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Lecture 2 : The Gaussian Limit
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Lecture 2: The Gaussian Limit
The central limit theorem, Gaussian errors, Error
propagation, Combination of measurements, Multi-
dimensional Gaussian errors, Error Matrix
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* Problem: given the results of two straight line fits with errors,
calculate the uncertainty on the intersection

h

y=0x-+c

* Solution: first learn about
= Gaussian errors
= Correlations
» Error propagation
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The Central Limit Theorem

* We have already shown that for large p that a Poisson distribution tends to a
Gaussian

* This is one example of a more general theorem, the “Central Limit Theorem”*

If n random variables, x;, each distributed according to any PDF, are combined
then the sum y = 2 x; will have a PDF which, for large », tends to a Gaussian

* For this reason the Gaussian distribution plays an important role in statistics

ey (x—p)?
G(x;u,0) = N exp{—T‘_z}

which by make a suitable coordinate transformation, x — Ox + U, gives the
Normal distribution

1 2N -
N(x) = exp {_x_ } Mean = zero

Rms =1

* The proof of the central limit theorem is non-trivial and isn’ t reproduced here
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A useful integral relationship

* We will often take averages of functions of Gaussian distributed quantities (x?), (x*)
* Hence interested in integrals of the form

n 1 e n —(x_u)z 1 n tee n —ﬁ
(x=p)") = m/_w (x—p)"e 207 dx:\/T_nG _yeTdy
T 3
* Define I, = Xle” T dx Fornodd, I, =0
+oo x2 —+o0 x2
For even n: = / d(—x”_le_7)+(n—l)/ X"2e" T dx
x2 oo
= l—xn_ 6_7] +(n—1)I,—»
* Hence b _ (n—1) n>1
I, >
1 f—i-oo( )n _(xﬂtz)zdx
* By writing o X —H)TE 20 I,
(x—p)) = @ - = (k- = o
T
2nc f_“e 20t dx
I LI I
eg. ((x—u)? %04=g£64=(4—1)(2—1)£64:304
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Properties of the Gaussian Distribution

*Normalised to unity (it’s a PDF)

~+o0
/ G(xu,o)dx=1

Foo 1 oo (x-p)?
Proof: . — Ser
roo lm G(x;u,0)dx o [m e dx
1 +oo 2
= zno_-\/ic-/_m e Y dy
1
*Variance Var(x) = ((x— u)?) = o2
tee 2 1 Foo 2 _(X—H)Z
Proof: Var(x)Z/ (x—u)°Gx;u,0)dx = / (x—u)%e 202 dx
—oo 270 J—o
I
= —262
Il
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Properties of the 1D Gaussian Distribution, cont.

Glxt,0) = e
X, o) = e 20
60.5: L B L R L : K V216
3 . : 2
¥ oabk e Py 1 *Natural to introduce X (x)
a ] —u)?
o [ ; NGl DN
[ ] o2
Q o3 .
i 1] “squared deviation from mean in
S STIE PR T Z - terms of standard error”
0.2 N ] 1 x2
i 1 Gx;u,0) = exp| — =
: : (x;p,0) T p( 2)
0.1 22
X 2] Fractions of events
0:. . : {  68.3% x—ul<lo <)
4 2 0 2 4 955% : |x—p| <20 (<4
(x-wW/o = 99.7% : |x—pu| <36 (<9
6x1077: r—p| >S50 (=2
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Averaging Gaussian Measurements

* Suppose we have two independent measurements of a quantity, e.g. the W

boson mass:
X]Eto; and x»+0»

there are two questions we can ask:
* Are the measurements compatible? [Hypothesis test — we’ Il return to this ]
* What is our best estimate of the parameter x? (i.e. how to average)
* In principle can take any linear combination as an unbiased estimator of X
X12 = W1X] + WXy provided o +wm =1

since <X12> = <X1> + 0}2<XQ> =0OIUt+mmpu=u

* Clearly want to give the highest weight to the more precise measurements...
e.g. two undergraduate measurements of g[m S ]

10.1£0.3 5+5

* Method I: choose the weights to minimise the uncertainty on
2 2 2
O, = Z @; G;

l
subject to constraint f(@;,®,...) =1—-Y,0;=0
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* Therefore, since the weights sum to unity:

1/0}

W; =

* Hence for two measurements =+

2 1 .— Problem: derive this.
with Ox = 1 1 : :

—+ = (just error propagation as
) described later)
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Averaging Gaussian Measurements i

