in Gauss integration for cap.

Returns:
dataArray [q ,Iq ]
  • .outerCylinderVolume
  • .Radius
  • .cylinderLength
  • .alpha
  • .shellthickness
  • .shellSLD
  • .solventSLD
  • .modelname
  • .contrastprofile
  • .capRadii

Notes

Multishell of types:
  • flat cap cylinder L>0, radii>0, h=None
  • lens cap cylinder L>0, radii>0, h<0
  • globular cap cylinder L>0, radii>0, h>0
  • lens L=0, radii>0, h<0
  • barbell no cylinder L=0, radii>0, h>0
  • infinite flat disc L=0. h=None
Image of barbell

References

Single cylinder

[1]Guinier, A. and G. Fournet, “Small-Angle Scattering of X-Rays”, John Wiley and Sons, New York, (1955)
[2]http://www.ncnr.nist.gov/resources/sansmodels/Cylinder.html

Double cylinder

[3]Use of viscous shear alignment to study anisotropic micellar structure by small-angle neutron scattering, J. B. Hayter and J. Penfold J. Phys. Chem., 88:4589–4593, 1984
[4]http://www.ncnr.nist.gov/resources/sansmodels/CoreShellCylinder.html

Barbell, cylinder with small end-caps, circular lens

[5]Scattering from cylinders with globular end-caps Kaya (2004). J. Appl. Cryst. 37, 223-230] DOI: 10.1107/S0021889804000020 Scattering from capped cylinders. Addendum H. Kaya and Nicolas-Raphael de Souza J. Appl. Cryst. (2004). 37, 508-509 DOI: 10.1107/S0021889804005709

Examples

Alternating shells with different thickness 0.3 nm h2o and 0.2 nm d2o in vacuum:

import jscatter as js
import numpy as np
x=np.r_[0.0:10:0.01]
ashell=js.ff.multiShellCylinder(x,20,[0.4,0.6]*5,[-0.56e-4,6.39e-4]*5)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(ashell)
p[1].plot(ashell.contrastprofile,li=1) # a contour of the SLDs

Double shell with exponential decreasing exterior shell to solvent scattering:

import jscatter as js
import numpy as np
x=np.r_[0.0:10:0.01]
def doubleexpshells(q,L,d1,d2,e3,sd1,sd2,sol):
   # The third layer will have 9 subshells with combined thickness of e3.
   # The scattering length decays to e**(-3) in last subshell.
   return js.ff.multiShellCylinder(q,L,[d1,d2,e3],[sd1,sd2,((sd2-sol)*np.exp(-np.r_[0:3:9j])+sol)],solventSLD=sol)
dde=doubleexpshells(x,10,0.5,0.5,3,1e-4,2e-4,0)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(dde)
p[1].plot(dde.contrastprofile,li=1) # a contour of the SLDs

Cylinder with cap:

x=np.r_[0.1:10:0.01]
p=js.grace()
p.title('Comparison of dumbbell cylinder with simple models')
p.subtitle('thin lines correspond to simple models as sphere and dshell sphere')
p.plot(js.ff.multiShellCylinder(x,0,[10],[1],h=0),sy=[1,0.5,2],le='simple sphere')
p.plot(js.ff.sphere(x,10),sy=0,li=1)
p.plot(js.ff.multiShellCylinder(x,0,[2,1],[1,2],h=0),sy=[1,0.5,3],le='double shell sphere')
p.plot(js.ff.multiShellSphere(x,[2,1],[1,2]),sy=0,li=1)
p.plot(js.ff.multiShellCylinder(x,10,[3],[20],h=-5),sy=[1,0.5,4],le='thin lens cap cylinder=flat cap cylinder')
p.plot(js.ff.multiShellCylinder(x,10,[3],[20],h=None),sy=0,li=[1,2,1],le='flat cap cylinder')
p.plot(js.ff.multiShellCylinder(x,10,[3],[20],h=-0.5),sy=0,li=[3,2,6],le='thick lens cap cylinder')
p.yaxis(scale='l')
p.xaxis(scale='l')
p.legend(x=0.15,y=0.01)
jscatter.formfactor.multiShellDisc(q, radialthickness, shellthickness, shellSLD, solventSLD=0, alpha=None, h=None, nalpha=30, ncap=31)[source]

Multi shell disc in solvent averaged over axis orientations.

Parameters:
q : array

Wavevectors, units 1/nm

radialthickness : float, all >0

Radial thickness of disc shells from inner to outer, units nm radii r=cumulativeSum(radialthickness)

shellthickness : list of float or float, all >0

Thickness of shells from inner to outer, units nm. Innermost thickness is only once. total thickness = shellthickness[0]+2*cumulativeSum(shellthickness[1:])

shellSLD : list of float/list

Scattering length density of shells in nm^-2. A shell can be divided in sub shells if instead of a single float a list of floats is given. These list values are used as scattering length of equal thickness subshells. E.g. [1,2,[3,2,1]] results in the last shell with 3 subshell of equal thickness. The sum of subshell thickness is the thickness given in shellthickness. See second example. SiO2 = 4.186*1e-6 A^-2 = 4.186*1e-4 nm^-2

solventSLD : float

Scattering length density of surrounding solvent in nm^-2. D2O = 6.335*1e-6 A^-2 = 6.335*1e-4 nm^-2

alpha : float, [float,float] , unit rad

Orientation, angle between the cylinder axis and the scattering vector q. 0 means parallel, pi/2 is perpendicular If alpha =[start,end] is integrated between start,end start > 0, end < pi/2

nalpha : int, default 30

Number of points in Gauss integration along alpha.

Returns:
dataArray [q ,Iq ]
  • .outerDiscVolume
  • .radii
  • .alpha
  • .discthickness
  • .shellSLD
  • .solventSLD
  • .modelname

References

[1]Guinier, A. and G. Fournet, “Small-Angle Scattering of X-Rays”, John Wiley and Sons, New York, (1955)

Examples

Alternating shells with different thickness 0.3 nm h2o and 0.2 nm d2o in vacuum:

import jscatter as js
import numpy as np
x=np.r_[0.0:10:0.01]
ashell=js.ff.multiShellDisc(x,[0.6,0.4]*2,[0.4,0.6]*2,[-0.56e-4,6.39e-4]*2)
p=js.grace()
p[0].plot(ashell)
bshell=js.ff.multiShellDisc(x,2,2,6.39e-4)
p[0].plot(bshell)
jscatter.formfactor.multiShellEllipsoid(q, poleshells, equatorshells, shellSLD, solventSLD=0, alpha=None, tol=1e-06)[source]

Scattering of multi shell ellipsoidal particle with varying shell thickness at pole and equator.

