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In order to gain information about an underlying continuous distribution given

a sample of independent data, one has two major options:

e Estimate the distribution and probability density function by assuming a finitely-
parameterized model for the data and then estimating the parameters of the

model by techniques such as maximum likelihood*(Parametric approach).

e Estimate the probability density function nonparametrically by assuming only
that it is “smooth” in some sense or falls into some other, appropriately re-

stricted, infinite dimensional class of functions (Nonparametric approach).

When aiming to assess basic characteristics of a distribution such as skewness*, tail
behavior, number, location and shape of modes*, or level sets, obtaining an estimate
of the probability density function, i.e., the derivative of the distribution function®,
is often a good approach. A histogram* is a simple and ubiquitous form of a density
estimate, a basic version of which was used already by the ancient Greeks for pur-
poses of warfare in the 5th century BC, as described by the historian Thucydides in
his History of the Peloponnesian War. Density estimates provide visualization of the
distribution and convey considerably more information than can be gained from look-
ing at the empirical distribution function, which is another classical nonparametric
device to characterize a distribution.

This is because distribution functions are constrained to be 0 and 1 and mono-
tone in each argument, thus making fine-grained features hard to detect. Further-
more, distribution functions are of very limited utility in the multivariate case, while

densities remain well defined. However, multivariate densities are much harder to



estimate, due to the curse of dimensionality, see Stone (1994), and there are many
additional difficulties when one moves from the one-dimensional to the multivariate
case, especially for dimensions larger than 3.

The parametric approach to density estimation is sensible if one has some jus-
tification that the data at hand can be modeled by a known parametric family of
distributions, such as the Gaussian distribution*. In the Gaussian case it suffices to
estimate mean and variance parameters (or the elements of the covariance matrix by
empirical sample estimates) in order to specify the corresponding Gaussian density.
In more general cases, maximum likelihood estimators* are commonly employed to
infer the parameter vector that characterizes the assumed distribution from the data.
An advantage of this approach is that one easily obtains confidence regions and sta-
tistical tests, where correctly specified models can usually be consistently estimated
with associated asymptotically valid inference.

For the nonparametric approach, it is common to only rely on the much weaker
assumption that the underlying density is smooth, say twice continuously differen-
tiable. This then facilitates the complex task of estimating the density function,
which is an infinite-dimensional functional object. Many nonparametric density esti-
mators are motivated as extensions of the classical histogram. Nonparametric density
estimation is an ideal tool for situations where one wants to “let the data speak for
themselves” and therefore has a firm place in exploratory data analysis. Some vari-
ants such as the “rootogram” (Tukey 1977) or visualizations such as “violin plots”
(Hintze and Nelson 1998) have proven particularly useful. In practical settings, one
rarely has enough information to safely specify a parametric distribution family, even
if it is a flexible class of models like the Pearson family (Johnson and Kotz 1994).
If a parametric model is misspecified, subsequent statistical analysis may lead to in-
consistent estimators and tests. Misspecification and inconsistent estimation is less
likely to occur with the nonparametric density estimation approach.

The increased flexibility of the nonparametric approach, however, has some dis-
advantages that contribute to make inference more difficult:

(i) asymptotic rates of convergence of the (integrated) mean squared error of

a

density estimates are n~ with a < 1, where o depends on the smoothness of the



underlying density but rapidly declines with increasing dimensionality d of the data
and therefore is always slower than common rate n~! for parametric approaches;

(ii) each of the various available density estimation techniques requires the choice
of one or several smoothing or tuning parameters; and

(iii) the information contained in the density estimate usually cannot be conve-
niently summarized by a few parameter estimates.

In the following, we equate density estimation with the nonparametric approach.
Density estimation in this sense has been standard statistical practice for a long time
in the form of constructing histograms. It is a subfield of the area of nonparamet-
ric curve or function estimation (smoothing methods) that was very active in the
1970s and 1980s. Many statisticians have moved away from finitely parameterized
statistical models in search of increased flexibility as needed for data exploration.
This has led to the development of exploratory and model-generating techniques
and surging interest in statistical analysis for infinite-dimensional objects such as
curves and surfaces. Among the first historical appearances of the idea of smoothing
beyond the construction of histogram-type objects are papers by A. Einstein (1914)
and Daniell (1946) on the smoothing of periodograms (spectral density function es-
timation), and Fix and Hodges (1951) on the smoothing of density functions in the
context of nonparametric discriminant analysis.

