
Low Discrepancy Sequences for
Monte Carlo Simulations on Reconfigurable Platforms

Ishaan L. Dalal, Deian Stefan and Jared Harwayne-Gidansky

The Cooper Union for the Advancement of Science and Art

51 Astor Place, New York, NY 10003

{ishaan, stefan, harway}@cooper.edu

Abstract

Low-discrepancy sequences, also known as “quasi-
random” sequences, are numbers that are better
equidistributed in a given volume than pseudo-random
numbers. Evaluation of high-dimensional integrals is
commonly required in scientific fields as well as other
areas (such as finance), and is performed by stochastic
Monte Carlo simulations. Simulations which use quasi-
random numbers can achieve faster convergence and
better accuracy than simulations using conventional
pseudo-random numbers. Such simulations are called
Quasi-Monte Carlo.

Conventional Monte Carlo simulations are increas-
ingly implemented on reconfigurable devices such as
FPGAs due to their inherently parallel nature. This has
not been possible for Quasi-Monte Carlo simulations be-
cause, to our knowledge, no low-discrepancy sequences
have been generated in hardware before. We present
FPGA-optimized scalable designs to generate three
different common low-discrepancy sequences: Sobol,
Niederreiter and Halton. We implement these three
generators on Virtex-4 FPGAs with varying degrees
of fine-grained parallelization, although our ideas can
be applied to a far broader class of sequences. We
conclude with results from the implementation of an
actual Quasi-Monte Carlo simulation for extracting
partial inductances from integrated circuits.

1. Introduction

In general, Monte Carlo (MC) methods are algo-

rithms which use random sampling to stochastically

model systems. A specific MC method is Monte

Carlo integration—a numerical integration technique to

approximately evaluate a definite integral. While con-

ventional numerical integration evaluates integrands at

regularly spaced points in the integrand domain, Monte

Carlo integration samples (evaluates) the integrand at

multiple random points.

(a) Pseudo-random Points (b) Low-discrepancy Points

Figure 1. “Equidistribution” or Randomness

Monte Carlo integration is used extensively to com-

pute multi-dimensional integrals that occur frequently in

physics, finance, etc. since it can be as accurate as and

much faster than conventional integration. The random

inputs for MC integrations and MC simulations are

usually uniform random variates (RVs) provided by a

pseudo-random number generator (PRNG). MC simula-

tions are often inherently parallel and, consequently, are

increasingly implemented on reconfigurable hardware

such as FPGAs.

Real-world MC integration uses a finite quantity

of pseudo-random numbers. A critical issue with

these numbers is that they may not be perfectly

‘equidistributed,’ i.e. this finite quantity of pseudo-

random numbers actually used are not spread uniformly

throughout the domain of the integrand, which leads

to poorer results. While equidistribution as well as

accuracy improve as more random numbers are used,

this requires longer run-times. To solve this problem,

low-discrepancy sequences that are well-distributed

even for small quantities were introduced [1]. Low-

discrepancy sequences (LDS) are also called quasi-
random numbers; therefore, MC methods utilizing low-

discrepancy sequences are referred to as Quasi-Monte
Carlo (QMC) methods.

It is simplest to illustrate the distinction between

pseudo-random numbers and low-discrepancy se-

quences with an example. Figure 1a shows 100 random

points from the well-known Mersenne Twister PRNG.

1081-4244-1898-5/08/$20.00 ©2008 IEEE 
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



Each square subregion does not contain a similar

number of points and clumping can be seen. Figure 1b

shows 100 points from the Sobol [2] low-discrepancy

sequence. Each square subregion contains roughly the

same number of points, making the points more even

and resulting in a higher degree of equidistribution.

Quasi-Monte Carlo integration is common in soft-

ware but, to our knowledge, no hardware implementa-

tions exist in the literature in spite of the recent trend of

performing MC methods in hardware. We attribute this

to a corresponding lack of hardware low-discrepancy

sequence generators. In this paper, we remedy this

issue by presenting the first FPGA-optimized, scalable

designs for three common low-discrepancy sequences:

Sobol [2], Niederreiter [3] and Halton [4].