* Can obtain the same expression using a natural probability based approach
= We can interpret the first measurement in terms of a probability distribution for
the true value of x, i.e. a Gaussian centred on x;

expq — —(x il >2
V2o 20}
= Bayes' theorem then tells us how to modify this in the light of a new measurement
P(x;data) «< P(data;x)P(x)
(x —x2)? (x—x1)?
P(x;data) < expl ———— sexpy ————
( ) p{ 202 p 202

= So our new expression for the knowledge of x is:

P(x) =P(x;x1) =

1((x—x;)? x—x2)?
P(x) < exp—— ( 21) + ( 22)
2 o (o5
= Completing the square gives plus a little algebra glves
—\2 I
(x—X) —_ o o 2 1

P(x) < expy ——— with x= -1 2 and 6% = ——+F
=en] o) w3 e

= Product of n Gaussians is a Gaussian
Prof. M.A. Thomson Lent Term 2015
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Error Propagation |

* Suppose measure a quantity x with a Gaussian uncertainty o,; what is the

uncertainty on a derived quantity
y=f(x)
* Expand f(X) about x
_ . [(df
fx)=fx) +x—x) (a) + ...

» Define estimate of y: y = f(X)

oo y-F=f0) - f@~ (x—T df)
2

=32 = (=97 ()

X
df
oy = — ] O
g ( dx X i
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. . df
* |t is easy to understand the origin of 0, = or Ox
y y X
y=f(x)
to e ———
y y E' ................................... , /: (ﬂ)
1 \Ys
F _
Fe-
_ X
X+ oy
* How does a “small” change in X, i.e. O, propagate to a small change in ), o,
Oy dy
(o - dx / ¢
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* A word of warning... df
= In deriving the error propagation equation — Oy, = — | Oy
* Neglected second order terms in the Taylor expansion dx X

* This is equivalent to saying that the derivative is constant in region of interest
* This may not always be true...

dr )
Y1 o
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Example

* Measurement of transverse momentum of a track from a fit
* radius of curvature of track helix, R, given by

R = 0.3B(T)pr(GeV)

« track fit returns a Gaussian uncertainty in radius of curvature, and hence,
the PDF is Gaussian in 1/pr

O1/pr
e what is the error in PT
let XZI/pT
pr = l/x
dor 1 __ 2
dx x2 T
2
dpr
2 _ 2
i = ()
2 2\2 2
GPT = (pT) Oy
2
Opr = P1O1/py
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Error on Error

*Recall question 2:
Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of X and what is the estimated uncertainty?

Xx=5.86; 5,1 =2.80; oy= S”T‘Sl =1.25

So our best estimate of xis: | x=5.94+1.3

*But how good is our estimate of the error — i.e. what is the “error on the error” ?
= [t can be shown (but not easy):

Var(s?) = 1 (<(x—u)4> -

» For a Gaussian distribution ((x — u)4> =304

4 . ) 4
so Var(sz)zc—(?)—n 3>: °

n n—1 n—1

n—3

n—1

(=02

= Hence (by error propagation — show this) the error on the error estimate is

o)
Oy — ——
2(n—1)
= To obtain a 10% estimate of O; need rms of 51 measurements !
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Combining Gaussian Errors

* There are many cases where we want to combine measurements to extract a
single quantity, e.g. di-jet invariant mass Eq

m?> = E1E>(1 —cos8)
« What is the uncertainty on the mass given OE,, OF,,Og \W
* Start by considering a simple example
a=x+y
* Mean of a is a=x+y
* Variance of a is given by:

(a—a)*) = ((x+y—(E+Y))
o; = ((x=x+[-y)%
= (=) +{0-9)+2{x-%)(-))
6; +0, +2((x—X)(y—))

E>

* Two important points:
» Errors add in quadrature (i.e. sum the squares)

= The appearance of a new term, the covariance of x and y

cov(x,y) = ((x—X)(y—3))
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Correlated errors: covariance

* Consider cov(x,y) = ((x—X)(y—Y))
* Suppose in a single experiment measure a value of X and y
- Imagine repeating the measurement multiple times =) {xi,yi}
* If the measurements of X and ) are uncorrelated, i.e. INDEPENDENT

y ‘ .

y :‘:':‘.0

*If X and y are correlated

{cov(x,y)) =0

y b

(cov(x,y)) >0

y

=

y

y

* If X and y are anti-correlated

. {cov(x,y)) <0

=|

Prof. M.A. Thomson

Lent Term 2015

45

* Often convenient to express covariance in terms of the correlation coefficient

Oy Oy

B cov(X,y)

cov(x,y) = ((x—=%)(y—9))
oy = ((x—%)%)2

- Consider an experiment which returns two values x and y; where -y = 2(x-X)

y

4

s

Yy

g

X

cov(x,y)

