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ABSTRACT 

A/B tests, or online controlled experiments, are used heavily in 
the soware industry to evaluate implementations of ideas, as the 
paradigm is the gold standard in science for establishing causality: 
the changes introduced in the treatment caused the changes to the 
metrics of interest with high probability. What distinguishes 
soware experiments, or A/B tests, from experiments in many 
other domains is the scale (e.g., over 100 experiment treatments 
may launch on a given workday in large companies) and the effect 
sizes that maer to the business are small (e.g., a 3% improvement 
to conversion rate from a single experiment is a cause for 
celebration). e humbling reality is that most experiments fail to 
improve key metrics, and success rates of only about 10-20% are 
most common. With low success rates, the industry standard 
alpha threshold of 0.05 implies a high probability of false positives. 
We begin with motivation about why false positives are expensive 
in many soware domains.  We then offer several approaches to 
estimate the true success rate of experiments, given the observed 
“win” rate (statistically significant improvements), and show 
examples from Expedia and Optimizely. We offer a modified 
procedure for experimentation, based in sequential group testing, 
that selectively extends experiments to reduce false positives, 
increase power, at a small increase to runtime. We conclude with 
a discussion of the difference between ideas and experiments in 
practice, terms that are oen incorrectly used interchangeably.  
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→ Probabilistic inference problems → Hypothesis testing and confidence 
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1 INTRODUCTION 
A/B tests, or online controlled experiments [1; 2; 3; 4; 5; 6; 7; 8; 9], 
are used heavily in the soware industry to evaluate 
implementations of ideas, as the paradigm is the gold standard in 
science for establishing causality: the changes introduced in the 
treatment caused the changes to the metrics of interest with high 
probability. 

What distinguishes soware experiments, or A/B tests, from 
experiments in many other domains is the (e.g., over 100 
experiment treatments may launch on a given workday in large 
companies) [1; 10; 11; 12; 13] and the effect sizes that maer to the 
business are small (e.g., a 3% improvement to conversion rate from 
a single experiment is a cause for celebration).  

e humbling reality is that most experiments fail to improve key 
metrics, and success rates of only about 10-20% are most common 
[14; 1]. With low success rates, the industry standard alpha of 0.05, 
which is the p-value threshold for statistical significance, implies 
a high probability of false positives [14; 15; 16; 17; 11; 18].  

A false positive is defined as a statistically significant result (𝐻଴ is 
rejected) when 𝐻଴ should not have been rejected; that is, given 
our sample size, the true treatment effect is not inconsistent with 
𝐻଴. We are not assuming that the treatment effect is exactly zero, 
as outside limited scenarios, it is unlikely that any change will 
have exactly no effect [19], but we are asking if our observations 
are consistent with zero effect [15].   

e paper is structured as follows: we begin with motivation 
about why false positives are more expensive than false negatives 
in many soware domains.  In Section 3, we review the estimation 
of false positive risk and the need to estimate the true success rate 
from the observed “win” rate.  In Section 4, we offer several 
approaches to estimate the true success rate of experiments and 
show examples from Expedia and Optimizely. In Section 5, we 
look at the False Positive Risk for a specific p-value or narrow 
range.  In Section 6, we offer a modified procedure for 
experimentation, based on sequential group testing, that 
selectively extends experiments to reduce false positives, increase 
power, at a small increase to runtime.  In Section 7, we discuss the 
difference between ideas and experiments in practice, two terms 
that are oen incorrectly used interchangeably.  We conclude 
with a summary.  
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2 THE COSTS OF FALSE POSITIVES AND 
FALSE NEGATIVES 
We begin with an example of a highly expensive false positive in 
Psychology. It is now well agreed that many of the most cited 
psychology findings failed to replicate [20]. One example is that 
of Ego-Depletion, a psychological theory based on a 1998 paper 
that claims we have a limited pool of mental resources that we use 
up, after which we lose self-control [21]. Schimmack claimed that 
Ego-Depletion suffers from low replicability [22]. A large 
multisite preregistered test with 36 laboratories and 3,531 
participants found a nonsignificant effect with d=0.06, an effect 
about 10 times smaller than believed [23].  Given these results, the 
initial result was a false positive and the effect, if it exists, is tiny.  
The initial study held for over 15 years with widespread 
confidence in the robustness of the effect, including a meta-
analysis of 198 independent tests in 2010. What a waste of 
resources!  In hindsight, this showed how much bias there is in 
accepted publications, where non-significant results are often not 
submitted or rejected (the file drawer problem [24]), and 
statistically significant results are published. 
 
What about in A/B tests, or online experiments?  While there are 
certainly cases where experiments are run for short-term 
decisions (e.g., headline optimizations), for most experiments the 
real impact of false positive results is on the roadmap, or the 
backlog—steering the ship into the wrong direction because of 
some amazing discovery that is wrong: a false positive. 
 
False negatives also have a cost, of course.  We may have a good 
idea, which will go unnoticed.  There are two reasons why we 
believe these costs are lower: (1) for an idea to be a false negative, 
it is likely near our MDE (minimum detectable effect) that we use 
to determine the sample size, as the probability of failing to detect 
breakthrough ideas, with a large effects, is very small; (2) 
organizations typically run a few experiments with small 
variations before giving up on an idea, so the probability of all 
these variations being false negatives diminishes exponentially 
fast (e.g., with the industry standard 20% type-II error, the 
probability of 5 variations failing to be statistically significant is 
0.2^5=0.03%).  
 