We begin with mathematical preliminaries on low-

discrepancy sequences, followed by algorithms for

generating three low-discrepancy sequences in binary

arithmetic. FPGA-optimizations and scalability are dis-

cussed next, followed by results of our implementations

with various levels of parallelization on the Xilinx
Virtex-4 FPGA. We conclude by interfacing a real-world

Monte Carlo integration problem to our generators and

analyzing performance.

2. Low-Discrepancy Sequences

2.1. Defining Discrepancy

Before discussing methods for generating low-

discrepancy sequences, let us define discrepancy [5].

The numbers we generate belong to the half-open

interval Œ0; 1/, and can be scaled if necessary. Consider

the s-dimensional half-open unit cube Is D Œ0; 1/s ,

s � 1. For N points x1; x2; : : : ; xN 2 Is and a sub-

interval J of Is , if A.J / counts the number of points

xi 2 J and V.J / is the volume of J , we define the

discrepancy D.J; N / as

D.J; N / D
ˇ̌
ˇ̌A.J /

N
� V.J /

ˇ̌
ˇ̌ ; (1)

Intuitively, the discrepancy is the difference between

the proportion of points in J compared to the full unit

cube Is and the volume of the ‘box’ J compared to

Is .

Figure 2 shows a 2-dimensional hypercube Is D
Œ0; 1/2 (a square) with six points. Three sub-intervals

(or boxes) A, B and C are shaded. The discrepancy of

box A, which contains 3 points, is calculated from eq.

(1) as:

D.A; 6/ D
ˇ̌
ˇ̌3

6
� 1

2

ˇ̌
ˇ̌ D 0

0.2

(A)

(C)

(B)

1

0.5

0.4

0.2

0.2

1

Figure 2. Illustrating discrepancy in 2 dimensions

Similarly, the discrepancies of boxes B and C are �
0:1267 and 0:8 respectively.

The worst-case discrepancy, i.e. the worst-case distri-

bution of a set/sequence of points fx1; x2; : : : ; xN g 2
Is is called the star-discrepancy [5] and is defined as:

D�.N / D max
J
jD.J IN /j; (2)

The goal of a low-discrepancy sequence is to minimize

this star discrepancy.

2.2. The Halton Sequence

Historically, low-discrepancy sequences were not

designed with digital arithmetic in mind. The Van der
Corput sequence [4] was the first such sequence; it

takes the natural numbers f1; 2; : : : g and reverses their

representation in a particular base b. Figure 3 shows the

first seven terms of the base-2 (binary) Van der Corput

sequence; the fractional values are the reversed binary

representations of the term’s index in the progression.

The Halton sequence [4] generalizes the Van der

Corput sequence to higher dimensions. Each dimen-

sion is represented in a different prime base b (e.g.,

2; 3; 5; 7; : : : ). To generate the n-th point in a sequence,

consider the base b-ary expansion of a n:
P1

iD0 ai b
i ,

where the b-ary coefficients ai 2 f0; : : : ; b � 1g. The

n-th Halton point H.n/ is the radical-inverse function

in base b, defined as H.n/ D P1
iD0 ai b

�i�1.

0.10.001 0.01 0.011 0.101 0.11 0.111

12 34 56 7

Figure 3. The base-2 Van der Corput /Halton Sequence
(progression of the first 7 terms)

109
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



2.3. The Sobol Low-Discrepancy Sequence

Modern low-discrepancy sequences belong to the

general class of digital sequences [6]. Essentially, digi-

tal sequences are constructed using binary operations

on binary expansions and are therefore well-suited

to efficient implementations on computers. Further

discussion of the mathematical theory behind digital

sequences is beyond our scope; the interested reader

may consult [6] and [7].