X

= P

((x—%)(2x —2%))
2((x—%)°)

267 = 0,0,

+1

* Hence (unsurprisingly) the correlation coefficient expresses the degree

of correlation with

* Going backto @ =X+
=

o2 =

p| <1

o7 + 0, +2p 0,0y

Prof. M.A. Thomson
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Error Propagation ll: the general case

* We can now consider the more general case

a:f(x7y>
a = ) =1ED+ P+ Loy

o (Z) e+ () 6l Lano-n
@) = (L) o+ (L) -9 2L L 05
(5)

2 2
of ze+<8f> Gy2+28—fﬁcov(x,y)

dy dx dy

af\’ o\’ of of
2 2 2
% = (8x> Ot (8))) oy +2p dx dy Ox%y

* In order to estimate the error on a derived quantity need to know correlations
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Example continued

1
*Back to the original problem m = {E|E>(1 —cos0)}?2

62 — a_m 202 _|_ a_m 262 _|_ a_m 202+
mo \9E Ei JdE, E2 a0 0

om dm om dm om dm

2P = 2p10 = — 2020~ ——
PlzaE1 8E26E16E2+ PleaE1 890E10'9+ [)29(3”52 3965269

*First assume independent errors on E|, E>, 6 and for simplicity neglect Op term

om 1 E2 2 8m 1 E2 2
— =—-{=2(1—cosO — =—-< —(1—cosB
8E1 2 {El ( €0 )} aEl 2 | E ( )
1[(E 1 [E
.. 2 2 2 1 2
: = —<¢—(1- < =—=(1-
giving (o 4{E1( cos@)}O'E]+4{E2( cosG)}GE2
1
on _ 1for 0|’
m 2 E12 E22

* EXERCISE: by first considering 0,2, calculate %”, including the Opg term

2 2 2
Om 1] og Of, L (0 2
ANS: - = 5 {—Elz] +—E22 +cot (E s

2
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Estimating the Correlation Coefficient

* Correlations can arise from physical effects, e.qg. E; E>
* Would expect E, and E, to be (slightly) anti-correlated
why ? v
4
» Can always check (in MC) by plotting \
AE; = E; —EMC  against AE, = E, — EMC
AE,
X! P _ VY| cov(ay) = ((x—7) (v =)
—rT— AL 0Oy or = ((x—x)2)?
_(1=p?)
NOTE: uncertainty on correlation coefficient Sp ~ ?
* Correlations also arise when calculating derived quantities from uncorrelated

measurements
‘eg. x=a+b y=a—b>b

* this type of correlation can be handled mathematically (see later)
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Properties of the 2D Gaussian Distribution

* For two independent variables (X,)) the joint probability distribution P(x,y)
is simply the product of the two distributions

x—x)2 —v)2
Pley) = PP = e - L] exp{__@ >’>}

V2ro, 202 | \27mo, 207
1 L (x=%)  0—9)
P(x,y) = -
(x.5) 270, Oy eXp{ 2 [ o} * o}
) Fee 1 x—X)?
NOTE: / Plx,y)dy = ——— exp{——< 262) } = P(x)
- X X

* Can write in terms of )Cz with

1 X s a0 =% (y—y)?
P(x7y) = 27r6x6y CXP{——} X = Xx +xy = O-xZ + O')?
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|i LR RS ":'g"'_'1'- - 68 % of events within #1 o,
4 N : =2 ] * 68 % of events within *1 g,
: | ] * Now consider contours of
B —% =2 5\2
21 €2 7 xz_(x—x) (y—9)
L 2- o 2 2
i "~ Pye” 2 O; o,
o+ T T - g . xz = 1 corresponds to (1:ontour
U U /= S i where PDF fallsto ¢ 2 of peak
20 B + Only 39% of events within 22 <1
I ] . Only 86% of events within x> < 4
_4 - -
- cr ] Now to introduce correlations...
: 4 rotate the ellipse
ilcx X=X X—)_( . c S X—X
: ’ Y-Y) \—-sc)\y—y
+20y s=sin@; c=-cosO
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|>- ! l T T I'l_l.“l | L '._... LI B B I B B B B i
>l_ 4 _Gx = 1 -
Ly =2 ]
2 _ —- =Same PDF, but now w.r.t. different
..................... SO SO (S . axes
i f 1 =Simple to derive the general error
oy 0 i . ellipse with correlations...
LSRR & : : .
i L I 1 1 L |§ 1 L 1 1 L 1 ; I L L 1 I L
-4 -2: 0 i2 4

Prof. M.A. Thomson
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Let X = Hcx—+sy

Y = —sx+cy
To find the equivalent correlation coefficient, evaluate
(XY) = (scy* —scx* 4 (¢* — s%)xy) = sc(0; — 07)

_ 2 2\
hence pXYGXGY — SC(Gy J— O'x ), .....................