Shell thicknesses add up to form complex particles with any combination of axial ratios and shell thickness. A const axial ratio means different shell thickness at equator and pole.

Parameters:
q : array

Wavevectors, unit 1/nm

equatorshells : list of float

Thickness of shells starting from inner most for rotated axis Re making the equator. unit nm. The absolute values are used.

poleshells : list of float

Thickness of shells starting from inner most for rotating axis Rp pointing to pole. unit nm. The absolute values are used.

shellSLD : list of float

List of scattering length densities of the shells in sequence corresponding to shellthickness. unit nm^-2.

solventSLD : float, default=0

Scattering length density of the surrounding solvent. unit nm^-2

alpha : [float,float], default [0,90]

Angular range of rotated axis to average over. Default is no preferred orientation.

tol : float

Absolute tolerance for above adaptive integration of alpha.

Returns:
dataArray [q, Iq]
Iq, scattering cross section in units nm**2
  • .contrastprofile as radius and contrast values at edge points of equatorshells
  • .equatorshellthicknes consecutive shell thickness
  • .poleshellthickness
  • .shellcontrast contrast of the shells to the solvent
  • .equatorshellradii outer radius of the shells
  • .poleshellradii
  • .outerVolume Volume of complete sphere
  • .I0 forward scattering for Q=0

References

[1]Structure Analysis by Small-Angle X-Ray and Neutron Scattering Feigin, L. A, and D. I. Svergun, Plenum Press, New York, (1987).
[2]http://www.ncnr.nist.gov/resources/sansmodels/Ellipsoid.html
[3]
  1. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).

Examples

Simple ellipsoid in vacuum:

x=np.r_[0.0:10:0.01]
Rp=2.
Re=1.
ashell=js.ff.multiShellEllipsoid(x,Rp,Re,1)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(ashell)
p[1].plot(ashell.contrastprofile,li=1) # a contour of the SLDs

Alternating shells with thickness 0.3 nm h2o and 0.2 nm d2o in vacuum:

x=np.r_[0.0:10:0.01]
shell=np.r_[[0.3,0.2]*3]
sld=[-0.56e-4,6.39e-4]*3
# constant axial ratio for all shells but nonconstant shell thickness
axialratio=2
ashell=js.ff.multiShellEllipsoid(x,axialratio*shell,shell,sld)
# shell with constant shellthickness of one component and other const axialratio
pshell=shell[:]
pshell[0]=shell[0]*axialratio
pshell[2]=shell[2]*axialratio
pshell[4]=shell[4]*axialratio
bshell=js.ff.multiShellEllipsoid(x,pshell,shell,sld)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(ashell,le='const. axial ratio')
p[1].plot(ashell.contrastprofile,li=2) # a contour of the SLDs
p[0].plot(bshell,le='const shell thickness')
p[1].plot(bshell.contrastprofile,li=2) # a contour of the SLDs
p[0].legend()

double shell with exponential decreasing exterior shell to solvent scattering:

x=np.r_[0.0:10:0.01]
def doubleexpshells(q,d1,ax,d2,e3,sd1,sd2,sol):
   shells =[d1   ,d2]+[e3]*9
   shellsp=[d1*ax,d2]+[e3]*9
   sld=[sd1,sd2]+list(((sd2-sol)*np.exp(-np.r_[0:3:9j])))
   return js.ff.multiShellEllipsoid(q,shellsp,shells,sld,solventSLD=sol)
dde=doubleexpshells(x,0.5,1,0.5,1,1e-4,2e-4,0)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(dde)
p[1].plot(dde.contrastprofile,li=1) # a countour of the SLDs
jscatter.formfactor.multiShellSphere(q, shellthickness, shellSLD, solventSLD=0)[source]

Scattering of spherical multi shell particle including linear contrast variation in subshells.

The results needs to be multiplied with the concentration to get the measured scattering.

Parameters:
q : array

Wavevectors to calculate form factor, unit e.g. 1/nm.

shellthickness : list of float

Thickness of shells starting from inner most, unit in 1/[q units].

shellSLD : list of float or list
List of scattering length densities of the shells in sequence corresponding to shellthickness. unit in nm**-2
  • Innermost shell needs to be constant shell.
  • If an element of the list is itself a list of SLD values it is interpreted as equal thick subshells with linear progress between SLD values in sum giving shellthickness.
  • If subshell list has only one float e.g. [1e.4] the second value is the SLD of the following shell.
  • If empty list is given as [] the SLD of the previous and following shells are used as smooth transition.
solventSLD : float, default=0

Scattering length density of the surrounding solvent. If equal to zero (default) then in profile the contrast is given. Unit in [q unit]**2 e.g. 1/nm**2

Returns:
dataArray [wavevector, Iq]
Iq scattering cross section in units nm**2
  • .contrastprofile as radius and contrast values at edge points
  • .shellthickness consecutive shell thickness
  • .shellcontrast contrast of the shells to the solvent
  • .shellradii outer radius of the shells
  • .slopes slope of linear increase of each shell
  • .outerVolume Volume of complete sphere
  • .I0 forward scattering for Q=0

Notes

The solution is unstable (digital resolution) for really low QR values, which are set to the I0 scattering.

