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Introduction

Two different meanings of the term “nonparametric” in statistics:

1. distribution free methods: makes no assumption about the distribution of data. 
opposite to parametric models in a sense that the latter makes this 
assumption and attempts to fit the parameters of the model to data 
(increasing the likelihood of data belonging to distribution) 

2. use a parametric probability distribution model without fixing the complexity of 
the model. model can grow in size.

in other words, NonParametric methods are:
● By classical statistics: statistical modelling without parameters, e.g.,nearest 

neighbour methods.
● By Bayesian statistics: statistical modelling with an infinite number of 

parameters.(e.g.Gaussian Process)
in General, statistical modeling with variable or unbounded number of parameters

[http://nicta.com.au/__data/assets/pdf_file/0015/37113/buntine_ai12_041212.pdf]



Parametric vs. Nonparametric

● models in Parametric approach consist of finite set of parameters θ. given the 
parameters, predictions, x, are independent of the observed data.

     
 θ provides all the information about the data  
● complexity of the model is bounded. models is not flexible.

● in nonparametric approach, distribution of data is not defined by a finite set of 
parameters, we assume  θ is infinite dimensional. consider them as functions 
(practically, functions are defined on vectors with infinite length)

● as we get more data, model can grow to capture all the useful features of the 
data, and this property makes the model flexible.

● Nonparametric model does not take a predetermined form but the model is 
constructed according to information derived from the data.
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Histogram

Histogram is a way to estimate the distribution of data without assuming any 
particular shape for distribution (gaussian, beta, etc.). 
● In case of continuous random variable, it can estimate the probability 

distribution.
● In the case of discrete data, it can represent normalized relative frequency. 

histogram shows the proportion of cases that fall into each of several 
categories.

● The total area of a histogram is always normalized to 1. to display a valid 
probability.(thus, it is a frequentist approach)

algorithm for constructing histograms(density estimation of a continuous RV):
1. Span the data over the horizontal axis and divide them into equal intervals 

(bins)
2. Drop each value as a block of size 1 in the corresponding bin (data density).
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Histogram

There are 2 parameters in histogram that affect its behavior:
➢ Size of the bin (binwidth)
➢ endpoints of the histogram

Effect of endpoints:
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[http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/]

● In the left figure, endpoints are 0 and 0.5. it appears that the this density is unimodal and 
skewed to the right. 

● In the right figure, endpoints are 0.25 and 0.75, We now have a completely different estimate 
of the density - it now appears to be bimodal.

data points data points



Histogram

Effect of the binwidth:
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[http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/]

in Summary, histograms hold the following properties:
● Not smooth
● depend on endpoints of bins
● depend on width of bins

consider evaluating the probability of x= 3 or -3  in both histograms. the value in the right one 
is zero for both. but, in the left one, they have some other (and completely different) values.

data pointsdata points

number of bins = 10 number of bins = 100



Kernel Density Estimation

we can fix the problem of endpoints by centering each block at the corresponding 
data point. this is know as box kernel density estimation. (with boxcar kernel function).  
As a discontinuous kernel was used, the density is also still discontinuous.
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In the figure, we place a block of width 1/2 and height 1/6 (the dotted boxes) as 
there are 12 data points, and then add them up. This density estimate (the solid 
curve) is less blocky, but, still not smooth.

http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/ 

data points

http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/
http://www.mvstat.net/tduong/research/seminars/seminar-2001-05/


Kernel Density Estimation

solution to discontinuity problem in histogram: use smooth kernel for the building 
block to get a smooth density estimate. 
*the problem of bandwidth (equivalent to histogram binwidth) still remains.

Kernel, is a non-negative function that integrates to one and has mean zero.
if we represent kernel by K(.)  and bandwidth (smoothing parameter ) by  h(>0), 
the estimated density at any point x is:
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kh =1/h K(x/h) is called the scaled kernel.

[http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MISHRA/kde.html]



Kernel Density Estimation

Kernel Density Estimator (also called Parzen window density estimator) with 
boxcar (or Uniform) kernel function becomes:
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where I(.) is an indicator function that takes on value 1 when the logical 
statement inside the parenthesis is true and 0 otherwise. 

instead of boxcar kernel, one can uses the Gaussian kernel:

which results in smoother kernel.