When we choose parameters like alpha, the threshold for rejecting 
the null hypothesis, we are trading off false positives with false 
negatives.  While every organization can determine the costs, in 
Section 4.5 on choosing alpha, we share both a 1:1 cost and a 3:1 
cost, where false positives are three times more expensive.  

3 ESTIMATING THE FALSE POSITIVE RISK 
P-values are commonly misinterpreted as the probability of 
making a mistake when choosing the Treatment over Control 
when the observed metric of interest is statistically significantly 

 
1  Some authors prefer to use the semicolon notation; see discussion at: 
https://statmodeling.stat.columbia.edu/2013/03/12/misunderstanding-the-
p-value/#comment-143481 

different [25; 26; 27].  Multiple examples of this misinterpretation 
by A/B vendors, book authors, and in courts were provided by 
Kohavi, Deng, and Vermeer [14].   

What is the p-value then? The p-value is the probability of 
obtaining a result equal to or more extreme than what was 
observed, assuming that all the modeling assumptions, including 
the null hypothesis, 𝐻଴, are true [26]. Conditioning1 on the null 
hypothesis is critical and most often misunderstood. In 
probabilistic terms, we have 

p-value = 𝑃(Δ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒|𝐻଴ 𝑖𝑠 𝑡𝑟𝑢𝑒) . 
 

What we are looking for most of the time is the opposite 
conditional probability:  

𝑃(𝐻଴ 𝑖𝑠 𝑡𝑟𝑢𝑒 |Δ 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) 

Using Bayes Rule, we can estimate the False Positive Risk (FPR), 
which is the probability that the statistically significant result is a 
false positive, or the probability that 𝐻଴  is true (no real effect) 
when the test was statistically significant [15]. Note that FPR is 
sometimes named FDR, or False Discovery Rate [28; 29], but given 
the confusion with FDR from multiple hypothesis testing, we use 
the term recommended by Colquhoun [15]. 

We use the following terminology [14]:  

1. SS is a statistically significant result. 
2. 𝜶  is the threshold used to determine statistical 

significance (SS), commonly 0.05 for a two-tailed t-test.  
3. 𝜷 is the type-II error (usually 0.2 for 80% power) 
4. 𝝅 is the prior probability of the null hypothesis, that is 

𝑃(𝐻଴) 

we can apply Bayes Rules for the following:  
 

𝐹𝑃𝑅 =  𝑃(𝐻଴|𝑆𝑆) = 
α∗గ

α∗ గ ା (ଵିఉ)∗(ଵିగ)
 . 

 
An alternative derivation of FPR, resulting in the same formula, 
was made in the Supplement to Equation 2 and Figure 2 in 
Benjamin et. al. [30].  
The key parameter required for the above is 𝝅, or 𝑃(𝐻଴). Kohavi, 
Deng, and Vermeer [14] provided a table with seven success rate 
estimates (1- 𝝅 ) that were reported in the software industry, 
which ranged from 8% to 33% with a median and mode of 10%.  
Plugging these into the above formula results in an FPR of 22% for 
the median and mode success rate of 10%, industry standard alpha 
of 0.05, and 80% power. This is a much higher rate than people 
intuitively think of when they hear statistically significant 
improvement. For companies that use 𝛼=0.10 as their threshold 
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for statistical significance, or equivalently use 𝛼=0.05 with a one-
tailed test for the improvement tail (e.g. Optimizely [31], Analytics 
Toolkit [32], Booking.com [33], Expedia), the FPR for 10% success 
rate is a 36%. Over one third of the statistically significant results 
showing improvement, which we want to celebrate, are likely to 
be false positives!  
 
To provide intuition about why the FPR is so high when the 
success rate is low, we will use the data reported by Optimizely 
[34] of 12% win rate across 127,000 experiments. As we will show 
later in the paper in Section 4.4, the estimated true success rate is 
9.3%, in line with the 10% median and mode of Table 2 in Kohavi, 
Deng, and Vermeer [14].   
 
Looking at Figure 1, the dot-pattern (also green if viewed in color) 
in the first row represents the 9.3% success rate, that is, true effects 
that should be statistically significant given our sample size 
providing 80% power. Of these, 80% will be identified as 
statistically significant, so 80%*9.3%=7.4% are denoted by a plus in 
the first row.  
 
Of the remaining 90.7% null effects, 5% will be statistically 
significant and positive, so 4.5% of the A/B tests will show a 
statistically significant result: a false positive. These are denoted 
by a plus in the second row. 
 
Of the ~12% wins (7.4%+4.5% depicted by pluses), 4.5% are false 
positives, so 4.5%/(4.5%+7.4%)=37.8%.  This surprisingly high false 
positive is often referred to as the base rate fallacy [35]. 

4 ESTIMATING THE SUCCESS RATE 
When we apply the Null Hypothesis Significant Testing (NHST) 
methodology with a null hypothesis that the effect size is zero, we 
are not claiming that the effect is exactly zero; rather, we build a 
statistical model that assumes it is zero, and we ask whether the 
results are inconsistent with that effect size. This is sometimes 
referred to as the champion/challenger model, where the current 
champion (Control) is maintained until we can show that a 
challenger (Treatment) is very likely different2.  If the results are 
inconsistent with an effect size of zero, then we reject the null 
hypothesis and estimate the effect size [15]. For a treatment to be 
successful, it must meet two conditions: 
 

a. The effect size must be large enough to reject the null 
hypothesis at an alpha level of choice (e.g., 0.05). 

b. The direction of the effect must be such that it improves 
the metric of interest.  For example, for conversion rate 
or revenue, a positive delta is desired, whereas for 
performance (e.g., time to generate a page, or some 
elements of the page), a negative delta is desired.  