Examples

Alternating shells with 5 alternating thickness 0.4 nm and 0.6 nm with h2o, d2o scattering contrast in vacuum:

x=np.r_[0.0:10:0.01]
ashell=js.ff.multiShellSphere(x,[0.4,0.6]*5,[-0.56e-4,6.39e-4]*5)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(ashell)
p[1].plot(ashell.contrastprofile,li=1) # a contour of the SLDs

Double shell with exponential decreasing exterior shell to solvent scattering:

x=np.r_[0.0:10:0.01]
def doubleexpshells(q,d1,d2,e3,sd1,sd2,sol):
   return js.ff.multiShellSphere(q,[d1,d2,e3*3],[sd1,sd2,((sd2-sol)*np.exp(-np.r_[0:3:9j]))],solventSLD=sol)
dde=doubleexpshells(x,0.5,0.5,1,1e-4,2e-4,0)
#plot it
p=js.grace()
p.multi(2,1)
p[0].plot(dde)
p[1].plot(dde.contrastprofile,li=1) # a contour of the SLDs
jscatter.formfactor.multilamellarVesicles(Q, R, N, phi, displace=0, dR=0, dN=0, shellthickness=0, ds=0, SLD=1, solventSLD=0, nGauss=100)[source]

Scattering intensity of a multilamellar vesicle with random displacements of the inner vesicles [1].

The result contains the full scattering, the structure factor of the shells and a multilayer formfactor of the lamellar layer structure. Other layer structures as mentioned in [2].

Parameters:
Q : float

Wavevector in 1/nm.

R : float

Outer radius of the Vesicle in units nm.

dR : float

Width of outer radius distribution in units nm.

displace : float

Displacements of the vesicles centers in units nm. This describes the displacement steps in a random walk of the centers. displace=0 it is concentric, all have same center. displace< R/N.

N : int

Number of layers.

dN : int, default=0

Width of distribution for number of layers. (dN< 0.4 is single N) A zero truncated normal distribution is used with N>0 and N<R/displace. Check .Ndistribution and .Nweight = Nweight for the used distribution.

shellthickness: float,list of float,default=0

Thickness of shells in symmetric layer in units nm. Zero assumes infinite thin layer with constant formfactor. List gives consecutive layer thickness from center to outside. [4,1] result in a [1,4,1] symmetric layer.

ds : float, not working , set to zero

Thickness fluctuation of the innermost layer in shellthickness. unit is nm. A Gaussian is used which is cut at 0.1*shellthickness[0]. ds should be significant smaller than shellthickness[0].

phi : float

Volume fraction \phi of layers inside of vesicle.

SLD : float

Scattering length density of shells in nm^-2.

solventSLD

Solvent scattering length density in nm^-2.

nGauss : int, default 100

Number of Gaussian quadrature points in integration over dR distribution.

Returns:
dataArray with [q,I(q),S(q),F(q)]
  • .columnname=’q;Iq;Sq;Fq’
  • .outerShellVolume
  • .Ndistribution
  • .Nweight
  • .displace
  • .phi
  • .shellthickness
  • .SLD
  • .solventSLD
  • .shellfluctuations=ds
  • .preFactor=phi*Voutershell**2

Notes

The left shows a concentric lamellar structure. The right shows the random path of the consecutive centers of the spheres. See Multilamellar Vesicles for resulting scattering curves.

Image of MultiLamellarVesicles

The function returns I(Q) as (see [1] equ. 17 )

I(Q)=\phi V_{outershell} S(Q) F(Q)

F(Q)= ( \sum_i d \rho_i sinc( Q d_i) )^2

with d\rho as scattering length density difference to next layer with thickness d_i and the shell structure factor S(Q) as described in equ. A2 in [1].

  • The amphiphile concentration phi is roughly given by phi = d/a, with d being the bilayer thickness and a being the spacing of the shells. The spacing of the shells is given by the scattering vector of the first correlation peak, i.e., a = 2pi/Q. Once the MLVs leave considerable space between each other then phi < d/a holds. This condition coincides with the assumption of dilution of the Guinier law. (from [1])

  • Structure factor part is normalized that S(0)=\sum_{j=1}^N (j/N)^2

  • To use a different shell form factor the structure factor is given explicitly.

  • Comparing a unilamellar vesicle (N=1) with multiShellSphere shows that R is located in the center of the shell:

    Q=js.loglist(0.0001,5,1000)#np.r_[0.01:5:0.01]
    ffmV=js.ff.multilamellarVesicles
    p=js.grace()
    # comparison double sphere
    mV=ffmV(Q=Q, R=100., displace=0, dR=0,N=1,dN=0, phi=1,shellthickness=6, SLD=1e-4,nGauss=20)
    p.plot(mV)
    p.plot(js.ff.multiShellSphere(Q,[97,6],[0,1e-4]),li=1)
    p.yaxis(label='S(Q)',scale='l',min=1e-10,max=1e6,ticklabel=['power',0])
    p.xaxis(label='Q / nm\S-1',scale='l',min=1e-3,max=5,ticklabel=['power',0])
    

References

[1](1, 2, 3, 4, 5, 6) Small-angle scattering model for multilamellar vesicles H. Frielinghaus Physical Review E 76, 051603 (2007)
[2]Small-Angle Scattering from Homogenous and Heterogeneous Lipid Bilayers N. Kučerka Advances in Planar Lipid Bilayers and Liposomes 12, 201-235 (2010)

Examples

See Multilamellar Vesicles

import jscatter as js
import numpy as np

ffmV=js.ff.multilamellarVesicles
Q=js.loglist(0.01,5,500)
dd=1.5
dR=5
nG=100
ds=0
R=50
N=5
st=[3.5,(6.5-3.5)/2]
p=js.grace(1,1)
p.title('Lipid bilayer in SAXS/SANS')
# SAXS
saxm=ffmV(Q=Q, R=R, displace=dd, dR=dR,N=N,dN=0, phi=0.2,shellthickness=st,ds=ds, SLD=[0.6e-3,0.07e-3],solventSLD=0.94e-3,nGauss=nG)
p.plot(saxm,sy=[1,0.3,1],le='SAXS multilamellar')
saxu=ffmV(Q=Q, R=R, displace=0, dR=dR,N=1,dN=0, phi=0.2,shellthickness=st,ds=ds,SLD=[0.6e-3,0.07e-3],solventSLD=0.94e-3,nGauss=100)
p.plot(saxu,sy=0,li=[3,2,1],le='SAXS unilamellar')
# SANS
sanm=ffmV(Q=Q, R=R, displace=dd, dR=dR,N=N,dN=0, phi=0.2,shellthickness=st,ds=ds, SLD=[1.5e-4,0.3e-4],solventSLD=6.335e-4,nGauss=nG)
p.plot( sanm,sy=[1,0.3,2],le='SANS multilamellar')
sanu=ffmV(Q=Q, R=R, displace=0, dR=dR,N=1,dN=0, phi=0.2,shellthickness=st,ds=ds,SLD=[1.5e-4,0.3e-4],solventSLD=6.335e-4,nGauss=100)
p.plot(sanu,sy=0,li=[3,2,2],le='SANS unilamellar')
#
p.legend(x=0.015,y=1e-1)
p.subtitle('R=50 nm, N=5, shellthickness=[1.5,3.5,1.5] nm, dR=5, ds=0.')
p.yaxis(label='S(Q)',scale='l',min=1e-6,max=1e4,ticklabel=['power',0])
p.xaxis(label='Q / nm\S-1',scale='l',min=1e-2,max=5,ticklabel=['power',0])
jscatter.formfactor.multilayer(q, shelld, SLD, solventSLD=0, ds=0)[source]

