$ x_{{(1)}} = $
{stat[Location][Min]:g}
$ x_{{(n)}} = $
{stat[Location][Max]:g}
$ \widetilde{{x}}_{{O_{{min}}}} = $
{stat[Location][Outlier (Lower)][0]:g}
$ \widetilde{{x}}_{{N_{{min}}}} = $
{stat[Location][Outlier (Lower)][1]:g}
$ \widetilde{{x}}_{{0.25}} = $
{stat[Location][1st Quartile]:g}
$ \widetilde{{x}}_{{Med}} = $
{stat[Location][Median]:g}
$ \widetilde{{x}}_{{0.75}} = $
{stat[Location][3rd Quartile]:g}
$ \widetilde{{x}}_{{N_{{max}}}} = $
{stat[Location][Outlier (Upper)][1]:g}
$ \widetilde{{x}}_{{O_{{max}}}} = $
{stat[Location][Outlier (Upper)][0]:g}
$ \overline{{x}} = $
{stat[Location][Arithmetic Mean]:g}
$ \overline{{x}}_{{IQ}} = $
{stat[Location][Interquartile Mean]:g}
$ \overline{{x}}_{{R}} = $
{stat[Location][Mid-Range]:g}
$ \overline{{x}}_{{H^{{-1}}}} = $
{stat[Location][Harmonic Mean]:g}
$ \overline{{x}}_{{H^{{2}}}} = $
{stat[Location][Quadratic Mean]:g}
$ \overline{{x}}_{{H^{{3}}}} = $
{stat[Location][Cubic Mean]:g}