
Sampling with Halton Points on n-Sphere

Wai-Shing Luk

Fudan University

September 28, 2023



Motivation and Applications

Review of Low Discrepancy Sequence

Our approach

Numerical Experiments

Conclusions



Abstract

We discuss the generation of low discrepancy sequences over n-sphere.
The introduction provides an overview of the importance of low
discrepancy sequences in various applications, such as numerical
integration, optimization, and simulation. The paper then discusses the
desirable properties of samples over n-sphere, including uniformity,
determinism, and incrementality.

The proposed method for generating low discrepancy sequences over
n-sphere is then presented, which is based on the Van der Corput
sequence. The paper provides a detailed explanation of the algorithm
and its implementation. The paper also discusses the numerical
experiments conducted to evaluate the performance of the proposed
method, including the comparison with randomly generated sequences
and other proposed methods.



Motivation and Applications



Problem Formulation

The desirable properties of samples over n-sphere include:
▶ being uniform,
▶ deterministic, and
▶ incremental.

▶ The uniformity measures are optimized with every new point, and
this is because in some applications, it is unknown how many
points are needed to solve the problem in advance.



Motivation

▶ The topic has been well studied for sphere in 3D, i.e. n = 2
▶ Yet it is still unknown how to generate for n > 2.
▶ Some potential applications for n > 2 include:

▶ Robotic Motion Planning (S3 and SO(3)) (Yershova et al. 2010)
▶ Spherical coding in MIMO wireless communication (Utkovski and

Lindner 2006):
▶ Cookbook for Unitary matrices

▶ A code word = a point in Sn

▶ Multivariate empirical mode decomposition (Rehman and Mandic
2010)

▶ Filter bank design (Mandic et al. 2011)



Halton Sequence on Sn

▶ Halton sequence on S2 has been well studied (Cui and Freeden
1997) by using cylindrical coordinates.

▶ Yet it is still little known for Sn where n > 2.
▶ Note: The generalization of cylindrical coordinates does NOT

work in higher dimensions.



Review of Low Discrepancy Sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Basic: Van der Corput sequence

▶ Generate a low discrepancy sequence over [0, 1]
▶ Denote vdc(k, b) as a Van der Corput sequence of k points, where
b is the base of a prime number.

Figure 1: Example of Van der Corput sequence



Python code

def vdc_basic(n, base=2):
vdc, denom = 0.0, 1.0
while n:

denom *= base
n, remainder = divmod(n, base)
vdc += remainder / denom

return vdc

def vdc(n, base=2):
'''
n - number of vectors
base - seeds
'''
for i in range(n):

yield vdc_basic(i, base)



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]

▶ Halton sequence: using 2
Van der Corput sequences
with different bases.

▶ Example:

[x, y] = [vdc(k, 2), vdc(k, 3)]

Figure 2: Example of Halton
sequnce



Halton sequence on [0, 1]n

▶ Generally we can generate Halton sequence in a unit hypercube
[0, 1]n:

[x1, x2, . . . , xn] = [vdc(k, b1), vdc(k, b2), . . . , vdc(k, bn)]

▶ A wide range of applications on Quasi-Monte Carlo Methods
(QMC).



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Circle S1

Can be generated by mapping the Van der
Corput sequence to [0, 2π]
▶ θ = 2π · vdc(k, b)
▶ [x, y] = [cos θ, sin θ]

Figure 3: Sequnce mapping to
a unit circle



Unit Sphere S2

Has been applied for computer graphic
applications (Wong, Luk, and Heng 1997)
▶ Use cylindrical mapping.
▶ [z, x, y]

= [cos θ, sin θ cosφ, sin θ sinφ]
= [z,

√
1 − z2 cosφ,

√
1 − z2 sinφ]

▶ φ = 2π · vdc(k, b1) % map to [0, 2π]
▶ z = 2 · vdc(k, b2) − 1 % map to [−1, 1] Figure 4: image



Sphere Sn and SO(3)

▶ Deterministic point sets
▶ Optimal grid point sets for S3, SO(3) (Mitchell 2008; Yershova et

al. 2010)

▶ No Halton sequences so far to the best of our knowledge.
▶ Note that cylindrical mapping method cannot be extended to

higher dimensions.



SO(3) or S3 Hopf Coordinates

▶ Hopf coordinates (cf. (Yershova et al.
2010))
▶ x1 = cos(θ/2) cos(ψ/2)
▶ x2 = cos(θ/2) sin(ψ/2)
▶ x3 = sin(θ/2) cos(φ+ ψ/2)
▶ x4 = sin(θ/2) sin(φ+ ψ/2)

▶ S3 is a principal circle bundle over
the S2

Figure 5: image



Hopf Coordinates for SO(3) or S3

Similar to the Halton sequence generation on S2, we perform the
mapping:
▶ φ = 2π · vdc(k, b1) % map to [0, 2π]
▶ ψ = 2π · vdc(k, b2) % map to [0, 2π] for SO(3), or
▶ ψ = 4π · vdc(k, b2) % map to [0, 4π] for S3