The Sobol was the first digital sequence [2]. It

operates in base-2 and is still well-regarded for use

in quasi Monte-Carlo. We discuss the algorithm for

generating a Sobol sequence based on [8]. To generate

one sequence (i.e., one dimension) of N -bit low-

discrepancy Sobol numbers, we choose odd integers

mi .0 � i < N /, and define N direction vectors ci :

ci D mi

2i
D 0:ci1ci2ci3 : : : ; (3)

where cij denote the binary expansion of ci . Now,

choose a primitive polynomial P.x/ of degree d with

co-efficients ai from the two-element finite (or Galois)

field GF.2/ (i.e., binary):

P.x/ D xd C a1xd�1 C � � � C ad�1 C 1 (4)

These coefficients ai are used to calculate each

direction vector ci as:

ci D a1ci�1 ˚ a2ci�2 ˚ a1ci�1 ˚ � � � (5)

� � � ˚ ad�1ci�dC1 ˚ ci�d ˚ Œci�d � d�;

where ˚ is an exclusive-or (XOR), and the last term

is ci�d right-shifted by d bits.

A one-dimensional N -bit wide low-discrepancy

Sobol sequence x1; x2; : : : can be generated based on

this set of direction vectors. Take the n-th term of this

sequence, xn, with n D bN bN�1 : : : b2b1 in binary.

Then,

xn D b1c1 ˚ b2c2 ˚ :::˚ bN�1cN�1 ˚ bN cN (6)

If the direction vectors ci are pre-computed, gen-

erating one number requires at most N lookups and

N � 1 XORs. This effort can be drastically reduced

by considering a gray-coded representation of n [9]—a

gray-coded nC1 differs from gray-coded n in only one

bit. The gray-code representation for n can be obtained

by

gN : : : g2g1 D bN : : : b2b1 ˚ bN : : : b3b2;

and the bit gr that flips going from n ! n C 1 is

simply the position r of the least-significant zero-bit

(LSZ) in n D bN : : : b1.

Table 1. Example: Direction Vectors for a Sobol Seq.

i 1 2 3 4 5 6

mi 1 3 7 5 7 43
vi 0.1 0.11 0.111 0.0101 0.00111 0.101011

Table 2. Computing the Direction Vectors in Table 1

ci D ci�2 ˚ ci�3 ˚ .ci�3 � 3/ .i > 3/

c4 D c2 ˚ c1 ˚ .c1 � 3/

D 0:11˚ 0:1˚ 0:0001 D 0:0101

c5 D c3 ˚ c2 ˚ .c2 � 3/

D 0:111˚ 0:11˚ 0:00011 D 0:00111

c6 D c4 ˚ c3 ˚ .c3 � 3/

D 0:0101˚ 0:111˚ 0:000111 D 0:101011

Now, since n C 1 differs from n by only one bit,

xnC1 ‘differs’ from xn by only one direction vector cr .

xnC1 can therefore be computed based on xn as

xnC1 D xn ˚ cr ; (7)

with only one lookup and one XOR; the complexity of

finding the least-significant zero-bit r of n can also be

decreased from the standard O.log n/ in hardware by

using a priority encoder.

2.4. Example: Generating a Sobol Sequence

We start with the degree d D 3 primitive polynomial

x3 C x C 1. The coefficients, comparing with (5), are

a1 D 0; a2 D 1; a3 D 1. The first d D 3 direction

vectors are arbitrary, depending on choosing odd mi <

2i .

Let m1 D 1; m2 D 3; m3 D 7, with the

corresponding ci D mi =2i , i.e. c1 D 0:1, c2 D 0:11,

c3 D 0:111. The recurrence for c4; c5; : : : is, from (5),

ci D ci�2 ˚ ci�3 ˚ .ci�3 � 3/ .i > 3/ (8)

Once we have computed the direction vectors, the

sequence can be generated. Setting the initial conditions

for the zeroth term: x0 D 0, n D 0, and the position of

the least-significant-zero in n D 0 is r D 1. The first

three numbers of this sequence are then calculated as

shown in Table 3.