Useful introductions to density estimation and good sources for additional refer-
ences are previous encyclopedia entries of Wegman (1982) and the now classic book
on density estimation by Silverman (1986) which, even 30 years after publication,
still provides an excellent introduction to the area. More modern resources are the
book by Efromovich (2008) that emphasizes series estimators, the book by Klemel&
(2009), with a focus on density estimation as a tool for visualization, and the book by
Simonoff (2012) with an overall review of smoothing methods. The new edition of the
book by Scott (2015) emphasizes the more difficult multivariate (low-dimensional)
case and carefully explores its many complexities. Density estimation also plays a
major role in machine learning, classification and clustering. Some clustering meth-
ods (again in the low-dimensional case) are based on bump hunting, i.e., locating the

modes in the density. Bayes classifiers are based on density ratios that can be imple-



mented via density estimation in the low-dimensional case and, under independence
assumptions, also in the higher-dimensional case. Applications of density estimation
in classification are discussed in more depth in the books of Izenman (2008) and
Hastie, Tibshirani and Friedman (2009), and their relevance for particle physics is
one of the themes of the recent book by Narsky and Porter (2014).

Examples and Applications of Density Estimation

When the distribution underlying a given data set possesses a probability density,
a good density estimate will often reveal important characteristics of the distribu-
tion. Applications of density estimation in statistical inference also include the esti-
mation of Fisher information*, efficiency of nonparametric tests, and the variance of
quantile* estimates and medians, for example, as all of these depend on densities or
density derivatives. Multivariate density estimation can be used for nonparametric
discriminant analysis®, cluster analysis* and for the quantification of dependencies
between variables through conditional densities, for instance. A practical limitation
is that the dimension of the data must be low or assumptions need to be introduced
that render the effective dimension low.

Density estimates are also applied in the construction of smooth distribution func-
tion estimates via integration, which then can be used to generate bootstrap* samples
from a smooth estimate of the cumulative distribution function rather than from the
empirical distribution function (Silverman and Young 1987). Other statistical appli-
cations include identifying the nonparametric part in semi-parametric models, finding
optimal scores for nonparametric tests, and empirical Bayes methods.

Two examples of density estimation in action are briefly presented in the follow-
ing.

Example 1. Country-specific period lifetables can be used to estimate the distribution
of age at death (mortality) for the population. Figure 1(a) shows three estimates
of the mortality distribution for the population of Japan in the year 2010. These
estimates were obtained by smoothing histograms with local linear smoothers, using

three different bandwidths. The smallest bandwidth shows sharp local features in



the estimates, indicating that this density estimate has been undersmoothed. On
the other hand, the largest bandwidth considerably decreases the prominence of the
mode of the distribution and produces an oversmoothed density estimate.

Figure 1(b) demonstrates density estimates for mortality in Japan for the years
1990, 2000 and 2010. One clearly sees the shift to greater longevity as calendar
time increases. From 1990 to 2000, the mode moved from approximately 85 years
of age to the low 90s. From 2000 to 2010, it is unclear how much further the mode
shifted; however, it appears that the overall mass of the distribution did shift toward
more advanced ages. The data are available through the Human Mortality Database,
University of California, Berkeley (USA), and Max Planck Institute for Demographic

Research (Germany) at www.mortality.org.
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Figure 1: Density estimates for the distribution of age at death in Japan, smoothing
histograms with local linear fitting. (Left) Estimates for the year 2010 using three
different bandwidths. (Right) Estimates for the years 1990, 2000 and 2010 with a
smoothing bandwidth of 2.

FExample 2. Consider the distribution of the number of eggs laid during the lifetime

of a female Mediterranean fruit fly (medfly). In particular, we consider the joint (bi-
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variate) distribution of the number of eggs laid during the first 10 days of life and the
number laid thereafter. Figure 2 shows the density estimate for n = 868 medflies in
the form of surface and contour plots. The density estimate suggests the hypothesis
that high reproductivity in the first 10 days would be followed by a lower rate after-
ward and provides many additional details about the antagonistic relationship be-
tween early and late reproduction in these flies; see Carey et al. (1998) for further de-
tails. The data are available at http://anson.ucdavis.edu/~mueller/data/data.html.