Here we must differentiate between an observed success, which 
we call a “win,” and (a true) success, which implies that the 

 
2 We are assuming the goal is to improve the Control.  There are scenarios not 
discussed here, where success is non-inferiority (e.g., legal requirement).  

underlying true effect is large enough that we would reject the 
null hypothesis at the given sample size and chosen alpha level.   
 
In a single experiment, we may observe a value that is lower or 
higher than the true treatment effect, which could result in a false 
negative or false positive statistically significant result. It is worth 
noting that with the standard design of 80% power, the expected 
p-value is 0.005, or equivalently Z=2.8, for a true effect that 
matches the MDE. Because we declare a result statistically 
significant below p-value of 0.05, or Z-score > 1.96, we will declare 
an observed result greater than 1.96/2.8=70% of the MDE as 
statistically significant.  
 
A false positive statistically significant result is one where 
we have a “win” because we computed a p-value less than alpha 
and can thus declare statistical significance, but the true effect size 
is consistent with the null hypothesis, given our sample size.  For 
example, let’s assume that we observe a treatment effect, delta, 
and the p-value computation comes out at 0.02 (statistically 
significant).  If the true treatment effect is smaller, say 0.6*delta, 
and the p-value for that effect is greater than 0.05, then we have a 
false positive result because true effect size is consistent with the 
null hypothesis, given our sample size. Experiments with low 
power that are statistically significant, tend to exaggerate the 
effect size [36].  For example, an experiment with 20% power for 
a given MDE will not be statistically significant 80% of the time; 

Figure 1: Diagram showing how success rate of 9.3% 
implies a false positive risk of 37.8%. 
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in 20% of the cases, it will be statistically significant, but the 
treatment effect will be exaggerated by a factor of 2.3 or 130% [37], 
often referred to as the winner’s curse [38; 39; 40]. 
 
A false negative result arises when the p-value of the true effect 
size is less than alpha, but the p-value computed for the observed 
treatment effect is greater than alpha.  If our sample size is chosen 
to provide 80% power for a given MDE (minimum detectable 
effect) and level of alpha, and if the true effect matches the MDE, 
then 20% of the time we will have a false negative, or type-II error: 
we will not have a “win” even though we should have. Given an 
observed win rate, how can we estimate the true success rate?   
We now review three approaches.  

4.1 The Naïve Approach 
In the Naïve Approach, we simply estimate the success rate as the 
win rate, or the rate of statistically significant improvements.  
This approach ignores false positives at a rate of FPR (note, NOT 
type-I error rate, which assumes the null hypothesis is true), but 
also ignores the type-II error rate (e.g., missing 20% of the true 
successes).  These two factors are in opposite directions, so their 
relative magnitude matters. This was the approached used to 
estimate the success rate at Microsoft [41] and Bing [18].   

4.2 Replicated Experiments 
In this approach, experiments with borderline p-values (e.g., 0.01-
0.10) are replicated and the two p-values are combined using 
Fisher’s method or Stouffer’s method [42 p. Fisher's method] thus 
increasing the statistical power significantly (reducing type-II 
error), while reducing false positives. The threshold for the 
combined p-value could be set at 0.01, for example.  If the 
combined result is still borderline, a third experiment may be 
required, although that seems quite rare in practice. Table 1 shows 
examples of two p-values and the combined result using Stouffer’s 
method, resulting in a combined p-value less than 0.01 [43]: 
 

Table 1: Meta analysis: combining p-values 
 from two experiments. 

P-value 1 P-value 2 Combined P-value 
0.06 0.07 0.009 
0.05 0.09 0.009 
0.04 0.10 0.009 
0.03 0.14 0.0093 
0.02 0.18 0.0095 
0.01 0.28 0.0097 

 
At Airbnb, we were surprised to see some replication runs that 
failed, and that led to the important realization that the true 
success rate was lower than we had assumed from our winning 
(statistically significant improvement) experiments. We 
implemented the above approach to approximate the success rate 
and estimated it at 8% [14].  While this approach significantly 
reduces false positives by re-testing, it doesn’t account for false 
negatives, so the success rate estimated is conservative.  

4.3 Conditional Probabilities 
We can decompose P(SS), the probability of a statistically 
significant result, by conditioning on the null hypothesis, and 
isolate the success rate as follows:  
 

𝑃(𝑆𝑆) =  𝑃(𝑆𝑆|𝐻଴) ∗ 𝑃(𝐻଴) + 𝑃(𝑆𝑆|¬𝐻଴) ∗ 𝑃(¬𝐻଴) 
𝑃(𝑆𝑆) = α ∗  𝜋 +  (1 − 𝛽) ∗ (1 − 𝜋) 
𝑃(𝑆𝑆) = α ∗  𝜋 +  1 − 𝛽 − 𝜋 +  𝛽𝜋 
𝑃(𝑆𝑆) = 𝜋(α +𝛽 − 1) + 1 − 𝛽  
𝜋 (1 -𝛽-α) =  1 − 𝛽 −  𝑃(𝑆𝑆) 

𝜋 =  
1 − 𝛽 −  𝑃(𝑆𝑆)

1 -𝛽-α
 

𝜋 =  
Power −  𝑃(𝑆𝑆)

Power-α
 

 
Table 2 shows how the observed statistically significant rate at 
different alpha levels translates into an estimate of the true 
success rate, assuming power is 80%.  The spreadsheet is available 
at https://bit.ly/FalsePositivesInABTestsCalc (success rate 
estimation tab). 
 