2.5. Niederreiter Sequences

Niederreiter sequences are digital sequences that can

be thought of as generalizing the base-2 Sobol to other

110
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



Table 3. Generating the Sobol Sequence in Table 2

n r xn

001 2 x1 D x0 ˚ v1 D 0:0˚ 0:1 D 0:1

010 1 x2 D x1 ˚ v2 D 0:1˚ 0:11 D 0:01

011 3 x3 D x2 ˚ v1 D 0:01˚ 0:1 D 0:11

bases. Asymptotically (i,e., in the limit of an infinite

number of points), Niederreiter sequences have the

lowest star discrepancy among all other low-discrepancy

sequences.
They are generated in exactly the same manner as

Sobol (section 2.4), although the direction vectors are

calculated differently. Just as with Sobol, in practice

a multi-dimensional Niederreiter sequence consists of

multiple base-2 generators with unique sets of direction

vectors.

3. Generating Low-discrepancy Sequences
in Hardware

For the Sobol/Niederreiter sequences (and for any

digital sequence in general), we pre-compute the N

direction vectors and store them in RAM. Generating

each term of the actual sequence involves the least-

significant zero (LSZ) calculation, a memory lookup

and an XOR as in eq. (7). While this process can be

made fairly efficient with techniques such as pipelining,

we can exploit the LSZ, binary arithmetic, memory

structures and even an application’s requirements to

parallelize and optimize the generation.

3.1. Computing and Exploiting the Least-
Significant-Zero (LSZ) Position

From the gray-code recursion in eq. (7), finding the

position r of least-significant zero bit (LSZ) in n is

critical in choosing the direction vector to compute

xnC1. For generating N -bit numbers, finding the LSZ

for an index n incurs O.log n/ complexity with a

sequential ‘shift-and-count’ algorithm. However, this

is reduced to constant time through the flexibility

of programmable logic: an inverted N -line-to-log.N /-

line priority encoder. The least-significant zero bit in

an input asserts priority over others and its decimal

position is returned by the encoder. For the 32-bit

numbers generated by our implementations, an input

of 110100101, for example, would produce an output

of 2.
Applications usually require multiple random inputs

or multi-dimensional sequences. Since the LSZ for each

set of terms is the same, one common LSZ-detector

circuit can be used.

RAM xn+2

k xn+1

xn

ck
LSZn

+2

counter
(pos. least.
sig. zero)

c1

Figure 4. 2-way, 2�parallel generator

LSZ positions r for certain n can also be pre-coded;

for p 2 f 1; 2; : : : ; log2 N g, and

n mod 2p 	 2p�1 � 1; (9)

the LSZ position r 	 p and the required direction

vector cp is a ‘constant’ that can be pre-coded instead

of computing the LSZ and looking the cr up. This

works in practice because, for example, every even n

has LSBs : : : xx0 and therefore LSZ r D 1, every

fourth n D 1; 5; : : : has LSBs : : : xx01 and LSZ

r D 2, etc. The sequence terms xn for these n can

be computed with their pre-coded direction vectors

in parallel with the xn’s that require an LSZ and

memory lookup for their direction vector. We call

this scheme p-way parallelization. While the user can

control the degree of parallelization by choosing the

cp’s to pre-code, we note that asymptotically as p

increases, the n satisfying (9) decrease geometrically,

giving a maximum possible degree of parallelization

of 2C 1CPN
pD1

1
2p � 4. Figure 4 shows a 2�parallel

generator where the direction vector for every even

term c1 is pre-coded (i.e., p D 1).

3.2. Architectural Optimizations for Further
Parallelization

Memory (RAM) in contemporary FPGAs, whether

constructed from logic/LUTs (‘distributed’ RAM) or

SRAM blocks (BRAM), has dual asynchronous I/O

ports. In that case, throughput can be doubled by

duplicating the LSZ circuit and computing future

terms of the sequence. Since generation only requires

reads, the direction vectors ci can be duplicated across

multiple dual-port RAMs for a higher effective number

of ports; we call this o-port parallelization.