Form factor of a symmetric multilayer with rectangular profile perpendicular to multilayer.

Parameters:
q : array

Wavevectors in units 1/nm.

shelld : list of float

Thickness of shells in symmetric layer in units nm. List gives consecutive layer thickness from center to outside. [4,1] result in a [1,4,1] symmetric layer.

SLD : list of float

Scattering length density of shells in nm^-2.

solventSLD : float, default=0

Solvent scattering length density in nm^-2.

Returns:
dataArray

Examples

import jscatter as js
import numpy as np
q=np.r_[0.01:5:0.01]
p=js.grace()
p.plot(js.ff.multilayer(q,[5,1],[1,2]))
p.plot(js.ff.multilayer(q,[5,1],[0.2,1]))
p.plot(js.ff.multilayer(q,[5,1],[-0.2,1]))
jscatter.formfactor.orientedCloudScattering(qxz, cloud, rms=0, coneangle=10, nCone=50, V=0, formfactor=None, ncpu=0)[source]

2D scattering of an oriented cloud of scatterers with equal or variable scattering length. Using multiprocessing.

Cloud can represent an object described by a cloud of isotropic scatterers with orientation averaged in a cone. Scattering amplitudes may be constant, sphere scattering amplitude, Gaussian scattering amplitude or explicitly given form factor. Remember that the atomic bond length are on the order 0.1-0.2 nm and one expects Bragg peaks.

Parameters:
qxz : array, ndim= Nx3

wavevectors in 1/nm

cloud : array Nx3 or Nx4
  • Center of mass positions (in nm) of the N scatterers in the cloud.
  • If given cloud[3] is the scattering length b at positions cloud[:3], otherwise b=1.
coneangle : float

Coneangle in units degrees.

rms : float, default=0

Root mean square displacement =<u**2>**0.5 of the positions in cloud as random (Gaussian) displacements in units nm. Displacement u is random for each orientation nCone. rms can be used to simulate a Debye-Waller factor. Larger nCone is advised to smooth data.

nCone : int

Cone average as average over nCone Fibonacci lattice points in cone.

V : float, default=0

Volume of the scatterers for formfactor ‘gauss’ and ‘sphere’.

formfactor : ‘gauss’,’sphere’,array 2xN,default=None
Gridpoint scattering amplitudes are described by:
  • None : const scattering amplitude, point like particle.
  • ‘sphere’: Sphere scattering amplitude according to [3]. The sphere radius is R=(\\frac{3V}{4\\pi})^{1/3}
  • ‘gauss’ : Gaussian function b_i(q)=b V exp(- \\frac{V^{2/3.}}{4\pi}q^2) according to [2].
  • explicit isotropic form factor ff as array with [q,ff] e.g. from multishell. The normalized scattering amplitude fa for each gridpoint is calculated as fa=ff**0.5/fa(0). Missing values are linear interpolated (np.interp), q values outside interval are mapped to qmin or qmax.
ncpu : int, default 0
Number of cpus used in the pool for multiprocessing.
  • not given or 0 : all cpus are used
  • int>0 : min(ncpu, mp.cpu_count)
  • int<0 : ncpu not to use
  • 1 : single core usage for testing or comparing speed to Debye
Returns:
dataArray [qx,qz, Pq]
  • The forward scattering is Pq(q=0)= sumblength**2
  • .sumblength : Sum of blength with sumblength**2
  • .formfactoramplitude : formfactoramplitude of cloudpoints according to type for all q values.
  • .formfactoramplitude_q :corresponding q values.

References

[1]
  1. Kotlarchyk and S.-H. Chen, J. Chem. Phys. 79, 2461 (1983).1
[2](1, 2) An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules Fraser R MacRae T Suzuki E IUCr Journal of Applied Crystallography 1978 vol: 11 (6) pp: 693-694
[3](1, 2) X-ray diffuse scattering by proteins in solution. Consideration of solvent influence B. A. Fedorov, O. B. Ptitsyn and L. A. Voronin J. Appl. Cryst. (1974). 7, 181-186 doi: 10.1107/S0021889874009137

Examples

How to use orientedCloudScattering for fitting see last Example in cloudScattering.