Table 2: Success rate estimation using  
conditional probabilities. 

Win-rate 
(observed 
stat-sig 
improve-
ment) 

Alpha 
(two-
tailed) 

True 
success 
rate 

False 
positive 
risk 
(FPR) 

False 
positiv
es 
(of all 
 exper- 
iments)  

False 
negatives 
(of all 
exper- 
iments; 
Type-II 
error) 

30% 0.2 28.6% 23.8% 7.1% 5.7% 

30% 0.1 33.3% 11.1% 3.3% 6.7% 

30% 0.05 35.5% 5.4% 1.6% 7.1% 

30% 0.01 37.1% 1.0% 0.3% 7.4% 

20% 0.2 14.3% 42.9% 8.6% 2.9% 

20% 0.1 20.0% 20.0% 4.0% 4.0% 

20% 0.05 22.6% 9.7% 1.9% 4.5% 

20% 0.01 24.5% 1.9% 0.4% 4.9% 

15% 0.2 7.1% 61.9% 9.3% 1.4% 

15% 0.1 13.3% 28.9% 4.3% 2.7% 

15% 0.05 16.1% 14.0% 2.1% 3.2% 

15% 0.01 18.2% 2.7% 0.4% 3.6% 

12% 0.2 2.9% 81.0% 9.7% 0.6% 

12% 0.1 9.3% 37.8% 4.5% 1.9% 

12% 0.05 12.3% 18.3% 2.2% 2.5% 

12% 0.01 14.5% 3.6% 0.4% 2.9% 
10% 0.2 0.0% 100.0% 10.0% 0.0% 

10% 0.1 6.7% 46.7% 4.7% 1.3% 
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10% 0.05 9.7% 22.6% 2.3% 1.9% 

10% 0.01 11.9% 4.4% 0.4% 2.4% 

8% 0.1 4.0% 60.0% 4.8% 0.8% 

8% 0.05 7.1% 29.0% 2.3% 1.4% 

8% 0.01 9.4% 5.7% 0.5% 1.9% 

 
At the industry standard alpha of 0.05, the Naïve Approach 
happens to be a reasonable approximation for 10-15% win rates.  
For example, observing 15% statistically significant improvements 
(top highlighted row in the table) is reasonably close to the 16.1% 
true success rate.  This is because in 83.9% of the time (100%-16.1% 
success rate), when the null hypothesis is true, our type-I error 
rate of 2.5% will generate 2.1% (83.9%*0.025) false positive 
statistically significant positive results, and in the remaining 16.1% 
of the time, our 80% power will generate 12.9% (16.1%*0.8) 
statistically significant result, and thus 2.1%+12.9%=15% will be 
“wins,” that is, statistically significant improvements will be 
observed. The FPR column is a good sanity check: for our 15% 
statistically significant positive results, 14% are false positives, so 
15%*14%=2.1%, exactly matching the computation above.  
 
At higher and lower alphas, the Naïve approach is poor.  For 
example, let us review the bottom, highlighted row, where the 
observed stat-sig rate is 10% and alpha is 0.2.  The true success rate 
is estimated at 0%.  The reason is that in the scenario where the 
null hypothesis is always true, that is, the treatment effect is 
consistent with zero, then with alpha=0.2, 20% of the time we will 
make a type-I error and declare a statistically significant result. 
Half of these will be in the improvement direction, so all 10% 
observed statistically significant improvements are false positives.  
The FPR is indeed 100%: every statistically significant result is a 
false positive. 
 

 
Figure 2: False Positive Risk for different levels of 

 Alpha (two-tailed), 80% power. 
 

 
Figure 2 shows the relationship between FPR and success rate for 
different levels of alpha.  At low success rates, near the median of 
10% for reported success rates in Kohavi, Deng, and Vermeer [14], 
higher alpha result in very high false positive risks, even for 80% 
power.  

4.4 True Success Rate and FPR for Optimizely’s 
Customers 

Optimizely, a vendor of A/B testing software, recently published 
a nice report with lessons learned from 127,000 experiments [34].  
They reported that the average win rate for the primary metric of 
these experiments was 12%, when Optimizely’s default for alpha 
is 0.10 [31]. From Table 2, the middle-highlighted row, we can 
estimate the following: 
 

a. The true success rate is 9.3%.  
b. The FPR, or False Positive Risk, is 37.8%.   

The 9.3% is close to multiple reports of 10% success rates [14], but 
because of the high default alpha, which is double the industry 
standard of 0.05, the probability that a statistically significant 
result reported by Optimizely is a false positive is over a third!  
Optimizely uses the term “90% confidence” for alpha=0.10, and it 
is very likely that their users believe their probability of a false 
positive is 10%, not 37.8%.  

4.5 True Success Rate and FPR at Expedia 
We evaluated Expedia’s win rate over thousands of trustworthy 
experiments. Expedia historically used two-sided tests with 
alpha=0.10, and for that threshold, the win rate was 15.6%. Like 
the above computation for Optimizely, we can estimate the 
following: 

a. The true success rate is 14.1%. 
b. The FPR, or False Positive Risk, is 27.5%. 

While not as high as Optimizely, the FPR is still high, and Expedia 
is lowering alpha. 

4.6 Choosing Alpha 
Given a set of experiments with data about them, including the 
number of users (more generally, units) and the p-value for each, 
how should an organization set the appropriate alpha level? 
 