Figure 5 illustrates a 2-port, 2-way parallelization

that generates 4 terms in one cycle. If the index n is

generated by a count-by-4 counter, i.e. n D 0; 4; : : : ,

the four terms are generated as:

xnC1 D xn ˚ c1

xnC2 D xnC1 ˚ ck

xnC3 D xnC2 ˚ c1

xnC4 D xnC3 ˚ cl

111
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



xn+1

xn+2

ck

c1

xn+3

xn+4

LSZ Dual
Port
RAM

cl

A

B

xn

c1

n+1
+4

counter
k

LSZn+3
+2

l

adder

Figure 5. 2-port, 2-way 4�parallel Generator

xn+1

xn+2

xn+2
LSZ Dual

Port
RAM

ck

ck

xn+1

A

B

Dim j

Dim j+1

xn

xn

c1

c1

n+1
+2

counter

k

Figure 6. 2-dim., 2-way, 2�parallelized Generator

The optimized circuits outlined so far address the

generation of one-dimensional sequences. To gener-

ate multiple dimensions, these circuits are replicated.

Depending on the balance between throughput and

area-efficiency that is desired, especially if physical

block RAMs are being used to store the direction

vectors instead of distributed RAM, the memories

can contain two different sets of direction vectors

and simultaneously generate two sequences because

of the availability of the dual-ports. Figure 6 shows a

2-dimensional, 2-way parallelized generator.

3.3. Virtex-4 Implementations

We implemented a 2-D Halton generator (in bases

2 and 3) as well as 2�/4� parallelized 2-D and 6-D

Sobol/Niederreiter generators on the Xilinx Virtex 4-SX
FPGA (XC4VSX35), synthesized with Synplify Pro 9.1.

32-bit numbers were generated, with distributed RAM

(LUTs) used as memory for the direction vectors (32�
32 D 1024-bits per dimension). The results, including

resource usage, maximum frequency and throughput

are shown in Table. 4; the throughput/area-efficiency

increases from 2� to 4� parallelization.

Comparison with Pseudo-RNGs. Since no hardware

LDS implementations exist, we compare relative com-

plexities with the state-of-the-art parallelized pseudo-

Table 4. Virtex-4 Implementation Results

Sequence Slices
Clock Freq Throughput

(MHz) (Gbits/s)

2-dimensional
Halton 360 250.1 8.0

Sobol (2�) 147 349.0 22.3
Sobol (4�) 194 297.9 38.1

6-dimensional
Sobol (2�) 275 341.0 21.8
Sobol (4�) 258 261.6 33.5

r

B
A

q

t

C

S

Y

Z

X

v

u

Figure 7. 3-D IC Inductance Problem (Quasi-MC)

random number generators (Mersenne Twister) [10];

both the resource usage (area) and throughput of our

low-discrepancy sequence generators are comparable

to parallelized hardware PRNGs.

4. Application: Quasi-Monte Carlo for 3-D
IC Partial Inductance Extraction

Inductances between interconnects (traces) in inte-

grated circuits (IC) are an important limiting factor

as designers seek to scale these chips to ever-higher

clock frequencies. Modeling these inductances is an

indispensable part of high-frequency IC design. An-

alytically deriving the mutual inductance between a

set of interconnects of arbitrary geometry involves

a double-volume (i.e., 6-dimensional integral) and

precise knowledge of the instantaneous current densities

through each of the interconnects. Instead, the mutual

inductance can be numerically approximated through

Monte Carlo integration [11].

For example, consider deriving the mutual inductance

M6 for two 3-D interconnects placed parallel to each

other, with dimensions and separations as shown in

Figure 7 [11]. The analytical solution (M6) for this

problem is known, which allows us to benchmark Monte

Carlo approximations. For A D B D C D D D r D
t D 5 �m and q D s D u D v D 1 �m, M6 D

112
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 



Table 5. MC and QMC Computation of Mutual
Inductance: Results and Resource Usage

Analytical Pseudorandom Sobol Niederreiter

0.28800 0.28932 0.28800 0.28802

LDS-Slices CORDIC-Slices DSP48s Max. Freq.

990 753 20 104.22 MHz

0:28800. If the points on the surface of each conductor

are represented by the position vectors ri D .xi ; yi ; ´i /

and rj D .xj ; yj ; j́ / respectively, the expression for

the mutual inductance using � randomly sampled point

pairs is

M6 D � � 1

N

�X

i;jD0

1

jri � rjj ; (10)

where � is a constant and we are effectively com-

puting the inverse of the Euclidean distance (i.e.,

1=
p

.ri � rj/2) between each point pair.

