
Ab initio Restructuring Tool Enabling the

Modelling of Interface Structures (ARTEMIS): A

User Guide

Ned Thaddeus Taylor

4th May 2020

Contents

1 Features/Capabilites 4

2 Credits and Licence 6

2.1 Credits . 6

2.2 Licence . 6

2.3 Beta testers . 7

3 Getting started 8

3.1 Requirements . 8

3.2 Installation . 9

3.3 Test ARTEMIS with a simple example 9

3.3.1 Generate interface example . 9

3.3.2 Pregenerated interface example 10

3.3.3 Identify terminations example 10

4 Version History 12

5 User guide 17

5.1 Input files . 17

CONTENTS 3

5.2 Running the code . 19

5.3 Outputs of ARTEMIS . 19

5.4 Conclusion . 20

Chapter 1

Features/Capabilites

ARTEMIS is a tool intended to help users with interface generation. Here is a list

of the features it currently supports:

• Read and write geometry structure files of the formats used by VASP, CASTEP

and Quantum Espresso.

• Generate slabs along user-defined Miller planes (generates all possible surface

terminations in this plane)

• Determine lattice matches within defined strain tolerances for two parent struc-

tures given by the user and generate interfaces based on these.

• Determine the primitive layer of the parent structures and use these to build

the parent regions of the interface structures to user-defined thicknesses.

• Identify unique surface terminations for structures along user-defined Miller

planes and print slabs of these for the user to study.

• Identify unique terminations of the parent structures for Miller planes and

use these to generate unique interfaces with these being the surfaces at the

interface.

• Generate unique interface shifts to allow the user to explore the energetic space

of interfacial alignment.

CHAPTER 1. FEATURES/CAPABILITES 5

• Generate unique interface swaps (intermixing) to allow the user to explore

graded interfaces.

• Take in pregenerated interface structures and determine the location of their

interfaces.

• Take in pregenerated interface structures and perform shifts and swaps on

them to generate further potential interfaces.

Chapter 2

Credits and Licence

2.1 Credits

The ARTEMIS code was developed by Ned Thaddeus Taylor and Steven Paul Hep-

plestone. Many of the subroutines and functions used by the code were developed by

Ned Thaddeus Taylor and Francis Huw Davies. During his Summer project, Isiah

Edward Mikel Rudkin worked alongside Ned to develop the shifting and swapping

modules of ARTEMIS, along with helping test the code.

For further information about the group behind ARTEMIS, follow the link http:

//www.artemis-materials.co.uk/.

For support and sending bug-reports, please contact the following email address:

support@artemis-materials.co.uk

2.2 Licence

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0

Unported (CC BY-NC 3.0) License (https://creativecommons.org/licenses/

by-nc/3.0/). Please refer to the link for a detailed description of the license.

http://www.artemis-materials.co.uk/
http://www.artemis-materials.co.uk/
https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-nc/3.0/

CHAPTER 2. CREDITS AND LICENCE 7

2.3 Beta testers

The following people have engaged in useful discussions that have helped to improve

the quality of the program and have tested it to help find bugs in the software.

1. Conor Jason Price (University of Exeter)

2. Tsz Hin Chan (University of Exeter)

3. Joe Pitfield (University of Exeter)

4. Edward Allery David Baker (University of Exeter)

5. Shane Graham Davies (University of Exeter)

Chapter 3

Getting started

3.1 Requirements

The following utilities are required to install ARTEMIS:

• gcc version 7.2.0 (GNU Compiler Collection). Type gcc --version to verify

this. This package can be downloaded from https://gcc.gnu.org/

• GNU make (any version). Type make --version to verify this. This package

can be downloaded from https://gcc.gnu.org/

ARTEMIS has currently been tested to work using both the gcc fortran compiler

mentioned above and the Intel fortran compiler (ifort version 17.0.4). Keep in mind,

though, that ARTEMIS has been developed using the gcc fortran compiler and, as

such, has been more thoroughly tested using this compiler. Whilst compilation

should work with newer versions of the compilers, this has not been tested.