Bartoš and Schimmack [29] suggested to use the curve of Z-scores 
to arrive at the replication probability of a hypothesis.  The key 
observation is that if experiments are powered at 80%, the mean 
Z-score should be about 2.8, which corresponds to a p-value of 
0.005. If most results are borderline statistically significant with p-
values around 0.01-0.05, for example, then there is a strong 
publication bias and results suffer from the file drawer problem, 
where many results that are not statistically significant are not 
submitted or not accepted for publication [24; 44].  The file drawer 
problem should not exist in online experimentation platforms, 
which typically track all results for the organization.  This is likely 
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the reason that reported success rates are around 10-20%, relative 
to 85% in medical journals and 95% in Psychology journals [44].  
 
Indeed, an experimental summary from Bing [45] presented in 
Figure 3 shows the experiments’ treatment effects.  Not only is the 
mass concentrated around zero, but there are many negative 
effects, even though most experiments are designed to evaluate 
new features to improve the experience.  
 

 
Figure 3: Histogram of success rate and  

estimated density [45]. 
  
Similarly, a summary of 1,001 A/B tests that have used Analytics-
toolkit.com [46] is presented in Figure 4.  The median lift is at 0.1%, 
with a large mass concentrated around zero. 
 
Table 3 shows the true success rate, alpha, power (keeping sample 
size fixed and powered at 80% for alpha=0.05), false-positives, and 
false-negatives that are implied. The last two columns show 
equal-weighted cost of 1:1, perhaps reasonable for short-term 
decisions like headlines and 3:1 cost, which may be more 
appropriate for ideas evaluated towards learning.  For each group 
of true success rate, the alpha minimizing the cost is highlighted. 
For these costs, it is clear that many organizations should lower 
alpha to 0.01-0.05. We provide the spreadsheet at 
https://bit.ly/FalsePositivesInABTestsCalc (success rate 
estimation tab, bottom) so that you can plug your own costs. It’s 
also possible to optimize with fixed power at various alphas by 
taking into account the impact on experiment velocity, along with 
implied false positive and negatives. 
 

 
Figure 4: Distribution of lift estimates for  

1,001 A/B Tests [46]. 
 
Our advice to lower alpha in many scenarios is aligned with others 
who have also recommended lowering alpha rather than 
increasing power [28]. 

 
Table 3: alpha choices and their cost for  

two different cost functions:  
1:1 assigns 1 to false positives and 1 to false negatives 
3:1 assigns 3 to false positives and 1 to false negatives 

True 
success 
rate 

Alpha 
(two-
tailed) 

Power False 
positives 

False 
negatives  
(Type-II 
error) 

1:1 
cost  

3:1 cost  

30.0% 0.2 94% 7.0% 1.9% 8.9% 22.9% 

30.0% 0.1 88% 3.5% 3.7% 7.2% 14.2% 

30.0% 0.05 80% 1.8% 6.0% 7.8% 11.3% 

30.0% 0.01 59% 0.4% 12.3% 12.7
% 

13.4% 

20.0% 0.2 94% 8.0% 1.3% 9.3% 25.3% 

20.0% 0.1 88% 4.0% 2.5% 6.5% 14.5% 

20.0% 0.05 80% 2.0% 4.0% 6.0% 10.0% 

20.0% 0.01 59% 0.4% 8.2% 8.6% 9.4% 

15.0% 0.2 94% 8.5% 1.0% 9.5% 26.5% 

15.0% 0.1 88% 4.3% 1.9% 6.1% 14.6% 

15.0% 0.05 80% 2.1% 3.0% 5.1% 9.4% 

15.0% 0.01 59% 0.4% 6.2% 6.6% 7.4% 

12.0% 0.2 94% 8.8% 0.8% 9.6% 27.2% 

12.0% 0.1 88% 4.4% 1.5% 5.9% 14.7% 

12.0% 0.05 80% 2.2% 2.4% 4.6% 9.0% 

12.0% 0.01 59% 0.4% 4.9% 5.4% 6.3% 

10.0% 0.2 94% 9.0% 0.6% 9.6% 27.6% 

10.0% 0.1 88% 4.5% 1.2% 5.7% 14.7% 

10.0% 0.05 80% 2.3% 2.0% 4.3% 8.8% 

10.0% 0.01 59% 0.5% 4.1% 4.6% 5.5% 

8.0% 0.1 88% 4.6% 1.0% 5.6% 14.8% 

8.0% 0.05 80% 2.3% 1.6% 3.9% 8.5% 

8.0% 0.01 59% 0.5% 3.3% 3.8% 4.7% 

5 FALSE POSITIVE RISK for P-VALUE 
We previously looked at the FPR, or False Positive Risk, for all 
experiment results less than alpha. Experiments with lower p-
value are likely to have a lower FPR than experiments with a 
higher p-value closer to alpha. Colquhoun [15] refers to these two 
cases as less-than-alpha, and equal-to p-value. 

5.1 Motivating Example 
Optimizely reported a win rate of 12% in their analysis of 127,000 
experiments [34]. Assuming these experiments were properly run 
with 80% power (it would be worse if these were under-powered) 
and using their default alpha of 0.10 [31], the overall FPR, or False 
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Positive Risk, is 37.8% as shown in Section 4.3. This estimate is 
computed for all experiment results less than alpha.  
 