Kernel Density Estimation

The quality of a kernel estimate depends less on the shape of the K than on the 
value of its bandwidth h. It's important to choose the most appropriate bandwidth 
as a value that is too small or too large is not useful. Small values of h lead to very 
spiky estimates (not much smoothing) while larger h values lead to 
oversmoothing. 
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data points data points data points

[http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MISHRA/kde.html]



Kernel Density Estimation

The bandwidth of the kernel is a free parameter which exhibits a strong influence on the resulting 
estimate. so, it should be wisely chosen. 
A common way to do so is to use a bandwidth that minimizes the optimality criterion. The most common 
optimality criterion used to select this parameter is the expected L2 risk function (also known as mean 
integrated squared error).  The MISE of an estimate of an unknown probability density is given by:
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where, f is the unknown density, fh is its estimate based on a sample of n independent and identically 
distributed random variables. and E denotes the expected value with respect to that sample

f’’ is the second derivative of f.

under weak assumptions on f and K:

[wikipedia]



Kernel Density Estimation

The minimum of this AMISE is the solution to this differential equation

In general, the AMISE still depends on the true underlying density (which is not available). So, Neither the 
AMISE nor the hAMISE formulas are able to be used directly since they involve the unknown density 
function ƒ or its second derivative ƒ'', so a variety of automatic, data-based methods have been developed 
for selecting the bandwidth.This points out that the chosen bandwidth is an estimate of an asymptotic 
approximation

13

in conclusion, the properties of kernel density estimators are, as compared to histograms:

● smooth
● no end points
● depend on bandwidth

[wikipedia]



k-nearest neighbors algorithm

moving from KDE to KNN. 
in brief, KDE:
● use regions centered at the data points
● allow the regions to overlap
● let each individual contribute a total density of 1/N
● with gaussian kernel, regions have soft edges to avoid discontinuity.

now, if we let the size of the region around each data point varies so that exactly K training 
data points fall inside the region, this will give us an algorithm called K-Nearest Neighbors 
(KNN), which can be used for both classification and regression.

● KNN finds a predefined number of training samples closest in distance to the new point, 
and predict the label from these data points. 

● The number of samples can be a user-defined constant (k-nearest neighbor learning), 
or vary based on the local density of points (radius-based neighbor learning). 

● The distance can, in general, be any metric measure: standard Euclidean distance is 
the most common choice. 
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k-nearest neighbors algorithm

the input consists of the k closest training examples in the feature space. The 
output:
● for regression, is the average of the values of its k nearest neighbors.
● for classification, is a class membership. An object is classified by a majority 

vote of its neighbors, with the object being assigned to the class most 
common among its k nearest neighbors (k is a positive integer, typically 
small). Ifk = 1, then the object is simply assigned to the class of that single 
nearest neighbor. 

 Example:
cases:
● If k = 3 (solid line circle)
● if k = 5 (dashed line circle)
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k-nearest neighbors algorithm

classification example:
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12 data points with 4 different classes.
using different number of neighbors, here we can 
observe regions in the plane, where a test point 
would be assigned to any of the classes.
wights are uniform (contribution of all points in the 
neighborhood are the same, regardless of 
distance)



k-nearest neighbors algorithm

KNN regression :
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Neighbor-based regression can be used in cases where the data labels are continuous 
rather than discrete variables. The label assigned to a query point is computed based on the 
mean of the labels of its nearest neighbors.

there are two possibilities two assign weights to neighbors, uniform and distance-based. 
● in uniform: each point in the local neighborhood contributes uniformly to the 

classification of a query point
● in distance-based: nearby points contribute more to the regression than faraway points



Bayesian Nonparametric
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why Bayesian nonparametric?
- Simplicity of the framework + complexity of the real world 

phenomena

Everything follows two simple rules:
Sum rule: 

Product rule:  

Inference: average over prediction of parametersMaximizing likelihood of observations:



Bayesian Nonparametric

Real world application are sometimes complicated :
e.g.
● people’s movie preference: 
- how many clusters? 
- even if few well defined clusters exist, how to estimate the 

distribution? is it Gaussian?!