import jscatter as js
import numpy as np
# two points along y result in pattern independent of x but cos**2 for z
# with larger coneangle Ix becomes qx dependent
rod0=np.zeros([2,3])
rod0[:,1]=np.r_[0,np.pi]
qxz=np.mgrid[-6:6:50j, -6:6:50j].reshape(2,-1).T
ffe=js.ff.orientedCloudScattering(qxz,rod0,coneangle=5,nCone=10,rms=0)
fig=js.mpl.surface(ffe.X,ffe.Z,ffe.Y)
fig.axes[0].set_title(r'cos**2 for Z and slow decay for X due to 5 degree cone')
fig.show()
# noise in positions
ffe=js.ff.orientedCloudScattering(qxz,rod0,coneangle=5,nCone=100,rms=0.1)
fig=js.mpl.surface(ffe.X,ffe.Z,ffe.Y)
fig.axes[0].set_title('cos**2 for Y and slow decay for X with position noise')
fig.show()
#
# two points along z result in symmetric pattern around zero
# asymmetry reflects fibonacci lattice -> increase nCone
rod0=np.zeros([2,3])
rod0[:,2]=np.r_[0,np.pi]
ffe=js.ff.orientedCloudScattering(qxz,rod0,coneangle=45,nCone=10,rms=0.005)
fig2=js.mpl.surface(ffe.X,ffe.Z,ffe.Y)
fig2.axes[0].set_title('symmetric because of orientation along z; \n nCone needs to be larger for large cones')
fig2.show()
#
# 5 spheres in line with small position distortion
rod0 = np.zeros([5, 3])
rod0[:, 1] = np.r_[0, 1, 2, 3, 4] * 3
qxz = np.mgrid[-6:6:50j, -6:6:50j].reshape(2, -1).T
ffe = js.ff.orientedCloudScattering(qxz, rod0, formfactor='sphere', V=4/3.*np.pi*2**3, coneangle=20, nCone=30, rms=0.02)
fig4 = js.mpl.surface(ffe.X, ffe.Z, np.log10(ffe.Y), colorMap='gnuplot')
fig4.axes[0].set_title('5 spheres with R=2 along Z with noise (rms=0.02)')
fig4.show()
#
# 5 core shell particles in line with small position distortion (Gaussian)
rod0 = np.zeros([5, 3])
rod0[:, 1] = np.r_[0, 1, 2, 3, 4] * 3
qxz = np.mgrid[-6:6:50j, -6:6:50j].reshape(2, -1).T
# only as demo : extract q from qxz
qxzy = np.c_[qxz, np.zeros_like(qxz[:, 0])]
qrpt = js.formel.xyz2rphitheta(qxzy)
q = np.unique(sorted(qrpt[:, 0]))
# or use interpolation
q = js.loglist(0.01, 7, 100)
cs = js.ff.sphereCoreShell(q=q, Rc=1, Rs=2, bc=0.1, bs=1, solventSLD=0)
ffe = js.ff.orientedCloudScattering(qxz, rod0, formfactor=cs, coneangle=20, nCone=100, rms=0.05)
fig4 = js.mpl.surface(ffe.X, ffe.Z, np.log10(ffe.Y), colorMap='gnuplot')
fig4.axes[0].set_title('5 core shell particles with R=2 along Z with noise (rms=0.05)')
fig4.show()

Make a slice for an angular region but with higher resolution to see the additional peaks due to alignment

rod0 = np.zeros([5, 3])
rod0[:, 1] = np.r_[0, 1, 2, 3, 4] * 3
qxz = np.mgrid[-4:4:150j, -4:4:150j].reshape(2, -1).T
# only as demo : extract q from qxz
qxzy = np.c_[qxz, np.zeros_like(qxz[:, 0])]
qrpt = js.formel.xyz2rphitheta(qxzy)
q = np.unique(sorted(qrpt[:, 0]))
# or use interpolation
q = js.loglist(0.01, 7, 100)
cs = js.ff.sphereCoreShell(q=q, Rc=1, Rs=2, bc=0.1, bs=1, solventSLD=0)
ffe = js.ff.orientedCloudScattering(qxz, rod0, formfactor=cs, coneangle=20, nCone=100, rms=0.05)
fig4 = js.mpl.surface(ffe.X, ffe.Z, np.log10(ffe.Y), colorMap='gnuplot')
fig4.axes[0].set_title('5 core shell particles with R=2 along Z with noise (rms=0.05)')
fig4.show()
#
# transform X,Z to spherical coordinates
qphi=js.formel.xyz2rphitheta([ffe.X,ffe.Z,abs(ffe.X*0)],transpose=True )[:,:2]
# add qphi or use later rp[1] for selection
ffb=ffe.addColumn(2,qphi.T)
# select a portion of the phi angles
phi=np.pi/2
dphi=0.2
ffn=ffb[:,(ffb[-1]<phi+dphi)&(ffb[-1]>phi-dphi)]
ffn.isort(-2)    # sort along radial q
p=js.grace()
p.plot(ffn[-2],ffn.Y,le='oriented spheres form factor')
# compare to coreshell formfactor scaled
p.plot(cs.X,cs.Y/cs.Y[0]*25,li=1,le='coreshell form factor')
p.yaxis(label='F(Q,phi=90°+-11°)', scale='log')
p.title('5 aligned core shell particle with additional interferences',size=1.)
p.subtitle(' due to sphere alignment dependent on observation angle')

# 2: direct way with 2D q in xz plane
rod0 = np.zeros([5, 3])
rod0[:, 1] = np.r_[0, 1, 2, 3, 4] * 3
x=np.r_[0.0:6:0.05]
qxzy = np.c_[x, x*0,x*0]
for alpha in np.r_[0:91:30]:
    R=js.formel.rotationMatrix(np.r_[0,0,1],np.deg2rad(alpha)) # rotate around Z axis
    qa=np.dot(R,qxzy.T).T[:,:2]
    ffe = js.ff.orientedCloudScattering(qa, rod0, formfactor=cs, coneangle=20, nCone=100, rms=0.05)
    p.plot(x,ffe.Y,li=[1,2,-1],sy=0,le='alpha=%g' %alpha)
p.xaxis(label=r'Q / nm\S-1')
p.legend()
jscatter.formfactor.pearlNecklace(Q, Rc, l, N, A1=None, A2=None, A3=None, ms=None, mr=None)[source]

Formfactor of a pearl necklace (freely jointed chain of pearls connected by rods)

The formfactor is normalized that the pearls contribution equals 1.