ARTEMIS is known to not compile with gcc version 4.8.0. This is due to that ver-

sion not supporting the allocate(MATRIX,source=SOURCE) and the movealloc()

Fortran built-in subroutines.

You may also want a first-principles electronic structure calculation code in order

to make use of the output structures to determine the energetics of them.

https://gcc.gnu.org/
https://gcc.gnu.org/

CHAPTER 3. GETTING STARTED 9

3.2 Installation

Type tar -xvzf ARTEMIS_X.X.X.tar.gz

where X.X.X is the current version number. This command creates a directory called

DARTEMIS in the current directory which contains the whole software package. From

now on, I will refer to the access path to this directory as DARTEMIS.

Type cd DARTEMIS

By default, when making ARTEMIS, it will output the executable into a bin direc-

tory in DARTEMIS. The user can change where the executable is compiled by editing

the Makefile line BIN_DIR := ./bin in Makefile to point to the location where the

execultable is wanted. Type

make

This should compile the code into an executable called artemis in the designated

bin directory. We highly recommend that the user copies this executable into their

$(HOME)/bin directory and the manual assumes from now on that the user has done

so (if not done, then whenever artemis is seen in the manual, replace this with the

filepath to the artemis executable).

3.3 Test ARTEMIS with a simple example

In the artemis directory, three examples highlighting the use of ARTEMIS can be

found in the examples subdirectory. The three presented examples are for generat-

ing new interfaces (generate_interface directory) and manipulating pregenerated

interfaces (pregenerated_interface directory) and exploring all unique surface

terminations of slabs (identify_terminations).

3.3.1 Generate interface example

Change to the generate_interface directory and type

CHAPTER 3. GETTING STARTED 10

artemis -f param.in

ARTEMIS will then read the param.in file and set the parameters as defined in there

for the run. A directory named DINTERFACES will then be generated and populated

with directories and structure files. As defined by the parameter file, POSCAR_Si

and POSCAR_Ge are used for the two parent structure files.

This example is set up to show how ARTEMIS can find matched between two

materials and perform shifts and swaps based on these generated interface structures.

3.3.2 Pregenerated interface example

Change to the pregenerated_interface directory and type

artemis -f param.in

ARTEMIS will then read the param.in file and set the parameters as defined in

there for the run. A directory named DINTERFACES will then be generated and

populated with directories and structure files.

This example is set up to show how ARTEMIS can determine the location of inter-

faces within a structure and can use that information to perform additional shifts

and swaps to allow the user to further explore the energetic space of the interface.

3.3.3 Identify terminations example

Change to the identify_terminations directory and type

artemis -f param.in

ARTEMIS will then read the param.in file and set the parameters as defined in

there for the run. A directory named DTERMINATIONS will be made with a DLW_TERMS

directory (and DUP_TERMS, if STRUC2_FILE and UP_MILLER are defined) inside. This

directory will contain the unique surface termination slab structures.

This example is set up to show how ARTEMIS can generate slabs cleaved along user-

CHAPTER 3. GETTING STARTED 11

defined Miller planes. In such a case, it will determine all unique surface terminations

in that plane and print them to files termed as POSCAR_term{1..n}, where n is the

number of unique surface terminations identified by ARTEMIS.

Chapter 4

Version History

Format is based on [Keep a Changelog] (https://keepachangelog.com/en/1.0.

0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

[Alpha 1.0.0] - 2019-05-31

Added

- Changelog introduced

- IMATCH 0, 1 and 2

- ISHIFT 0, 1 and 2

- Symmetry checks performed over matches

Changed

- Source code moved to src/ and Makefile compiles from ./

- Updated default infile that is generated to include new opptions

[Beta 1.0.0] - 2019-11-28

Added

- IMATCH 3 and 4

- ISHIFT 3 and 4

- Help and search function

Changed

https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

CHAPTER 4. VERSION HISTORY 13

- LREDUCE default changed from TRUE to FALSE

[Beta 1.1.0] - 2019-12-18

Added

- LW_SURFACE, UP_SURFACE

-- user-defined surface terminations

- LW_LAYERED, UP_LAYERED

-- user defines whether material is layered

[Public release 1.0.0] - 2020-02-26

Added

- TOL_SYM

-- user-defined symmetry precision/tolerance

- ISWAP method 2

-- method weights swapping based on distance from interface

- Restart job prints out interface location for use by user

- Optional user defined interface location - for restart

- SWAP_DENSITY allows for consistency of swapping concentration over

structures

- User manual (doc/manual.pdf)