We implemented the M6 computation on the Virtex-

4, using DSP slices for squaring the distances and

a pipelined CORDIC for the square root. Quasi-

Monte Carlo integration was performed using 1,000

low-discrepancy Sobol and Niederreiter points (16-bit

fractions). Table 5 shows the M6 values computed and

compares them to the analytical results as well as results

from a standard MC integration using 1,000 pseudo-

random numbers; the Quasi-Monte Carlo results are

over an order of magnitude more accurate than those

from conventional Monte Carlo.

5. Conclusion

Low-discrepancy sequences are essential for Quasi-

Monte Carlo (QMC) methods such as multi-dimensional

integration; quasi-Monte Carlo delivers more accurate

results in a shorter time than conventional Monte Carlo.

While MC simulations are increasingly parallelized and

implemented on reconfigurable hardware, this is not true

for QMC due to the lack of hardware low-discrepancy

sequence generators.

We present the first (to our knowledge) designs for

low-discrepancy sequence generation in hardware. Our

techniques for optimization and parallelization can be

applied to the entire class of digital low-discrepancy

sequences; we implemented three specific sequences

(Halton, Sobol and Niederreiter) with varying degrees

of parallelization on the Virtex-4 FPGA. We also

demonstrated the supremacy of QMC over MC with a

real-world example involving the extraction of mutual

inductances in integrated circuit interconnects. Future

work includes an automated GUI-based program that

creates synthesizable VHDL for a generator given the

parameters for a specific digital sequence.

Acknowledgments

The authors are grateful to Prof. Om Agrawal

for his advice, and the Cooper Union Mathematics

Department as well as Prof. Fred Fontaine and Center

for Signal Processing, Communications and Computer

Engineering (S*ProCom2) for supporting this research.

References

[1] S. Zaremba, “The mathematical basis of monte carlo
and quasi-monte carlo methods,” SIAM Review, vol. 10,
no. 3, pp. 303–314, Jul 1968.

[2] I. M. Sobol, “Uniformly distributed sequences with
an additional uniform property,” USSR Comput. Math.
Math. Phys., vol. 16, pp. 236–242, 1976.

[3] H. Niederreiter, “Point sets and sequences with small
discrepancy,” Monatshefte für Mathematik, vol. 104,
no. 4, Dec.

[4] J. H. Halton, “On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional
integrals,” Numerische Mathematik, vol. 2, no. 1, Dec.

[5] J. Matoušek, “On the l2-discrepancy for anchored boxes,”
J. Complex., vol. 14, no. 4, pp. 527–556, 1998.

[6] P. L’Ecuyer and C. Lemieux, “Recent advances in
randomized quasi-monte carlo methods,” in Modeling
Uncertainty, M. Dror et al., Eds., 2002, pp. 419–474.

[7] H. Niederreiter, Random Number Generation and Quasi-
Monte Carlo Methods, ser. SIAM CBMS-NSF Regional
Conference Series in Applied Mathematics. Philadel-
phia: SIAM, 1992, vol. 63.

[8] P. Bratley and B. L. Fox, “Algorithm 659: implementing
sobol’s quasirandom sequence generator,” ACM Trans.
Math. Softw., vol. 14, no. 1, pp. 88–100, 1988.

[9] I. A. Antonov and V. Saleev, “An economic method of
computing lp� -sequences,” USSR Comput. Math. Math.
Phys., vol. 19, pp. 252–256, 1979.

[10] I. L. Dalal and D. Stefan, “A hardware framework for the
fast generation of multiple long-period random number
streams,” in Proc. 16th Intl. ACM/SIGDA Symp. FPGAs.
New York, NY, USA: ACM, 2008, pp. 245–254.

[11] K. Chatterjee, “A stochastic algorithm for the extraction
of partial inductances in ic interconnect structures,” Ap-
plied Computational Electromagnetics Society Journal,
vol. 21, no. 1, pp. 81–89, March 2006.

113
Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on October 05,2024 at 08:58:23 UTC from IEEE Xplore.  Restrictions apply. 