Parameters:
Q : array

wavevector in nm

Rc : float

pearl radius in nm

N : float

number of pearls (homogeneous spheres)

l : float

physical length of the rods

A1, A2, A3 : float

Amplitudes of pearl-pearl, rod-rod and pearl-rod scattering. Can be calculated with the number of chemical monomers in a pearl ms and rod mr (see below for further information) If ms and mr are given A1,A2,A3 are calculated from these.

ms : float, default None

number of chemical monomers in each pearl

mr : float, default None

number of chemical monomers in rod like strings

Returns:
dataArray [q, Iq]
  • .pearlRadius
  • .A1
  • .A2
  • .A3
  • .numberPearls
  • .mr
  • .ms
  • .stringLength

Notes

  • M : number of rod like strings (M=N-1)
  • A1 = ms²/(M*mr+N*ms)²
  • A2 = mr²/(M*mr+N*ms)²
  • A3 = (mr*ms)/(M*mr+N*ms)²

References

[1]
  1. Schweins, K. Huber, Macromol. Symp., 211, 25-42, 2004.

written by L. S. Fruhner, FZJ Juelich 2016

jscatter.formfactor.ringPolymer(q, Rg)[source]

General formfactor of a polymer ring in theta solvent.

Parameters:
q : array

Scattering vector, unit eg 1/A or 1/nm

Rg : float

Radius of gyration, units in 1/unit(q)

Returns:
dataArray [q,Fq]
  • .radiusOfGyration

References

[1]SANS from homogeneous polymer mixtures: A unified overview. Hammouda, B. in Polymer Characteristics 87–133 (Springer-Verlag, 1993). doi:10.1007/BFb0025862

Examples

import jscatter as js
import numpy as np
q=js.loglist(0.1,8,100)
p=js.grace()
iq=js.ff.ringPolymer(q,5)
p.plot(iq.X,iq.Y*iq.X**2)
p.yaxis(scale='l')
p.xaxis(scale='l')
p.legend(x=0.2,y=0.5)
jscatter.formfactor.scatteringFromSizeDistribution(q, sizedistribution, size=None, func=<function beaucage>, weight=None, **kwargs)[source]

Scattering of objects with one multimodal parameter as e.g. multimodal size distribution.

Distributions might be mixtures of small and large particles bi or multimodal. For predefined distributions see formel.parDistributedAverage with examples. The weighted average over given sizedistribution is calculated.

Parameters:
q : array of float;

Wavevectors to calculate scattering; unit = 1/unit(size distribution)

sizedistribution : dataArray or array

Explicit given distribution of sizes as [ [list size],[list probability]]

size : string

Name of the parameter describing the size (may be also something different than size).

func : lambda or function

Function that describes the form factor with first arguments (q,size,…) and should return dataArray with .Y as result.

kwargs :

Any additional keyword arguments passed to for func.

weight : function

Weight function dependent on size. E.g. weight = lambda R:rho**2 * (4/3*np.pi*R**3)**2 with V= 4pi/3 R**3 for normalized form factors to account for forward scattering of volume objects of dimension 3.

Returns:
dataArray [q,I(q)]

Notes

We have to discriminate between formfactor normalized to 1 (e.g. beaucage) and form factors returning the absolute scattering (e.g. sphere) including the contrast. The later contains already \rho^2 V^2, the first not.

We need for normalized formfactors P(q) I(q) = n \rho^2 V^2 P(q) with n as number density \rho as difference in average scattering length (contrast), V as volume of particle (~r³ ~ mass) and use weight = \rho^2 V(R)^2

I(q)= \sum_{R_i} [ weight(R_i) * probability(R_i) * P(q, R_i , *kwargs).Y ]

For a gaussian chain with R_g^2=l^2 N^{2\nu} and monomer number N (nearly 2D object) we find N^2=(R_g/l)^{1/\nu} and the forward scattering as weight I_0=b^2 N^2=b^2 (R_g/l)^{1/\nu}

Examples

The contribution of different simple sizes to Beaucage

import jscatter as js
q=js.loglist(0.01,6,100)
p=js.grace()
# bimodal with equal concentration
bimodal=[[12,70],[1,1]]
Iq=js.ff.scatteringFromSizeDistribution(q=q,sizedistribution=bimodal,d=3,weight=lambda r:(r/12)**6)
p.plot(Iq,legend='with aggregates')
Iq=js.ff.scatteringFromSizeDistribution(q=q,sizedistribution=bimodal,d=3)
p.plot(Iq,legend='with aggregates')
# 2:1 concentration
bimodal=[[12,70],[1,2]]
p.plot(js.ff.scatteringFromSizeDistribution(q=q,sizedistribution=bimodal,d=2.5),legend='no aggregates')
p.yaxis(scale='l')
p.xaxis(scale='l')

Three sphere sizes:

import jscatter as js
q=js.loglist(0.001,6,1000)
p=js.grace()
# trimodal with equal concentration
trimodal=[[10,50,500],[1,0.01,0.00001]]
Iq=js.ff.scatteringFromSizeDistribution(q=q,sizedistribution=trimodal,size='radius',func=js.ff.sphere)
p.plot(Iq,legend='with aggregates')
p.yaxis(label='I(q)',scale='l',max=1e13,min=1)
p.xaxis(scale='l',label='q / nm\S-1')
p.text(r'minimum \nlargest',x=0.002,y=1e10)
p.text(r'minimum \nmiddle',x=0.02,y=1e7)
p.text(r'minimum \nsmallest',x=0.1,y=1e5)
p.title('trimodal spheres')
p.subtitle('first minima indicated')
jscatter.formfactor.sphere(q, radius, contrast=1)[source]

Scattering of a single homogeneous sphere.

Parameters:
q : float

Wavevector in units of 1/nm

radius : float

Radius in units nm

contrast : float, default=1

Difference in scattering length to the solvent = contrast

Returns:
dataArray [q,Iq]
  • Iq scattering intensity
  • .I0 forward scattering

Notes

The first minimum of the form factor is at q*R=4.493

References

[1]Guinier, A. and G. Fournet, “Small-Angle Scattering of X-Rays”, John Wiley and Sons, New York, (1955).
jscatter.formfactor.sphereCoreShell(q, Rc, Rs, bc, bs, solventSLD=0)[source]

Scattering of a spherical core shell particle.

Parameters:
q : float

Wavevector in units of 1/(R units)

Rc,Rs : float

Radius core and radius of shell Rs>Rc

bc,bs : float

Contrast to solvent scattering length density of core and shell.

solventSLD : float, default =0

Scattering length density of the surrounding solvent. If equal to zero (default) then in profile the contrast is given.