Assume an e-commerce site that uses Optimizely, has 5% 
conversion rate, and powers up an experiment to detect an MDE 
of relative 5%, which is a scaled version of Colquhoun example in 
his paper [15].  If we look at a specific experiment that has a p-
value right at alpha, so p-value = 0.10 in the case of Optimizely, 
we can estimate a more specific FPR.  Colquhoun’s simulations for 
our case show an FPR for the less-than-alpha case of 37.6%, very 
close to the Bayes Rules estimate of 37.8% mentioned above.  As 
you might expect, all results less-than-alpha, have a lower FPR 
than a p-value equal to alpha, as lower p-values indicate more 
evidence against the null hypothesis.  If the p-value for a specific 
experiment is 0.10 (90% confidence in Optimizely’s terminology 
[31]), Colquhoun’s simulation show that the probability of a false 
positive is 80.7% (see Appendix A for screen shot from the 
simulator). In this case, a statistically significant result, which 
Optimizely will say has 90% confidence, will be a false positive 
over 80% of the time! 

5.2 Estimating FPR for P-value 
We would like to estimate the FPR for p-value in the range [p1,p2].  
We will use the notation P12 to indicate the probability Pr(𝑝1 ≤

 p-value ≤  𝑝2). 
𝐹𝑃𝑅(𝑝1, 𝑝2)  =  𝑃(𝐻0| 𝑃12) 

                                                     =  (𝑃12 | 𝐻0) ∙ 𝑃(𝐻0) / 𝑃12 
 
For simple (non-composite) null hypotheses, such as delta=0, the 
p-value distribution is uniform [47], so we have 
 

=  (𝑝2 − 𝑝1) ∙ 𝜋 / 𝑃12 
 
The denominator can be estimated by the proportion of the 
number of experiments between p1 and p2 to the overall count of 
experiments. Practically, the range must be large enough so that 
there are enough experiments for the estimate to have low 
variance.  
 
We use Expedia’s success rate derived in section 4.5, along with 
the perturbed empirical distribution of p-value of tests, to 
demonstrate the FPR at different p-value ranges typical seen in 
large-scale organizations running thousands of tests. Table 4 
shows the FPR for three ranges. The spreadsheet at 
https://bit.ly/FalsePositivesInABTestsCalc “FPR for p-value” tab 
has the computations for the table. 
 

Table 4: FPR for P-value ranges 
p-value 
range  

Numerator 
(False 
positives%) 

Percent of 
experiments in this 
range (perturbed) 

False 
Positive 
Risk 

[0, 0.01] 0.4% 7.2% 6.0% 
[0.01, 0.05] 1.7% 5.2% 33.0% 
[0.05, 0.1] 2.1% 3.2% 67.1% 

 

It is clear that experiments with p-value between 0.05 to 0.10 have 
a surprisingly large probability of being false positives, as the FPR 
is 67%. 

6. Replicating or Extending the Experiment 
In Section 4.2, we suggested replicating experiments to help assess 
the true success rate.  In this section we analyze the cost of using 
this procedure or a similar alternative of extending the 
experiment, not for estimating the success rate, but rather on an 
ongoing basis.   
 
In the rest of this section, we will assume that the common 
industry standard of alpha=0.05 is being used with a true success 
rate of 10%, which is the median and mode from Kohavi, Deng, 
and Vermeer [14].  For this case, the FPR for less-than alpha is 22% 
and the Colquhoun’s simulation for p-value equal case is 64%.  For 
Expedia, the p-value equal case is 37% using 0.05 ∓ 0.1 as the 
range (described in Section 5.2).  
 
Given the high FPR of experiments with a p-value close to the 
alpha threshold, we can decide to validate the results by doing a 
replication run, or by extending the experiment if the p-value is 
close to alpha, say < 0.05. One option is to extend the experiment 
by the same duration it originally ran (e.g., two weeks).  For 
simplicity, we will assume that this will double the number of 
users, although in practice user growth is sub-linear due to repeat 
users (the calculations can be similarly done if the first two weeks 
represents, say, 60% of the total users vs. 40% in the latter two 
weeks, or the extension can be for, say, three weeks).   
 
Another option is to shuffle the users and start a replication run. 
Unlike extending the experiment, there is no issue with the count 
of repeat users, and the number of users over the second set of 
two weeks will be similar to the first two weeks, as users are re-
randomized.  Deng, Li, and Guo [48] show weak dependence from 
such a replication run, which implies that a combined analysis can 
be done. This approach is “cleaner” from a statistical perspective, 
but if the experiment is clearly visible to users, such as an obvious 
UI (User Interface) change, then the first approach is preferable so 
that users aren’t contaminated by seeing both Control and 
Treatment.  We can do a meta-analysis of the two experiments 
using Fisher’s method or Stouffer’s method [42 p. Fisher's 
Method], but a better approach is to view this as a group-
sequential test.  
 
Using alpha spending from group sequential tests [49; 50], we can 
design a protocol with interim analysis, where the type-I error 
rate is still restricted to some alpha, such as 0.05.  For example, 
using the ldbounds package in R, here are three options: 

5. Selecting the Pocock approach [51], an analysis at 50% 
of users with alpha1=0.03 and an analysis at 100% of 
users with alpha=0.03 keeps the overall alpha at 0.05.  

6. Selecting O’Brien-Fleming [52], is conservative at the 
midpoint, declaring success only if the p-value is less 
than alpha1=0.005, yet still be able to declare statistical 
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significance at the end if the p-value is less than 
alpha2=0.048.   

7. Goldilocks (in between the above): setting alpha1 to 
0.01, and thus alpha2 should be <= 0.046 to control for 
overall type-I error of 5%.  

Note that due to repeat users, a more sophisticated analysis can 
be done than the above package by providing the covariance 
matrix, but the above is likely to be conservative.  
 