▶ z = 2 · vdc(k, b3) − 1 % map to [−1, 1]
▶ θ = cos−1 z



Python Code

def sphere3_hopf(k, b):
vd = zip(vdc(k, b[0]), vdc(k, b[1]), vdc(k, b[2]))
for vd0, vd1, vd2 in vd:

phi = 2*math.pi*vd0 # map to [0, 2*math.pi]
psy = 4*math.pi*vd1 # map to [0, 4*math.pi]
z = 2*vd2 - 1 # map to [-1., 1.]
theta = math.acos(z)
cos_eta = math.cos(theta/2)
sin_eta = math.sin(theta/2)
s = [cos_eta * math.cos(psy/2),

cos_eta * math.sin(psy/2),
sin_eta * math.cos(phi + psy/2),
sin_eta * math.sin(phi + psy/2)]

yield s



Our approach



3-sphere

▶ Polar coordinates:
▶ x0 = cos θ3

▶ x1 = sin θ3 cos θ2

▶ x2 = sin θ3 sin θ2 cos θ1

▶ x3 = sin θ3 sin θ2 sin θ1

▶ Spherical surface element:

dA = sin2(θ3) sin(θ2) dθ1 dθ2dθ3



n-sphere

▶ Polar coordinates:
▶ x0 = cos θn

▶ x1 = sin θn cos θn−1

▶ x2 = sin θn sin θn−1 cos θn−2

▶ x3 = sin θn sin θn−1 sin θn−2 cos θn−3

▶ · · ·

▶ xn−1 = sin θn sin θn−1 sin θn−2 · · · cos θ1

▶ xn = sin θn sin θn−1 sin θn−2 · · · sin θ1

▶ Spherical surface element:

dnA = sinn−2(θn−1) sinn−1(θn−2) · · · sin(θ2) dθ1 dθ2 · · · dθn−1



How to Generate the Point Set

▶ p0 = [cos θ1, sin θ1] where θ1 = 2π · vdc(k, b1)
▶ Let fj(θ) =

∫
sinj θdθ, where θ ∈ (0, π).

▶ Note 1: fj(θ) can be defined recursively as:

fj(θ) =


θ if j = 0,
− cos θ if j = 1,
(1/n)(− cos θ sinj−1 θ + (n− 1)

∫
sinj−2 θdθ) otherwise.

▶ Note 2: fj(θ) is a monotonic increasing function in (0, π)

▶ Map vdc(k, bj) uniformly to fj(θ):
tj = fj(0) + (fj(π) − fj(0))vdc(k, bj)

▶ Let θj = f−1
j (tj)

▶ Define pn recursively as:
pn = [cos θn, sin θn · pn−1]



Numerical Experiments



Testing the Correctness

▶ Compare the dispersion with the random point-set
▶ Construct the convex hull for each point-set
▶ Dispersion roughly measured by the difference of the maximum

distance and the minimum distance between every two neighbour
points:

max
a∈N (b)

{D(a, b)} − min
a∈N (b)

{D(a, b)}

where D(a, b) =
√

1 − aTb



Random sequences

▶ To generate random points on Sn, spherical symmetry of the
multidimensional Gaussian density function can be exploited.

▶ Then the normalized vector (xi/∥xi∥) is uniformly distributed over
the hypersphere Sn. (Fishman, G. F. (1996))



Convex Hull with 600 points

1.000.750.500.250.000.250.500.751.00 1.00
0.750.500.250.000.250.500.751.00

0.75
0.50
0.25

0.00
0.25
0.50
0.75

1.000.750.500.250.000.250.500.751.00 1.00
0.750.500.250.000.250.500.751.00

0.75
0.50
0.25

0.00
0.25
0.50
0.75

Figure 6: image

Left: our, right: random



Result for S3

Compared with Hopf coordinate method.

0 500 1000 1500 2000 2500 3000 3500 4000
#points

0.4

0.6

0.8

1.0

1.2

1.4

di
sc

re
pa

nc
y

Random
Hopf
Our

Figure 7: image



Result for S3 (II)
Compared with cylindrical mapping method.

0 500 1000 1500 2000 2500 3000 3500 4000
#points

0.4

0.6

0.8

1.0

1.2

1.4

di
sc

re
pa

nc
y

Random
Our
Cylin

Figure 8: image



Result for S4

Compared with cylindrical mapping method

0 500 1000 1500 2000 2500 3000 3500 4000
#points

0.6

0.8

1.0

1.2

1.4

di
sc

re
pa

nc
y

Random
Our
Cylin

Figure 9: image



Conclusions



Conclusions

▶ Proposed method generates low-discrepancy point-set in nearly
linear time

▶ The result outperforms the corresponding random point-set,
especially when the number of points is small

▶ Python code is available at here

http://github.com/luk036/n-sphere/


References I

Cui, Jianjun, and Willi Freeden. 1997. “Equidistribution on the
Sphere.” SIAM Journal on Scientific Computing 18 (2): 595–609.

Mandic, DP et al. 2011. “Filter Bank Property of Multivariate
Empirical Mode Decomposition.” Signal Processing, IEEE
Transactions on 59 (5): 2421–26.

Mitchell, Julie C. 2008. “Sampling Rotation Groups by Successive
Orthogonal Images.” SIAM Journal on Scientific Computing 30 (1):
525–47.

Rehman, Naveed, and Danilo P Mandic. 2010. “Multivariate Empirical
Mode Decomposition.” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science 466 (2117):
1291–1302.

Utkovski, Zoran, and Juergen Lindner. 2006. “On the Construction of
Non-Coherent Space Time Codes from High-Dimensional Spherical
Codes.” In Spread Spectrum Techniques and Applications, 2006
IEEE Ninth International Symposium on, 327–31. IEEE.



References II

Wong, Tien-Tsin, Wai-Shing Luk, and Pheng-Ann Heng. 1997.
“Sampling with Hammersley and Halton Points.” Journal of
Graphics Tools 2 (2): 9–24.

Yershova, Anna, Swati Jain, Steven M LaValle, and Julie C Mitchell.
2010. “Generating Uniform Incremental Grids on SO (3) Using the
Hopf Fibration.” The International Journal of Robotics Research 29
(7): 801–12.


	Motivation and Applications
	Review of Low Discrepancy Sequence
	Our approach
	Numerical Experiments
	Conclusions