Returns:
dataArray [wavevector ,Iq ]

Notes

Calls multiShellSphere.

jscatter.formfactor.sphereFuzzySurface(q, R, sigmasurf, contrast)[source]

Scattering of a sphere with a fuzzy interface.

Parameters:
q : float

Wavevector in units of 1/(R units)

R : float

The particle radius R represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core density.

sigmasurf : float

Sigmasurf is the width of the smeared particle surface.

contrast : float

Difference in scattering length to the solvent = contrast

Returns:
dataArray [q, Iq]
  • Iq scattering intensity related to sphere volume.
  • .I0 forward scattering

Notes

The “fuzziness” of the interface is defined by the parameter sigmasurf. The particle radius R represents the radius of the particle where the scattering length density profile decreased to 1/2 of the core density. sigmasurf is the width of the smeared particle surface. The inner regions of the microgel that display a higher density are described by the radial box profile extending to a radius of approximately Rbox ~ R - 2(sigma). In dilute solution, the profile approaches zero as Rsans ~ R + 2(sigma).

References

[1]
  1. Stieger, J. S. Pedersen, P. Lindner, W. Richtering, Langmuir 20 (2004) 7283-7292
jscatter.formfactor.sphereGaussianCorona(q, R, Rg, Ncoil, coilequR, coilSLD=6.4e-05, sphereSLD=0.0004186, solventSLD=0.0006335, d=1)[source]

Scattering of a sphere surrounded by gaussian coils as model for grafted polymers on particle e.g. a micelle.

The additional scattering is uniformly distributed at the surface, which might fail for lower aggregation numbers as 1, 2, 3. Instead of aggregation number in [1] we use sphere volume and a equivalent volume of the gaussian coils.

Parameters:
q: array of float

Wavevectors in unit 1/nm

R : float

Sphere radius in unit nm

Rg : float

Radius of gyration of coils in unit nm

d : float, default 1

Coils centre located d*Rg away from the sphere surface

Ncoil : float

Number of coils at the surface (aggregation number)

coilequR : float

Equivalent radius to calc volume of one coil if densely packed as a sphere. Needed to calculate absolute scattering of the coil.

coilSLD : float

Scattering length density of coil in bulk. unit nm^-2. default hPEG = 0.64*1e-6 A^-2 = 0.64*1e-4 nm^-2

sphereSLD : float

Scattering length density of sphere.unit nm^-2. default SiO2 = 4.186*1e-6 A^-2 = 4.186*1e-4 nm^-2

solventSLD : float

Scattering length density of solvent. unit nm^-2. default D2O = 6.335*1e-6 A^-2 = 6.335*1e-4 nm^-2

Returns:
dataArray [q,Iq]
  • .coilRg
  • .sphereRadius
  • .numberOfCoils
  • .coildistancefactor
  • .coilequVolume
  • .coilSLD
  • .sphereSLD
  • .solventSLD

Notes

The defaults result in a silica sphere with hPEG grafted at the surface in D2O.
  • Rg=N**0.5*b with N monomers of length b
  • Vcoilsphere=N*monomerVolume=4/3.*np.pi*coilequR**3
  • coilequR=(N*monomerVolume/(4/3.*np.pi))**(1/3.)

References

[1](1, 2) Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores Pedersen J Journal of Applied Crystallography 2000 vol: 33 (3) pp: 637-640
[2]Hammouda, B. (1992).J. Polymer Science B: Polymer Physics30 , 1387–1390

Examples

import jscatter as js
q=js.loglist(0.1,5,100)
p=js.grace()
p.plot(js.ff.sphereGaussianCorona(q,4.4,2,30,2))
jscatter.formfactor.superball(q, R, p, SLD=1, solventSLD=0, nGrid=15, returngrid=False)[source]

A superball is a general mathematical shape that can be used to describe rounded cubes, sphere and octahedron’s.

The numerical integration is done by a pseudorandom grid of scatterers. The integration is valid at low Q. Validity can be increased if nGrid is increased.

Parameters:
q : array

Wavevector in 1/nm

R : float, None

2R = edge length

p : float, 0<p<100

Parameter that describes shape | p=0 empty space | p<0.5 concave octahedron’s | p=0.5 octahedron | 0.5<p<1 convex octahedron’s | p=1 spheres | p>1 rounded cubes | p->inf cubes

SLD : float, default =1

Scattering length density of cuboid.unit nm^-2

solventSLD : float, default =0

Scattering length density of solvent. unit nm^-2

nGrid : int

Number of gridpoints is nGrid**3. relError=nGrid*4 is used for Fibonacci lattice with 2*relError+1 orientations in spherical average.

returngrid : bool

Return grid.

Returns:
dataArray [q,Iq, beta]

References

[1]Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems Yager, K.G.; Zhang, Y.; Lu, F.; Gang, O. Journal of Applied Crystallography 2014, 47, 118–129. doi: 10.1107/S160057671302832X
[2]http://gisaxs.com/index.php/Form_Factor:Superball

Examples

Compare to extreme cases of sphere (p=1) and cube (p->inf , use here 100)

import jscatter as js
import numpy as np
#
q=np.r_[0:3.5:0.02]
R=6;
p=js.grace()
p.multi(2,1)
p[0].yaxis(scale='l')
ss=js.ff.superball(q,R,p=1,returngrid=1)
p[0].plot(ss,legend='superball p=1')
ss=js.ff.superball(q,R,p=1,returngrid=1,nGrid=20)
p[0].plot(ss,legend='superball p=1 nGrid=20')
p[0].plot(js.ff.sphere(q,R),li=1,sy=0,legend='sphere ff')
p[0].legend(x=2,y=2e5)
#
p[1].yaxis(scale='l')
cc=js.ff.superball(q,R,p=100,nGrid=15)
p[1].plot(cc,sy=[1,0.3,4],legend='superball p=100 nGrid=15')
cc=js.ff.superball(q,R,p=100,nGrid=20)
p[1].plot(cc,sy=[1,0.3,5],legend='superball p=100 nGrid=20')
p[1].plot(js.ff.cuboid(q,2*R),li=4,sy=0,legend='cuboid')
p[1].legend(x=2,y=2e5)
#
# visualisation
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# cubic grid points
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
q=np.r_[0:5:0.1]
R=3
pxyz=js.ff.superball(q,R,p=200,nGrid=10,returngrid=True).grid
pxyz=pxyz[pxyz[:,0]>0]
ax.scatter(pxyz[:,0],pxyz[:,1],pxyz[:,2],color="k",s=20)
ax.set_xlim([-3,3])
ax.set_ylim([-3,3])
ax.set_zlim([-3,3])
ax.set_aspect("equal")
plt.tight_layout()
plt.show(block=False)
jscatter.formfactor.teubnerStrey(q, xi, d, eta2=1)[source]

Phenomenological model for the scattering intensity of a two-component system using the Teubner-Strey model [1].

