# -*- coding: utf-8 -*-
"""
@author: Aghiles Salah <asalah@smu.edu.sg>
"""
import numpy as np
from ..recommender import Recommender
from .pcrl import PCRL_
#Recommender class for Probabilistic Collaborative Representation Learning (PCRL)
[docs]class PCRL(Recommender):
"""Probabilistic Collaborative Representation Learning.
Parameters
----------
k: int, optional, default: 100
The dimension of the latent factors.
z_dims: Numpy 1d array, optional, default: [300]
The dimensions of the hidden intermdiate layers 'z' in the order \
[dim(z_L), ...,dim(z_1)], please refer to Figure 1 in the orginal paper for more details.
max_iter: int, optional, default: 300
Maximum number of iterations (number of epochs) for variational PCRL.
batch_size: int, optional, default: 300
The batch size for SGD.
learning_rate: float, optional, default: 0.001
The learning rate for SGD.
aux_info: csc sparse matrix, required
The item auxiliary information matrix, item-context in the PCRL's paper, \
in the scipy csc sparse format.
name: string, optional, default: 'PCRL'
The name of the recommender model.
trainable: boolean, optional, default: True
When False, the model is not trained and Cornac assumes that the model already \
pre-trained (Theta, Beta and Xi are not None).
w_determinist: boolean, optional, default: True
When True, determinist wheights "W" are used for the generator network, \
otherwise "W" is stochastic as in the original paper.
init_params: dictionary, optional, default: {'G_s':None, 'G_r':None, 'L_s':None, 'L_r':None}
List of initial parameters, e.g., init_params = {'G_s':G_s, 'G_r':G_r, 'L_s':L_s, 'L_r':L_r}, \
where G_s and G_r are of type csc_matrix or np.array with the same shape as Theta, see below). \
They represent respectively the "shape" and "rate" parameters of Gamma distribution over \
Theta. It is the same for L_s, L_r and Beta.
Theta: csc_matrix, shape (n_users,k)
The expected user latent factors.
Beta: csc_matrix, shape (n_items,k)
The expected item latent factors.
References
----------
* Salah, Aghiles, and Hady W. Lauw. Probabilistic Collaborative Representation Learning for Personalized Item Recommendation. \
In UAI 2018.
"""
def __init__(self, k=100, z_dims = [300], max_iter=300, batch_size = 300,learning_rate = 0.001,aux_info = None, name = "pcrl", trainable = True,w_determinist = True, init_params = {'G_s':None, 'G_r':None, 'L_s':None, 'L_r':None}):
Recommender.__init__(self, name=name, trainable = trainable)
self.aux_info = aux_info
self.k = k
self.z_dims = z_dims #the dimension of the second hidden layer (we consider a 2-layers PCRL)
self.max_iter = max_iter
self.batch_size = batch_size
self.learning_rate = learning_rate
self.init_params = init_params
self.w_determinist = w_determinist
#fit the recommender model to the traning data
[docs] def fit(self,X):
"""Fit the model to observations.
Parameters
----------
X: scipy sparse matrix, required
the user-item preference matrix (traning data), in a scipy sparse format\
(e.g., csc_matrix).
"""
if self.trainable:
#intanciate pcrl
pcrl_ = PCRL_(cf_data = X, aux_data = self.aux_info, k =self.k, z_dims = self.z_dims, n_epoch=self.max_iter, batch_size = self.batch_size, learning_rate = self.learning_rate, B = 1, w_determinist = self.w_determinist, init_params = self.init_params)
pcrl_.learn()
self.Theta = np.array(pcrl_.Gs)/np.array(pcrl_.Gr)
self.Beta = np.array(pcrl_.Ls)/np.array(pcrl_.Lr)
else:
print('%s is trained already (trainable = False)' % (self.name))
[docs] def score(self, user_index, item_indexes = None):
"""Predict the scores/ratings of a user for a list of items.
Parameters
----------
user_index: int, required
The index of the user for whom to perform score predictions.
item_indexes: 1d array, optional, default: None
A list of item indexes for which to predict the rating score.\
When "None", score prediction is performed for all test items of the given user.
Returns
-------
Numpy 1d array
Array containing the predicted values for the items of interest
"""
if item_indexes is None:
user_pred = self.Beta*self.Theta[user_index,:].T
else:
user_pred = self.Beta[item_indexes,:]*self.Theta[user_index,:].T
#transform user_pred to a flatten array
user_pred = np.array(user_pred,dtype='float64').flatten()
return user_pred
[docs] def rank(self, user_index, known_items = None):
"""Rank all test items for a given user.
Parameters
----------
user_index: int, required
The index of the user for whom to perform item raking.
known_items: 1d array, optional, default: None
A list of item indices already known by the user
Returns
-------
Numpy 1d array
Array of item indices sorted (in decreasing order) relative to some user preference scores.
"""
u_pref_score = np.array(self.score(user_index))
if known_items is not None:
u_pref_score[known_items] = None
rank_item_list = (-u_pref_score).argsort() # ordering the items (in decreasing order) according to the preference score
return rank_item_list