In terms of power for the final (e.g., four-week) experiment, not 
doing any interim analysis is the most powerful.  O’Brien-Fleming 
loses a bit of power with alpha2=0.048, but the probability of being 
able to stop after two weeks is low.  The Goldilocks approach 
seems like a reasonable tradeoff where more experiments can be 
terminated at two weeks without losing much power.  
 
If the initial experiment (e.g., two weeks) was powered at 80% 
power for some MDE, then doubling the users reduces the MDE 

by a factor of √2 = 1.41, or, equivalently, raising the power of the 
original MDE from 80% to about 98% ( 1 − 𝛽 =  Φ(𝛿 SE⁄ −

𝑍ଵିఈ/ଶ) [14], where 𝛿 = 2.8𝑆𝐸1 and 𝑆𝐸 = 𝑆𝐸1/√2, so 1 − 𝛽 =

 Φ (2.8√2 – 1.995) = 98%, where 1.995 comes from the Goldilocks 
0.046 threshold).   Given 80% power, the first phase will miss 20% 
of the true positives, and the second phase will miss 2%, for a 
combined power of 78%.  
 
What about FPR, the False Positive Risk? Analyzing the Goldilocks 
version, the FPR of the experiment when using alpha1=0.01 is 
7.1%.  If the experiment is extended, an alpha2 of 0.046 results in 
an FPR of 17.5% for 98% power.   The overall FPR is a linear 
combination of the two; if half of the statistically significant 
results can be declared after the first two weeks and half require 
two more weeks, then we have an FPR of 0.5*7.1%+0.5*17.5% = 
12.3%, materially lower than the 22% mentioned at the end of 
Section 5.1. The calculations for the example here are in 
https://bit.ly/FalsePositivesInABTestsCalc, “FPR of two exp” tab. 
What is the impact to the agility of the organization?  Not much. 
If 80% of experiments fail to be statistically significant 
improvements, then the extension will only be run for the portion 
of the 20% whose p-value is between 0.01 and 0.05. At Expedia, 
42% of experiments will be extended (5.2%/(5.2%+7.2%)) based on 
Table 4, but even if conservatively assuming half, then 10% of 
experiments will have to be run for two more weeks. The average 
experiment duration will therefore be 15.4 days instead of 14 days. 

6.1 Lowering the FPR 
Bartoš and Maier [28] suggest that to reduce FPR, it is more 
efficient to reduce alpha than to increase power, a conclusion that 
aligns with our recommendation in Section 4.5.    
 
If we set alpha2 to be 0.01, the second phase will have 92% power, 
thus we are slightly lowering the overall power.  However, the 
FPR is lowered dramatically to 4.1%, so that the overall FPR is a 

linear combination of 7.1% and 4.1%.  Assuming 50/50, the overall 
FPR is 0.5*7.1%+0.5*4.1% = 5.9%, materially lower than the above 
12.3% and much lower than the original 22%. The calculations for 
the example here are in https://bit.ly/FalsePositivesInABTestsCalc 
“FPR of two exp” tab. 

6.2 Increasing Power with Low FPR 
Extending an experiment, as described above, reduces the FPR at 
a small cost to agility. What about extending an experiment to 
increase power? Suppose that instead of extending the experiment 
when the p-value is between 0.01 to 0.05, we extend it when the 
p-value is between 0.01 and 0.10?   

e procedure is as follows: 
 

1. Run the experiment with 80% power (e.g., two weeks). 
2. If the p-value > 0.10, then stop.  We can’t reject the null.  
3. If the p-value < 0.10, but the treatment effect estimate is 

negative, stop. e null is either true, or we’re hurting users 
if it is false.  

4. If the p-value < 0.01 and the treatment effect is positive, then 
stop.  is is a win, as we can reject the null with low FPR. 

5. Run phase 2 (replication run or extension), and reject the null 
as a win, only if the combined p-value < 0.01.  
 

If our power for the first phase was previously 80%, we have now 
increased it to 88%. e first phase will miss only 12% of the true 
positives, and the second phase will miss an additional 8% for a 
combined power of 80%. 

e change we made increases the number of experiments that go 
to phase 2, but not the rejection of the null for phase 1, so the FPR 
for the two phases do not change, having an overall FPR of 5.9%.   

e impact here is to agility.  Instead of 10% of experiments falling 
into the p-value range of 0.01 to 0.05, we might now have 20% in 
the range 0.01 to 0.10, and the average experiment duration will 
be 20% longer (e.g., 16.8 days instead of 14 days).  

Note that we are extending experiments that are borderline 
positive, so the probability that we are exposing users to a 
statistically significant negative experience for longer is very low; 
it is much more likely that the treatment is “flat” with an effect 
close to zero than that it is statistically significantly negative. 
Gelman and Carlin [36] showed that the probability of a sign error 
is vanishingly small at 50% power, and much more so at 80% 
power recommended in this procedure.  

To summarize, the new procedure keeps the same 80% power, but 
decreases the FPR from 22% to 5.9% for an increased average 
experiment time of 20%.  

7 Success Rate of Ideas vs. Experiments 
ere is a lot of confusion in industry on the failure rate of ideas 
vs. experiments. We have heard people who quote success rate of 
experiments [14] and claim that 90% of ideas fail. While we believe 
that most ideas fail, the percentage is not as high as the failure 
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rate for experiments. e key to note is that an idea may be 
evaluated over multiple experiments.  For example, think of the 
following realistic scenario: 
 

8. An initial idea that starts off as an MVP (Minimum 
Viable Product/Feature) and an experiment is coded up 
and runs on one platform, say iOS.  The first experiment 
launches and quickly aborted because of severe 
degradations to guardrail metrics. The bug is quickly 
found and fixed. 

