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Lent Term 2015 
Prof. Mark Thomson 

Lecture 2 : The Gaussian Limit  

Statistics 
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   Lecture     1: Back to basics  
                            Introduction, Probability distribution functions, Binomial 
                            distributions, Poisson distribution  
   Lecture     2: The Gaussian Limit 
                            The central limit theorem, Gaussian errors, Error  
                             propagation, Combination of measurements, Multi- 
                             dimensional Gaussian errors, Error Matrix    
   Lecture     3:  Fitting and Hypothesis Testing 
                             The χ2 test, Likelihood functions, Fitting, Binned maximum  
                               likelihood, Unbinned maximum likelihood 
   Lecture     4:  Dark Arts 
                             Bayesian statistics, Confidence intervals, systematic errors. 
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! Problem: given the results of two straight line fits with errors,  
      calculate the uncertainty on the intersection 

! Solution: first learn about 
"  Gaussian errors  
"  Correlations 
"  Error propagation 
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The Central Limit Theorem 

If n random variables, xi, each distributed according to any PDF, are combined  
   then the sum y = Σ xi  will have a PDF which, for large n, tends to a Gaussian   

* The proof of the central limit theorem is non-trivial and isn�t reproduced here 

!  We have already shown that for large µ that a Poisson distribution tends to a  
        Gaussian 
!  This is one example of a more general theorem, the �Central Limit Theorem�* 

!  For this reason the Gaussian distribution plays an important role in statistics 

     which by  make a suitable coordinate transformation,                        , gives the  
      Normal distribution 

Mean = zero 
Rms  = 1 
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A useful integral relationship 
!  We will often take averages of functions of Gaussian distributed quantities 
!  Hence interested in integrals of the form 

!  Define 

!  Hence 

!  By writing 

For n odd,  

e.g. 

For even n:  
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Properties of the Gaussian Distribution 

Proof: 

! Normalised to unity (it�s a PDF) 

! Variance 

Proof: 
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Properties of the 1D Gaussian Distribution, cont. 

! Natural to introduce  

�squared deviation from mean in 
   terms of standard error�  

! Fractions of events  
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Averaging Gaussian Measurements 
!  Suppose we have two independent measurements of a quantity, e.g. the W  
      boson mass: 

and 
      there are two questions we can ask:  

•  Are the measurements compatible?     [Hypothesis test – we�ll return to this ] 
•  What is our best estimate of the parameter x?    (i.e. how to average) 

!  In principle can take any linear combination as an unbiased estimator of x  
provided 

since 

!  Clearly want to give the highest weight to the more precise measurements… 
      e.g. two undergraduate measurements of   

!  Method I: choose the weights to minimise the uncertainty on  

      subject to constraint   
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! Therefore, since the weights sum to unity: 

! Hence for two measurements 

with 
Problem: derive this. 

(just error propagation as 
 described later) 
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Averaging Gaussian Measurements II 
! Can obtain the same expression using a natural probability based approach 

"  We can interpret the first measurement in terms of a probability distribution for 
     the true value of x, i.e. a Gaussian centred on   x1 

"  Bayes� theorem then tells us how to modify this in the light of a new measurement 

"  So our new expression for the knowledge of x is: 

"  Completing the square gives plus a little algebra gives 

with and 

"  Product of n Gaussians is a Gaussian 



Prof. M.A. Thomson Lent Term 2015 39 

Error Propagation I 
!  Suppose measure a quantity x with a Gaussian uncertainty σx; what is the 
      uncertainty on a derived quantity  

•  Expand           about     

•  Define estimate of y:      

   so   
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!  It is easy to understand the origin of  

!  How does a �small� change in x, i.e.  σx, propagate to a small change in y, σy 



Prof. M.A. Thomson Lent Term 2015 41 

!  A word of warning…  
"  In deriving the error propagation equation 
"  Neglected second order terms in the Taylor expansion 
"  This is equivalent to saying that the derivative is constant in region of interest 
"  This may not always be true… 

�Correct� 

Calculated 
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Example 
!  Measurement of transverse momentum of a track from a fit 

•  radius of curvature of track helix, R, given by  

•  track fit returns a Gaussian uncertainty in radius of curvature, and hence, 
     the PDF is Gaussian in   

•  what is the error in  
let 
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! Recall  question 2: 
Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5 
What is the best estimate of x and what is the estimated uncertainty?     

So our best estimate of x is: 
! But how good is our estimate of the error – i.e. what is the �error on the error� ?  

"  It can be shown (but not easy):  

"  For a Gaussian distribution  

"  Hence (by error propagation – show this) the error on the error estimate is 

so 

"  To obtain a 10% estimate of σ; need rms of 51 measurements ! 