The data analysis for the first example was performed in MATLAB, using the hades
package (available at http://www.stat.ucdavis.edu/hades/) for histogram smooth-
ing. For the bivariate data in Example 2, the R package sparr was used for bivariate
density estimation. Various other R packages are also available for both univariate
and multivariate density estimation. The package KernSmooth provides univariate
and bivariate density estimation via kernel smoothing, while the ks package allows
for multivariate density estimation for up to 6 dimensions. In addition, the package
np includes routines for estimating multivariate conditional densities using kernel
methods. Density estimation based on histograms is also implemented in the pack-

ages delt and ash.
Histograms

Let Xi,...,X,, be a sample of data in R¢, d > 1, which possess a probability
density function (p.d.f.) f with [ f(z)dx =1 and f(z) > 0 for all . A time-honored
statistical graphical device for checking distributional properties like symmetry and
outliers or for comparing the distribution of various groups is the histogram estimate
fu(z) of f(z). We divide the range of the data in m = m(n) subsets called “bins”
B; which may be of equal (commonly) or unequal size (length or volume). Let m;
be the number of data values which fall into B; and denote the size of B; by |B;|. If
x falls into the bin Bj, the histogram estimate is

. my

fule) = > e my| Byl

The number of bins m = m(n) is a tuning parameter and needs to be chosen in

(1)

dependency on the sample size n.
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Figure 2: Bivariate density estimate for the number of eggs laid by female medflies
within the first 10 days of life and the number laid thereafter, with surface plot on
the left and contour plot on the right. A smoothing bandwidth of 75 was used in

both directions.

Two disadvantages of this method as compared to other density estimation meth-
ods are: (i) Relatively slow asymptotic rate of convergence of the mean squared error.
When densities are twice continuously differentiable, the rate is n=2/3 | as compared
to n~*" for other methods like kernel density estimation, and this is often reflected in
worse practical behavior as well; (ii) Discontinuity of these density estimates, when
viewed as a function, even though the true densities are assumed to be smooth.

On the plus side, the histogram is easy to understand and to compute in one and

higher dimensions, and widely accessible through statistical packages.

Kernel Density Estimation

In the univariate case (x € R), smooth function estimates are produced by kernel

estimators, which can be motivated by generalizing sliding histograms

F.(xr+h)— F,(x —h) wth
= —dF, )
- | ganw

where F), is the empirical distribution function and dF;, the empirical measure. This



leads to the kernel estimator

o) = ZK (5575) = [ o (55) amw,

where h = h(n) is a sequence of bandwidths or smoothing parameters, and K is a

kernel function, often with compact support. The kernel method for density estima-
tion was introduced by Rosenblatt (1956) and Parzen (1957) and is often referred to

as Rosenblatt-Parzen estimator.
Asymptotics

Writing

feto) = 50 = [ 16 () @) - artw),

asymptotic properties have been obtained by many methods, including strong em-
bedding (Silverman 1978) and empirical processes (Stute 1982, van de Geer 2000).
Typical asymptotic results for density estimates are local results like pointwise con-
vergence, asymptotic normality, as well as global results like uniform consistency and
distribution of the maximal deviation to obtain uniform confidence bands. For mean
and integrated squared errors, as well as other deviation measures, minimax conver-
gence results are available for restricted function classes (Ibragimov and Hasminskii
1980, Tsybakov and Zaiats, 2009) by evaluating the best estimator at the hardest-to-
estimate function in the class. Kernel estimators typically attain the minimax rates
of convergence.

One set of common assumptions is that the density f is k-times continuously
differentiable, the sequence of bandwidths h = h(n) satisfies h — 0 and nh — oo
as n — oo, and the kernel satisfies [ K(z)dz =1, [ K(z)z/dx =0, j =0,....,k — 1,
| K(z)a*dx # 0 and some other regularity conditions (“kernel of order £”). By min-
imizing the leading terms of the asymptotic integrated mean squared error (IMSE)
of fn, the IMSE-optimal bandwidth for kernels of order two and twice differentiable

densities is found to be
~1/5
h* = ck <n/f(2)(x)2dx> :
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where ck is a known kernel dependent constant. If this bandwidth, which depends

on the unknown derivative f of the density f to be estimated, is used, one obtains

JE (f@) — f(@)) do
= (] £ de) { (] K (upidu) (f K@pdn)®}] " +o@). 3)

4

The IMSE-rate of convergence is seen to be n~%° which falls short of the parametric

rate n~!, but is better than the rate n=%/% attained for histograms.
Choice of Bandwidth and Kernel

There exists a large literature on bandwidth selection* (Hall, Marron and Park,
1992; Wand and Jones 1995) and a more limited one on the choice of kernel function
K (Granovsky and Miiller 1991). In particular the bandwidth choice (more so than
the kernel choice) has a strong impact on the quality of the estimated density as it
regulates the trade-off between variance and bias.