9. The second iteration starts, runs for two weeks, and is 
flat (not statistically significant).  An analysis reveals 
that many users are aborting because they 
misunderstand the feature value.  The designers change 
the UI. 

10. A 3rd iteration starts, runs for two weeks, and is 
statistically significantly positive.  Given the success, a 
decision is made to implement the idea for the other two 
platforms: Android and the Web. 

11. The development for Android is delayed. A decision is 
made to test the Web version separately. The 
experiment needs to run for three weeks because it is a 
smaller segment than iOS.  The results are flat. There 
are some hypotheses about whether the feature is less 
useful for web users, or whether the implementation 
could be improved, but a decision is made to wait for the 
results from the Android version.  

12. Two weeks later, the Android version finishes 
development, and the experiment starts, but because the 
development was rushed, the experiment breaks a 
guardrail metric and is aborted.  The bug is fixed.  

13. The Android experiment is restarted and is run for three 
weeks, resulting in a statistically significant 
improvement.   

A decision is made to launch the feature on all platforms.  It is 
statistically significantly positive for iOS and Android, and flat for 
web, and consistency matters.  
 
Summarizing, six experiments were run.  Two were statistically 
significantly negative (a and e), two were flat (b and d), and two 
were statistically significantly positive (c and f).  The “success 
rate” of experiments was 33%.  The success rate of ideas was 100%, 
as we had one idea that ultimately launched. 
 
Another factor worth noting is that the experiment success rate is 
likely to decline over time, as agility improves, and QA is reduced 
when the trust in the experimentation platform develops:  
 
1. At Microsoft’s early days, the success rate was 33% [41]. The 

trust in the early versions of the ExP platform was low 
(justifiably), and groups had high QA standards, so it was 
rare to see an experiment abort in the first day.   

2. At Bing, the success rate was about 15% [18].  As the trust 
grew over time, the organization was taking more risks with 
less QA, because the experimentation platform provided a 

safety net. About 10% of experiments were aborted in the first 
day (usually in the first few hours).   

There is obviously a tradeoff between increased agility and 
exposing users to software with increased bugs, but Microsoft 
Office had a ratio of 1:1 between developers and testers, which in 
an online world seems extreme when Amazon could do with a 
10:1 ratio [53]. The value of increased agility and launching 
Minimum Viable Products/Features [54] was believed to be 
superior.  After the successful experience with increased agility 
and reduced QA at Bing, Satya Nadella reduced QA across 
Microsoft when he became CEO [55].   

8 SUMMARY 
There has been an ongoing debate in the software industry, with 
some claims that we should increase the alpha threshold for 
accepting stat-sig results from 0.05, or run one-tail tests, because 
0.05 is too stringent. In the extreme, Longden [56] wrote that “In 
certain situations, there is no reason why 70% significance 
(alpha=0.3) isn’t a completely acceptable reflection of a risk 
approach.” This is a common misinterpretation of p-values [57; 
25; 26; 27]. The False Positive Risk is a much more intuitive metric, 
highlighting the ratio of incorrect statistically significant results.   
 
The key question is the success rate for an organization, and we 
proposed several approaches to estimate it, with examples from 
Optimizely and Expedia. Whether you weigh false positives to 
negatives as 1-to-1 or 3-to-1, most organizations should lower 
their alpha to reduce the loss stemming from false negatives and 
false positives.  Expedia, which has used an alpha of 0.1, is now in 
the process of lowering the alpha given these results. 
 
In our analysis, we assumed a fixed success rate across all 
experiments.  In practice, this is a classical bias-variance tradeoff 
question; if there is reason to believe that different groups or 
organizations have different success rates or risk profiles, then 
with enough data it makes sense to fragment the data and analyze 
them separately.  
 
We proposed a modified procedure for experimentation, based in 
sequential group testing, that selectively extends experiments to 
reduce false positives, increase power, at a small increase to 
runtime. 
 
We concluded with a discussion of the difference between ideas 
and experiments in practice, terms that are oen incorrectly used 
interchangeably. While it is likely that most ideas fail, it is at a 
lower rate than the median 90% rate for experiments.  
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and discussion around false discovery risk analysis at Expedia 
Group.  
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Appendix A: FPR for p-value equals case 
 
Colquhoun [15] provides an online calculator at 
http://fpr-calc.ucl.ac.uk/.  Plugging in an example of an e-
commerce site with 5% conversion rate and MDE of relative 5%, 
and using the Optimizely success rate and alpha of 0.10 [34], we 
have the following: 

1. P-value of 0.05 (single tail equivalent to 0.10 two-tailed). 
2. Probability of real effect: 9.3%, based on 12% observed 

win rate for Optimizely’s report. 
3. Samples required for 80% power: 

    16*(0.05*0.95)/(0.05*0.05)^2 = 121,600 
4. Effect size as multiple of MDE: 

    0.05*0.05/sqrt(0.05*0.95)= 0.0115 
 
(Note that the items 3 and 4 above are only necessary for the 
calculator to end up with 80% power.  You would get the same 
result if you input n=16 and effect size of 1, which Colquhoun uses 
in his paper.) 
 
The simulation shows an FPR for p-less-than-case of 37.6%, very 
close to our Bayes Rules estimate of 37.8%.  The p-equals case is 
80.7% (image below). 
 
An experiment with a p-value of 0.10 (90% confidence) for a 
typical Optimizely has over 80% probability of being a false 
positive! 
 
 

 
 
 
 
 
 
 
 