Error on Error 
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Combining Gaussian Errors  
!  There are many cases where we want to combine measurements to extract a 
       single quantity, e.g. di-jet invariant mass   

•  What is the uncertainty on the mass given 
!  Start by considering a simple example 

•  Mean of a is  
•  Variance of a is given by: 

!  Two important points: 
"  Errors add in quadrature (i.e. sum the squares) 
"  The appearance of a new term, the covariance of x and y 
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Correlated errors: covariance  
!  Consider 

•  Suppose in a single experiment measure a value of x and y 
•  Imagine repeating the measurement multiple times    
•  If the measurements of x and y are uncorrelated, i.e. INDEPENDENT  

•  If  x and y are correlated •  If  x and y are anti-correlated 
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!  Often convenient to express covariance in terms of the correlation coefficient 

•  Consider an experiment which returns two values x and y; where y-y = 2(x-x)  

!  Hence (unsurprisingly) the correlation coefficient expresses the degree  
     of correlation with 

!  Going back to  
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Error Propagation II: the general case 
!  We can now consider the more general case 

!  In order to estimate the error on a derived quantity need to know correlations 
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Example continued 
! Back to the original problem 

! First assume independent errors on                     and for simplicity neglect        term 

giving: 

! EXERCISE: by first considering         ,  calculate       , including the        term                

ANS: 
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Estimating the Correlation Coefficient 
!  Correlations can arise from physical effects, e.g. 

•  Would expect E1 and E2 to be (slightly) anti-correlated 
     why ? 

•  Can always check (in MC) by plotting 

against 

NOTE: uncertainty on correlation coefficient 

!  Correlations also arise when calculating derived quantities from uncorrelated 
 measurements 

•  e.g. 
•  this type of correlation can be handled mathematically (see later)    
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Properties of the 2D Gaussian Distribution 
!  For two independent variables (x,y) the joint probability distribution 
     is simply the product of the two distributions  

NOTE: 

!  Can write in terms of  with 
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•  68 % of events within ±1 σx  
•  68 % of events within ±1 σy  
•  Now consider contours of  

•              corresponds to contour 
     where PDF falls to            of peak 

•  Only 39% of events within   
•  Only 86% of events within   

Now to introduce correlations… 
   rotate the ellipse 
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" Same PDF, but now w.r.t. different 
     axes 

" Simple to derive the general error 
      ellipse with correlations… 
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Let  

hence 

To find the equivalent correlation coefficient, evaluate 

To eliminate the rotation angle, write 

giving 

Compare to: 

gives 

hence 
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Properties of the 2D Gaussian Distribution 
!  Start from uncorrelated 2D Gaussian: 

!  Make the coordinate transformation 

!  From previous page identify 



Prof. M.A. Thomson Lent Term 2015 55 

!  Note we have now expressed the same 
     ellipse in terms of the new coordinates,  
     where the errors are now correlated. 

!  If dealing with correlated errors can 
      always find a linear combination  
      of variables which are uncorrelated 

- 
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!  Example 2D error ellipses with different correlation coefficients 



Prof. M.A. Thomson Lent Term 2015 57 

The Error Ellipse and Error Matrix 
!  Now we have the general equation for two correlated Gaussian distributed quantities 

!  Defines the error ellipse 
!  Ultimately want to generalise this to an N variable hyper-ellipsoid 
!  Sounds hard… but is actually rather simple in matrix form 
!  Define the ERROR MATRIX 

i.e. 

! and define the DISCREPANCY VECTOR 

using and 

we can write 
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!  The beauty of this formalism is that it can be extended to any number of  
       correlated Gaussian distributed variables 

with 

!  Can write this in terms of the         for n-variables (including correlations)       

with 
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General transformation of Errors 
!  Suppose we have a set of variables, xi, and the error matrix, M, and now wish to 
      transform to a set of variables, yi , defined by 
!  Taylor expansion about mean: 
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!  T is the error transformation matrix  

For Gaussian errors we can now do anything ! 

!  Can deal with: 
#  correlated errors 
#  arbitrary dimensions 
#  parameter transformations  

Examples… 
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A simple example 
!  Measure two uncorrelated variables 

!  Calculate two derived quantities 

Error matrix 

!  Transformation matrix 

!  Giving 
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A more involved example 
! Given the results of two straight line fits, calculate the uncertainty on the intersection 

" Lines Intersect at: 

•  With the error matrix (note the results of 
      the two fits are uncorrelated)   

" To calculate error on intersection need error transformation matrix, i.e. need the 
     partial derivatives, e.g.  

with 

"  giving 
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"  then its just algebra 

"  giving 

! OK, it is not pretty, but we now have an analytic expression  
      (i.e. once you have done the calculation, computationally very fast)  
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"  Apply to a special case, intersection with a fixed line 

Hence                                     which makes perfect sense  

!  The treatment of Gaussian errors via the error matrix is an extremely powerful 
       technique – it is also easy to apply (once you understand the basic ideas)  
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Summary 
!  Should now understand: 

#  Properties of the Gaussian distribution 
#  How to combine errors 
#  Propagation simple of 1D errors 
#  How to include correlations 
#  How to treat multi-dimensional errors 
#  How to use the error matrix 

!  Next up, chi-squared, likelihood fits, … 
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Appendix: Error on Error - Justification 

For large n 

" Assume mean of distribution is zero (can always make this transformation without 
    affecting the variance) 