As for kernel choice, the order of the kernel (number of vanishing moments of
the kernel function) determines the rate of convergence, given sufficient smoothness
of the density. The density estimate inherits its smoothness from the smoothness of
the kernel function employed. According to (3), the kernel shape can be optimized

by minimizing functionals like

T(K) = / K2(z)dz < / K(m)mzdx)Q ()

(see Gasser, Miiller and Mammitzsch 1985). The nonnegative kernel which mini-
mizes (4) is the Bartlett-Priestley-Epanechnikov kernel K (z) = 3(1 — z?) on [—1, 1]
(Epanechnikov 1969). Other popular nonnegative kernels (and weight functions for
(9) below) are the smooth kernels K (x) = ¢,(1 — 2?)" on [—1,1], £ > 1, for suitable
constants ¢, determined by [ K = 1, with the limiting case being the Gaussian ker-
nel. Higher order optimal kernels under sign restrictions for even k are polynomials

of order k restricted to [—1, 1], and determined by the moment side conditions.

Ezxtensions and Modifications



Many extensions and modifications of the above basic kernel estimation scheme

have been considered. Among them:

Multivariate Density Estimation. An application is shown in Fig. 2. The kernel

approach can be easily generalized from one to several dimensions. The simplest
d

extension is via product kernels K(z) = [] Ki(x;), where z = (x1,...,xq4)" € R4
i=1

and the K;, 1 = 1,...,d, are one-dimensional kernel functions (Epanechnikov 1969).
Related questions are choice of shape of support of the multidimensional kernel
function other than rectangular, and of corresponding multidimensional smoothing
parameters, which can be scalars, vectors or matrices. Rates of convergence of IMSE

—4/(d+4) for twice differentiable densities, the “curse of dimensionality”

are typically n
leading to very slow rates for large d (see Scott 1992). Multivariate kernel density
estimates can also be used for nonparametric contour estimation. Given a level v > 0,
the estimated contour is {x € R fK(x) = 7}; see the right panel of Figure 2 for

an example of a contour plot.

Estimation of Derivatives of a Density. A typical approach, which works also for
multivariate partial derivatives, is to employ sufficiently smooth kernel functions
and to differentiate the density estimate. Such a procedure is found to be equivalent
to using less smooth kernel functions with moment properties targeting derivatives
(Bhattacharya 1967, Singh 1979, Miiller 1984).

Derivatives are of interest for bandwidth choice, construction of confidence re-

gions, mode estimation and estimation of Fisher information*.

Variable Bandwidth Choices and Boundary Kernels. Implementations vary for choos-
ing a different bandwidth for each contribution X;. Abramson (1982) established that
such a scheme can lead to faster rates of convergence.

Another approach is to choose bandwidths which depend on the point x where
the density is to be estimated (Miiller and Wang 1990) or a mixture of both schemes.
Local bandwidth choices lead to smaller IMSEs and, in the multivariate case, to spa-
tial adaptivity. Another possibility is to use varying bandwidths as determined by
the k-nearest neighbor* distance (Mack and Rosenblatt 1979). Then k = k(n) corre-
sponds to the smoothing parameter to be determined by the user. Varying bandwidth

10



choices are particularly useful near boundaries of the domain of the density function.

Since the naive kernel estimator suffers from boundary effects, boundary kernels
need to be used (see, e.g., Miiller 1993) to avoid boundary bias. A more elegant
way to implement such boundary kernels is to use weighted local linear fitting on
histograms that utilize small bin widths. Other extensions include recursive and
sequential density estimation, estimation of number, location and size of modes,
estimation of discontinuities, estimation of density functionals such as [ f”(¢)%dt
and the estimation of conditional densities. Special methods are available and often

advantageous for unimodal, isotonic, or otherwise shape-restricted densities.