Often used for bi-continuous micro-emulsions.

Parameters:
q : array

wavevectors

xi : float

correlation length

d : float

characteristic domain size, periodicity

eta2 : float, default=1

squared scattering length density contrast

Returns:
dataArray [q, Iq]

Notes

  • q_{max}=((2\pi/d)^2-\xi^{-2})^{1/2}

References

[1](1, 2, 3) M. Teubner and R. Strey, Origin of the scattering peak in microemulsions, J. Chem. Phys., 87:3195, 1987
[2]K. V. Schubert, R. Strey, S. R. Kline, and E. W. Kaler, Small angle neutron scattering near lifshitz lines: Transition from weakly structured mixtures to microemulsions, J. Chem. Phys., 101:5343, 1994

Examples

Fit Teubner-Strey with background and a power law for low Q

#import jscatter as js
#import numpy as np

def tbpower(q,B,xi,dd,A,beta,bgr):
    # Model Teubner Strey  + power law and background
    tb=js.ff.teubnerStrey(q=q,xi=xi,d=dd)
    # add power law and background
    tb.Y=B*tb.Y+A*q**beta+bgr 
    tb.A=A
    tb.bgr=bgr
    tb.beta=beta
    return tb

# simulate some data
q=js.loglist(0.01,5,600)
data=tbpower(q,1,10,20,0.002,-3,0.1)
# or read them
# data=js.dA('filename.chi')

# plot data
p=js.grace()
p.plot(data,legend='simulated data')
p.xaxis(scale='l',label=r'Q / nm\S-1')
p.yaxis(scale='l',label='I(Q) / a.u.')
p.title('TeubnerStrey model with power and background')
jscatter.formfactor.wormlikeChain(q, N, a, R=None, SLD=1, solventSLD=0, rtol=0.02)[source]

Scattering of a wormlike chain, which correctly reproduces the rigid-rod and random-coil limits.

The forward scattering is :math:´I0=V^2(SLD-solventSLD)^2´ volume :math:´V=piR^2N´.

Parameters:
q : array

wavevectors in 1/nm

N : float

Chain length, units of 1/q

a : float

Persistence length with l=2a l=Kuhn length (segment length), units of nm.

R : float

Radius in units of nm.

SLD : float

Scattering length density segments.

solventSLD :

Solvent scattering length density.

rtol : float

Maximum relative tolerance in integration.

Returns:
dataArray [q, Iq]
  • .chainRadius
  • .chainLength
  • .persistenceLength
  • .Rg
  • .volume
  • .contrast

Notes

From [1] :
The Kratky plot (Figure 4 ) is not the most convenient way to determine a as was pointed out in ref 20. Figure 5 provides an alternative way of measuring a by plotting the experimentally measurable combination Nk2S(k) versus a for fixed wavelength k. As Figure 5 indicates, this plot is rather insensitive to the chain length N and therefore is universal. The numerical analysis of eq 17 shows that this remains true for as long as k is not too small. Taking into account that the excluded-volume effects leave S(k) practically unchanged (e.g., see Figures 2 and 4 of ref 231, the plot of Figure 5 can serve as a useful alternative to the Kratky plot which, in addition, does not suffer from the polydispersity effects
  • Rg is calculated according to equ 20 in [2] and [3].

References

[1](1, 2) Analytical calculation of the scattering function for polymers of arbitrary flexibility using the dirac propagator A. L. Kholodenko, Macromolecules, 26:4179–4183, 1993
[2](1, 2) The structure factor of a wormlike chain and the random-phase-approximation solution for the spinodal line of a diblock copolymer melt Zhang X et. al. Soft Matter 10, 5405 (2014)
[3](1, 2) Models of Polymer Chains Teraoka I. in Polymer Solutions: An Introduction to Physical Properties pp: 1-67, New York, John Wiley & Sons, Inc.

Examples

import jscatter as js
p=js.grace()
p.multi(2,1)
p.title('figure 3 (2 scaled) of ref Kholodenko Macromolecules 26, 4179 (1993)',size=1)
q=js.loglist(0.01,10,100)
for a in [1,2.5,5,20,50,1000]:
    ff=js.ff.wormlikeChain(q,200,a)
    p[0].plot(ff.X,200*ff.Y*ff.X**2,legend='a=%.4g' %ff.persistenceLength)
    p[1].plot(ff.X,ff.Y,legend='a=%.4g' %ff.persistenceLength)
p[0].legend()
p[0].yaxis(label='Nk\S2\NS(k)')
p[1].xaxis(label='k',scale='l')
p[1].yaxis(label='S(k)',scale='l')
#
p=js.grace()
p.multi(2,1)
p.title('figure 4 of ref Kholodenko Macromolecules 26, 4179 (1993)',size=1)
# fig 4 seems to be wrong scale in [Re57b872e77e7-1]_ as for large N with a=1 fig 2 and 4 should have same plateau.
a=1
q=js.loglist(0.01,4./a,100)
for NN in [1,20,50,150,500]:
    ff=js.ff.wormlikeChain(q,NN,a)
    p[0].plot(ff.X*a,NN*a*ff.Y*ff.X**2,legend='N=%.4g' %ff.chainLength)
    p[1].plot(ff.X,ff.Y,legend='a=%.4g' %ff.persistenceLength)
p[0].legend()
p[0].yaxis(label='(N/a)(ka)\S2\NS(k)')
p[0].xaxis(label='ka')
p[1].xaxis(label='k',scale='l')
p[1].yaxis(label='S(k)',scale='l')