● Natural Language Processing tasks like words 
segmentation, language modeling, grammar induction, 
etc. 

Conclusion :  any small finite number of parameters or limited 
models seems unreasonable to accomplish these task.
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Gaussian Process

Gaussian Basics: 
sampling from multivariate gaussian:
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first consider sampling from a gaussian with parameters μ and σ².
we know, instead of sampling from this distribution, we can sample from a standard gaussian with 
mean 0 and variance 1, and then transform the results:

same trick can be used to sample from multivariate gaussian:

where, L is the Cholesky decomposition  of the covariance matrix Σ 



Gaussian Process

Gaussian Basics:
conditioning on multivariate gaussian:
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[http://paulbourke.net/geometry/polygonmesh/]

x¹

x²
x²x¹

 conditioning on x¹

Σ*
μ*

http://paulbourke.net/geometry/polygonmesh/


Gaussian Process

Basics:
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assume points are distributed with gaussians like: 

reminder: covariance matrix is a measure of how strongly correlated a set of variables is
[Nando de Freitas]

we expect points that are closer to be more correlated.
e.g.:

one possible way is squared exponential:
other possibilities: periodic functions, etc.

how to construct this 
matrix to measure the 
similarity of points?



Gaussian Process

now, imagine we get a new point x*, how to find the corresponding f*?
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x*

?

?

?

?

since the point x* is closer to x³, we expect f* to also be 
closer to f³. this property called smoothness. (small 
variation in x results in small variation in f)

lets assume the point comes from the same distribution 
as other points:(i.e. a gaussian)

x³x²x¹

f¹
f²

f³

we want the new point to be correlated with others, so, we change the covariance matrix (i.e. 
kernel) as follows:

[Nando de Freitas]



Gaussian Process

● A Gaussian process is a generalization of the Gaussian probability 
distribution. Whereas a probability distribution describes random 
variables which are scalars or vectors (for multivariate distributions), a 
stochastic process governs the properties of functions.Gaussian 
process is defined as a distribution over functions

m = mean function, k=covariance function

one can loosely think of a function as a very long vector, each entry in the 
vector specifying the function value f (x) at a particular input x.

in Bayesian approach, we give a prior probability to every possible 
function where higher probabilities are given to functions that we consider 
to be more likely.

24[C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,]



Gaussian Process

remember sampling from multivariate gaussian:
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from __future__ import division
import numpy as np
import matplotlib.pyplot as pl

def kernel(a, b):
    """ GP squared exponential kernel """
    sqdist = np.sum(a**2,1).reshape(-1,1) + np.sum(b**2,1) - 2*np.dot(a, b.T)
    return np.exp(-.5 * sqdist)

n = 50 # number of test points.
Xtest = np.linspace(-5, 5, n).reshape(-1,1) # Test points.
K_ = kernel(Xtest, Xtest) # Kernel at test points.
# draw samples from the prior at our test points.
L = np.linalg.cholesky(K_ + 1e-6*np.eye(n))
f_prior = np.dot(L, np.random.normal(size=(n,10)))
pl.plot(Xtest, f_prior)

[Nando de Freitas]



Gaussian Process

remember conditioning in multivariate Gaussian:
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numerical tricks:

[Nando de Freitas]

reminder:  Cholesky decomposition or Cholesky factorization is a decomposition of a positive-
definite matrix into the product of a lower triangular matrix and its conjugate transpose

http://en.wikipedia.org/wiki/Matrix_decomposition
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Lower_triangular_matrix
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Positive-definite_matrix


Introduction to Decision Trees

Classification and Regression Trees or CART models, also called decision trees, 
are defined by recursively partitioning the input space, and defining a local model 
in each resulting region of the input space. this can be represented by a tree, by 
one leaf per region. 

27
[Criminisi et al, 2011]



Introduction to Decision Trees

● each node represented by a histogram,.
● tree is binning the histogram using the training data
● we can compute the probability of each class for a test point, in any node of 

the tree, given the training data

● tree can be trained with any kind of data(attrib.). e.g. discrete, continuous 
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how to define decision in each node?
e.g. predict if a person will play tennis.