Other Density Estimation Methods

Besides kernel estimators, various other competing nonparametric density es-
timation procedures are available. While some of these methods, like orthogonal
series estimators which have been around for a long time, have never quite caught
on in statistical practice, others like density estimation via nonparametric regres-
sion (smoothing of histograms) or wavelet expansions have been used to advantage.
Basically, any method of function approximation can be fashioned into a tool for
the estimation of densities and more general functions. In terms of understanding
and comparing these methods, it is often illuminating to express them in terms of

“equivalent” kernels, i.e., kernel estimators, where kernels vary with the location z.
Orthogonal Series Estimators

These estimators are based on the idea of approximating a function by an orthogonal*

system of basis functions. The density f allows an expansion

[~ Z @i,
i=0

with

o= [ Hw)a)a
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in a suitable function (Hilbert) space, where the g; form an orthonormal system of
basis functions. This suggests to estimate f by truncating the orthogonal expansion

of f at finitely many, say m, terms and estimating the coefficients a;, say by

a; = Z gi<Xj>7
j=1

with Fa; = a;. The orthogonal series density estimator becomes
m
fl@) =) aigi(x).
i=0

The basic idea is due to Whittle (1958) and Cencov (1962). Here, m = m(n) assumes
the role of the smoothing parameter.

Orthogonal systems {g;},., which have been proposed for density estimation
include orthonormal polynomi;ls and trigonometric functions ™. Walter and Blum
(1979) introduced the general notion of a delta sequence estimator, which contains
kernel and orthogonal series estimators as special cases. Wavelet expansions also
have been successfully used for density estimation, thus extending the approach of

orthogonal series expansions (Antoniadis, Grégoire and McKeague 1994).
Penalized Mazimum Likelihood Estimators

The unrestricted likelihood function® for a density estimate f is
L(fy =]/ x).
i=1

By putting atoms at the location of each X;, L can be made arbitrarily large. There-
fore, Good and Gaskins (1980) proposed to introduce a roughness penalty function

G and to maximize instead the penalized log likelihood
log L(f) = ) log{f(Xi)} + aG(f),
i=1

where « is the smoothing parameter.

12



Good and Gaskins consider roughness penalties G(f) = ffooo f}((?; dt and G(f) =
J f"(¢)*dt. These methods have a Bayesian interpretation, where the roughness

penalty corresponds to an improper prior on the function space.
Density Estimation via Nonparametric Regression

Observing that all data occur actually in binned form due to round-offs and com-
puter number representation limitations, these approaches correspond to smoothing
a histogram with small equal bin widths with a kernel-based or other nonparametric
regression smoother. The problem of estimating a density function is thus trans-
formed to one of appropriately binning the data and then estimating a nonparametric
regression function in a setting with fixed equidistant design.

Practically, the X; in say (5) are replaced by the midpoints of the bins and the Y;
by the number of points falling into the bin with midpoint X;. In this setting, fixed
design regression kernel smoothing methods are asymptotically equivalent, including
local least squares (Miiller 1987, Fan and Gijbels 1996).

Locally weighted least squares type kernel estimators are an important tool for
scatterplot smoothing. Assume one has a scatterplot (X;,Y;), 7 = 1,...,n, where
(X;,Y;) are sampled form the joint distribution (X,Y). When fitting local lines to
the scatterplot data, the corresponding estimators my of m(z) = E(Y|X = z), are
obtained as follows:

z—X;
h

Minimi -K Y, — X; — , 5
inimize ;21 : ( )| (oo + oy ( z))] (5)
with respect to ayg, a1, and set

mr(x) = Q.

This corresponds to fitting a line locally in a window of size b around = by weighted
least squares, where the weights are derived from the kernel function K, and then
taking the estimated intercept of the fitted line centered at x as regression function
estimate.

If the bin widths of the initial histogram that is smoothed by fitting local linear

lines are very small, this method is equivalent to a kernel density estimator that uses
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boundary kernels. This method was employed for the density estimates displayed in
Figure 1.

Outlook

The basic methodology for density estimation is in place, and future research em-
phasis will move towards more complex situations and applications. Less explored
but practically important situations are those where the dimension of the data for
which a density is desired is high, or where one has dependencies in the data, or
missing and incomplete data. Other problems arise for densities with inhomoge-
neous smoothness properties, such as densities with discontinuities, where questions
like estimation of support, number and location of discontinuities or break curves
are of interest, in particular for the multivariate situation. In such situations, more
generalized notions of modes such as modal curves are of interest and have applica-
tions in manifold learning. For example, a generalized modal surface may represent
the target manifold to be learned from the data.

For the high-dimensional case, the curse of dimensionality forces one to im-
pose sensible constraints. One promising constraint is that the data are on a low-
dimensional manifold. In this case, the curse of dimensionality is determined by the
dimension of the low-dimensional manifold and not that of the ambient space (Bickel
and Lee 2007, Buchman, Lee and Schafer 2011). Therefore density estimation may
remain feasible if the manifold is low-dimensional even in the case where the ambient

space is high-dimensional.
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