To eliminate the rotation angle, write

o7 = (X?) = (c2x? +5°y* + 2csxy) = ? 02 + s20'y2
o2 = (Y?) = (c?y? +5°x* — 2csxy) = 026)? + 50?2
giving 030y = s°c*(0; + 0, )+ (c* +5*) ol o;

Compare to: pzc}%o-% — S2C2(G;," _|_ G;l' _ 26363) SRS

; 22 A2 4 2.2 4\ <2 <2
gives Ox Oy = p~Ox Oy + (c* +25°c” +5%)0; Oy
2N\ ~2 2 22
hence (1_p )GXGY _GxGy
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Properties of the 2D Gaussian Distribution

* Start from uncorrelated 2D Gaussian:

1 X2 y2
P(x,y) = ———exXpl—=—>—=—
2 2
20y Oy 20; 20
* Make the coordinate transformation
x=cX—sY; y=sX+cY P(x,y)dxdy = P(X,Y)dXdY
1 (X —sY)?  (c¥Y +sX)?
P(X,Y) = ———exp{— -
210, 0y { 207 207
1 X2_c2+s2 Y? cz+s2 +2XY 1 1
= eXpy ——= | 5+ =S| = | 5+ =|+—=s5c| = ——=
2m0, 0y 2 _ze o} 2 |0} of 2 o2 o}
_ 1 exp X2 262 +5%c2 oy *o} + 570} 2XYsc o, — o}
2m0, 0y 2| clo} 2 c2o} 2 c2o}

* From previous page identify
(X?) =03 =c’c?+s%0} (Y2)=op =c’0l+s*0r (1—p?)ogo; = 020?
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1 2 o} Y2 o} 2pXY
PX,)Y) = XPY T2 | (1 - o2Val2a2 | 2 nozaoz | T 2
2m+/(1—p?)oxoy 2 [(1-p?)oyoy 2 [(1=p*)ogoy]  2(1-p?)oxoy
1 1 1 [X* Y? 2pXY
= XP{ 312 o2 T o2
21/ (1 —p?)oxoy 21-p% oy oy OxOy
* Note we have now expressed the same x03."

ellipse in terms of the new coordinates,
where the errors are now correlated.

* If dealing with correlated errors can
always find a linear combination
of variables which are uncorrelated
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* Example 2D error ellipses with different correlation coefficients

> e o e N A i e e T

> T T T T > T T _: 20_— p=+0.5 1

p=-05 ] 20F

[N

T T T
p=-0.8 ] p=-0.

R E

I -
20  -10 0 10 20 20 -10 0 10 20 20 -10 0 10 20 20 -10 0 10 20

! /g) )| /ﬁﬁ %ﬁ | /ﬁ
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The Error Ellipse and Error Matrix

* Now we have the general equation for two correlated Gaussian distributed quantities

Plxy) — ! exp{_l ! [(x—f)2+<y—y>2_2p<x—a—c><y—y>”

274/ (1 - p2)oy0; 21-p%| of oy 05Oy

* Defines the error ellipse

* Ultimately want to generalise this to an N variable hyper-ellipsoid

* Sounds hard... but is actually rather simple in matrix form
* Define the ERROR MATRIX

a8 e G5

y
X—X
*and define the DISCREPANCY VECTOR | X = y—y detM
1 = o
using M= 3 _G"p icy and |M| = (1 —p2)c7xZC72
1— p 0Oy 0}2 Y
1 | S
we can write P(x,y) = — 1 ¢Xp _EX M 'x
2n|M|2
Prof. M.A. Thomson Lent Term 2015
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* The beauty of this formalism is that it can be extended to any number of
correlated Gaussian distributed variables

1 1
P(xl,xz,...,xn) = TCXP{—EXTM_IX}
PHE
with o} P120102 ... P1,010y
M— | proica  oF . pucro,
P1nCG1C; P00y ...  Op

n

* Can write this in terms of the 952 for n-variables (including correlations)

1 2 2
P(xl,xz,...,xn) = Wexp{—%} :P()e_%T
T

with X2 = xIM Ix
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General transformation of Errors

* Suppose we have a set of variables, x;, and the error matrix, M, and now wish to
transform to a set of variables, y;, defined by