- Divide and Conquer:
- Split the data into subsets
- are they pure?
- if yes: stop
- if no: repeat

- See which subset new data falls into

[Victor Lavrenko]



Introduction to Decision Trees

lets use “outlook” attribute as a decision:

29
[Victor Lavrenko]



Introduction to Decision Trees

now, in each daughter node, choose an attrib. as a decision that helps to split the 
data into pure classes:

30
[Victor Lavrenko]



Introduction to Decision Trees

in the end, use the resulting tree to make prediction on new data.

31
[Victor Lavrenko]



Introduction to Decision Trees

Reminder: Entropy
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in information theory, entropy H is a measure of the uncertainty 
associated with a random variable.
it is defined as:
 

for Bernoulli distribution, where probability is defined as:

entropy is:

for a fair coin, entropy (uncertainty) is maximum, where probability of H or T are equal.



Introduction to Decision Trees

● entropy can be generalized for discrete random variable X with N possible 
outcomes:
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reminder: maximum likelihood is just a way to minimize our uncertainty about the world.

now, we can leverage the concept of entropy to introduce the notion of Information Gain in 
nodes of a tree as follows:

[Criminisi et al, 2011]

Here information gain, is defined as the difference between the entropy of a node and its leaves. 
In other words, it is a measure of reduction in our uncertainty about the data by splitting it into 
leaves using the decision threshold that we chose at that node. 
In the above formula, we are summing the weighted entropy of the leaves (here we used a 
binary decision), where weights are proportion of the data that ended up at each leaf using our 
decision criteria.



Introduction to Decision Trees

example: splitting data in a 2D plane using lines.
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which line gives us more information about the data?

[Criminisi et al, 2011]

lets do the calculation: assume the highest value in daughter histogram is 3 and the lowest is 1. and sum 
of point that are ended up in each leaf is 6. (using log2)
for split 1:

for split 2: 

entropy of parent node: 



Random Forest

Here is the problem, assume you have millions of data with order of 100,000 
features, is it possible to calculate the expected information gain of all the features 
for each node? 
solution: Random Forest
algorithm:
● for b=1 to B (number of trees):

○ Draw a bootstrap sample Z* of size N from the training data
○ Grow a random-forest tree Tb to the bootstrapped data, by recursively 

repeating the following steps for each terminal node of the tree, until the 
minimum node size nminis reached.
■ i. select m variables at random from the p variables.
■ ii. pick the best variable/split-point among the m.
■ iii. split the node into two daughter nodes.

● output the ensemble of trees. {Tb}1
B

35

[From the book of Hastie, Friedman and Tibshirani]

reminder:
bootstrap: random choosing subset of data, with substitution
bagging: construct models based on different subsets of data



Random Forest

notice:
● Each tree is made of only a subset of data, with considering only part of the 

feature vector, so individual trees are high variance models. They only 
capture small details in subset of data.

● To fix this problem, we make lots of trees and combine the results from all 
those trees, to make prediction. when the number of trees grow, the solution 
converges to optimal case.

● All trees are trained independently (and possibly in parallel).
● Each test point is simultaneously pushed through all trees (starting from the 

root) until it reaches the corresponding leaves.

36
[Criminisi et al, 2011]



Random Forest

Effect of Forest size:

37

[Criminisi et al, 2011]



Random Forest

Effect of depth:

38
[Criminisi et al, 2011]



Random Forest

Application: Object Detection
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Random Forest

Random Forest and Kinect: Pose estimation
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● using computer graphic to 
generate plenty of data

[Jamie Shotton et al 2011]

● use lots of simple depth features to construct random 
forest(e.g. relative depth of the points)



Conclusion

● Modern data acquisition routinely produces massive and complex datasets,  
○  image data from functional Magnetic Resonance Imaging (fMRI) 
○ climate data from geographically distributed data centers. 
○ etc.

● Existing high dimensional theories and learning algorithms rely heavily on 
parametric models, which assume the data come from an underlying 
distribution (e.g. Gaussian or linear models) that can be characterized by a 
finite number of parameters. 

● Parametric models have the advantage of often being faster to use, but the 
disadvantage of making stronger assumptions about the nature of the data 
distributions

● Non-parametric methods allow the statistical modeller to be flexible with the 
dimensions and structure of their model
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