- LMIRROR added for swapping

-- says whether to maintain symmetry of interfaces or to perform

swaps on one

-- only listened to if interfaces are not symmetric

- Added support email address to README and manual

- Added date of compilation to code

- Added date of execution of code to the output

- Added make install to build ARTEMIS executable

in $(HOME)/bin directory

- Added make uninstall to remove ARTEMIS executable

from $(HOME)/bin directory

- Added help for OUTPUT_FILE tag in CELL_EDITS card

CHAPTER 4. VERSION HISTORY 14

- Added help for LSURF_GEN tag ino CELL_EDITS card

- ISHIFT=4 method updated

-- DON for upper parent crystal is now scaled appropriately the same

as the lattice is

-- reduces issue of DONs finding more bonds at the surface than in

the bulk

-- Update appears in interfaces.f90 gen_interfaces subroutine

- Added LAYER_SEP flag to CELL_EDITS card

-- need to figure out solution for shared cards

- Added help for LORTHO tag in CELL_EDITS and INTERFACES cards

-- defines whether surface axis is orthogonal when using LSURF_GEN

- Added example runs input/output files and input structures

-- example for detecting pregenerated interfaces

-- example for generating new interfaces

-- example for surface generation

Changed

- Makefile now defaults to compiling executable into user’s home bin

- LREDUCE default now FALSE

- Changed io.f90 to io.F90 to allow for preprossing of file

-- now includes date of compilation

- Settings output file now contains more of the important tags

- Changed make clean to remove bin/ and obj/ directories

in the ARTEMIS directory

- f_scale and g_scale are now global variables

in mod_shifting.f90 for ISHIFT=4

- Changed OUTFILE tag to OUTPUT_FILE

- Changed LSURF_GEN tag help description

- STRUC2_FILE no longer a mandatory tag for all cases

-- no longer required for LSURF_GEN = TRUE

-- no longer required for TASK = 0

Removed

- LSWAP replaced with ISWAP

CHAPTER 4. VERSION HISTORY 15

-- LSWAP = F is now ISWAP = 0

-- LSWAP = T is now ISWAP = 1

- NSWAP replaced with SWAP_DENSITY

- NSWAP_OUT replaced with NSWAP

- LSURF_INFO replaced with LSURF_GEN in INTERFACES card

Fixed

- Unique termination identifier

-- inversion symmetry matches

-- reset symmetry list after each save

- Layer identification

- basis_map subroutine in mod_sym

- Correctly print and define vector mismatch to be maximum mismatch

of any one vector

- Correctly convert symmetries to new lattice space for use in

mod_plane_matching.f90 and mod_lat_compare.f90

- Fixed area mismatch value printing

- Works again with Intel fortran compiler ifort 17.0.4

- Fixed denominator of ISHIFT g function

-- now normalises to bond size

- Corrected help function for LREDUCE default to FALSE

- Fixed termination idenitifier again

-- works correctly for slabs without mirror symmetry now with ladders

- Fixed error in mod_plane_matching.f90

-- did not correctly save the smallest area lattice match with the

same symmetry

- No longer makes DINTERFACES directory when not necessary

-- e.g. does not make it when generating surfaces

[Public release 1.0.1] - 2020-05-04

Added

- added gen_group function into mod_misc_linalg.f90 to generate entire

CHAPTER 4. VERSION HISTORY 16

group from a subset of elements

-- used in the updated version of the setup_ladder subroutine.