* Taylor expansion about mean:

dy _ 2
i = Vit ) 5—(x—x)+O(Ax
y y ; 3 xk( 1 —X) + O(Ax7)
_ dyi _
Yi—Yyi = zk: Oy (Xk - xk)
- = _ dyi - dy; -
<(yt_yi)(yj_yj)> = <;M(kak);M(xexz)
B dyi 8yj 3
— Z S One ((oxx — Xx) (xe — X¢))
T dyi 8y, g
MY =
{v} Z Ix; 8xg
My, = T'MT
Prof. M.A. Thomson Lent Term 2015 59
* T is the error transformation matrix
9y I» 9m
o'?x] dxy ot dxy
Iy I» 9m
T — 8x2 a)Q ot aX2
Iy I» Iym
ox, dx, 7 Odxy

For Gaussian errors we can now do anything !

* Can deal with:
+ correlated errors
+ arbitrary dimensions
+ parameter transformations

Examples...
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A simple example

* Measure two uncorrelated variables a1 0,, b+ 0,
2 2
Error matrix M= [ ©4 02 M 1= 1/0; 0 5
0 o 0 1/c;
* Calculate two derived quantities
x=a+b y=a—>b

* Transformation matrix

dx dy 1 1
T = da ga =

dx 9y 1 -1

ob db

* Giving
2 2
Oy pzedy — TTMT — I 1 lop 02 I 1
POy Oy o; 1 -1 0 o 1 -1
_ ([ o;+oc; o;—o0;
o;—0} 0240}

2 2
2 2 2 2. Og — 0y
O =0, =0,+0;; p=-5—3
X y a b 02+0}
Prof. M.A. Thomson Lent Term 2015 61

A more involved example

* Given the results of two straight line fits, calculate the uncertainty on the intersection

* With the error matrix (note the results of
the two fits are uncorrelated)
_ o2 P1040 0 0
y=Pxt+d plo'ZO'C c? 0 0
M= 0 0 o2
B P26p0q4
0 0 P20304 Lo
_ d—c od—Bc
sLines Intersectat: x= = —
o—p o—f
=To calculate error on interse%tion needderror transformation matrix, i.e. need the
artial derivatives,e.g. 2X — _¢—a _
P & 90 = [a=py
= giving
g K Bx
Joo  do — —
T = 3c gc — - _ﬁ with K = o B
ogx 9y _ -
B 9B o—pf K oK
dx dy +1 o
dd dd
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= then its just algebra

2
( O POxOy ) - T™MT
poxoy, Oy
0, P10go. O 0 —x —Bx
_ -k -1 K 41 P1040.  ©F 0 0 -1 -B
- —-Bx —B ax « 0 0 O;  P20p0s K akx
0 0 P2030y o} +1 «a
= giving
1 -
o2 = BT Kk*(0g + 0) +2K(P1GaOc + P20 O4) + 07 + Gj]
] d—c
1 i —
p0Ox0y = CRYIE k*(Bog + acg) +2k(p1B0a 0, + p2aG04) + BO7 + occj] K="z B
1 -
o) = CEYE _Kz(Bzoé +a’0p) +2K(p1 B> G 0. + p20t” 03 04) + B 07 + oczoﬁ]
* OK, it is not pretty, but we now have an analytic expression
(i.e. once you have done the calculation, computationally very fast)
Prof. M.A. Thomson Lent Term 2015 63
= Apply to a special case, intersection with a fixed line y = 1—x
B=—-1,d=+1;03=0; 0;,=0
1
o’ = @ P (k04 +2Kkp1640. + 0
1
=) POy = CETE [—K?0; —2Kkp100: — O]
1
y=o0x+c ol = @ pr [k*0g +2Kkp1 04 0c + 0
Hence O'x2 = O'yz; p = —1 which makes perfect sense

* The treatment of Gaussian errors via the error matrix is an extremely powerful
technique - it is also easy to apply (once you understand the basic ideas)

Prof. M.A. Thomson Lent Term 2015
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Summary

* Should now understand:

¢+ Properties of the Gaussian distribution
+ How to combine errors

¢+ Propagation simple of 1D errors

¢+ How to include correlations

¢+ How to treat multi-dimensional errors

+ How to use the error matrix

* Next up, chi-squared, likelihood fits, ...
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Appendix: Error on Error - Justification

=Assume mean of distribution is zero (can always make this transformation without
affecting the variance)

Var(s*) = {

= (G-
= XA L) - 20%( L)+ o
= iz (n<x4> +n(n— 1)<x%x?>i¢j) —o*

Q

n—1 \ For large n
W+ et - ot { largen

S| =33
S
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