Fixed

- setup_ladder subroutine

-- now correctly identifies the separation between identical layers for

systems with both mirrored and translation symmetries transforming

between layers

Chapter 5

User guide

5.1 Input files

The ARTEMIS code needs either two or three input files: one that provides the

parameters to guide the interface generation and either one or two files that specify

the geometries of the parent structure/structures. If the user intends to use a pre-

generated interface and manipulate this structure, then only one geometry parent

file is required. If one wants to generate a set of interfaces from the combination

of two parent structures, then two geometry parent files are required (one for each

of the parent structures). The geometry file formats currently supported include:

VASP, CASTEP, Quantum Espresso. For an example of the parameters file, running

the following command will generate such a file:

artemis -d param.in

This will generate an input file with some of the tags/parameters present. The input

file is structured in the following way:

CHAPTER 5. USER GUIDE 18

SETTINGS (beginning of settings card)

TAG =

END SETTINGS (end of card)

INTERFACES (beginning of interface card)

TAG =

END INTERFACES (end of interface card)

where the cards separate blocks of the parameters that are distinct in their actions.

Cards are started by a CARDNAME and ended when met with END[]CARDNAME. Tags/-

parameters are found within these tags and are used to alter the settings of the run.

For an brief description of each of the tags available within each card, type

artemis –help all

This displays a list of all tags currently available within ARTEMIS, with a brief

description of their use. To get a more indepth description of each one, type

artemis –help <TAGNAME>

where <TAGNAME> is the name of the tag that the user wants to know more about.

If the user wants to find all tags relating to a certain word, then type

artemis –search <WORD>

All tags that include this word will be printed to the terminal.

The one/two parent geometry files are specified using the following tags in the

SETTINGS card:

SETTINGS

STRUC1_FILE = <PARENT_FILE_1>

STRUC2_FILE = [PARENT_FILE_2]

END SETTINGS

CHAPTER 5. USER GUIDE 19

5.2 Running the code

Once the input files have been gathered, ARTEMIS can be run by entering the

command

artemis -f [INPUT_FILENAME]

where the flag -f takes [INPUT_FILENAME] as the input file and runs the code

using the parameters specified in that file.

Once this has been run, a directory tree will be generated, depending on the op-

tions ran with. When generating interfaces, the DINTERFACES/ directory will be

made. When surface terminations are requested (LSURF_INFO, default = False),

then DTERMINATIONS/ will be made. Inside these directories, a directory tree con-

taining the output structure files will be generated.

5.3 Outputs of ARTEMIS

Here is an example output directory tree generated by ARTEMIS. In this example,

NSHIFT = 2 and NSWAP = 2, and the output file format of VASP has been used. For

each unique interface match and termination, a directory in DINTERFACES/ will be

generated, with the form D01/, D02/, D03/, etc. Inside each of these, shifts of the

generated interface match will be made and placed inside DSHIFTS. And inside each

of those, any requested swaps will populate the DSWAPS directory.

CHAPTER 5. USER GUIDE 20

|- DINTERFACES/

| |- D01/

| | |- DSHIFTS/

| | | |- D01/

| | | | |- POSCAR

| | | | |- DSWAPS/

| | | | | |- D01/

| | | | | | |- POSCAR

| | | | | |- D02/

| | | | | | |- POSCAR

| | | |- D02/

| | | | |- POSCAR

| | | | |- DSWAPS/

| | | | | |- D01/

| | | | | | |- POSCAR

| | | | | |- D02/

| | | | | | |- POSCAR

| |- D02

...

5.4 Conclusion

The ARTEMIS code is intended to help the user more easily and quickly explore the

possibility space of interfaces between two materials. With its ability to determine

lattice matches, perform shifts and swaps, this should help reduce potential bias that

can be associated with such a problem by making it easier to create these interfaces.

This should enable users to focus more heavily on the idea of interfacial aligment

and give them the ability to explore the problem of interfaces with more ease.

	Features/Capabilites
	Credits and Licence
	Credits
	Licence
	Beta testers

	Getting started
	Requirements
	Installation
	Test ARTEMIS with a simple example
	Generate interface example
	Pregenerated interface example
	Identify terminations example

	Version History
	User guide
	Input files
	Running the code
	Outputs of ARTEMIS
	Conclusion

