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Abstract 
We present deterministic sequences for use in 

sampling-based approaches to motion planning. They si- 
multaneously combine the qualities found in  many other 
sequences: i)  the incremental and self-avoiding tenden- 
cies of pseudo-random sequences, ii) the lattice struc- 
ture provided by  multiresolution grids, and iii) low- 
discrepancy and low-dispersion measures of uniformity 
provided by  quasi-rnndom sequences. The resulting se- 
quences can be considered as multiresolution grids in 
which points may be added one at a time, while satis- 
fying the sampling qualities at each iteration. A n  e f i -  
cient, recursive algorithm for generating the sequences 
is presented and implemented. Early experiments show 
promising performance by wing the samples in search 
algorithms to solve motion planning problems. 

1 Introduction 
Sampling the configuration space has been one of the 

fundamental issues in developing practical motion plan- 
ners. Some approaches use context-specific heuristics to 
concentrate samples in critical places [l, 4, 8, 191. Clas- 
sical grid-search approaches (see survey in [9]) and also 
recent "lazy" approaches [3, 2, 5 ,  141) have focused more 
on how to sample the configuration space beforc taking 
obstacles into account. In this paper, we consider sam- 
pling issues from this perspective, and ask What is the 
hest way to sample the space? 

Here are several desirable criteria that we will con- 
sider for an infinite sequence of samples over a hounded 
confiyration space: 

1. Uniformity: Good covering of the space is ob- 
tained without clumping or gaps. This can be for- 
mulation in terms of optimizing discrepancy or dis- 
persion 112, 131. 

2. Latt ice  structure: For any sample, the location 
of nearby samples can easily be determined. 

3. Incremental quality: For any i ,  if the sequence is 
suddenly terminated, it has decent coverage. This 

is an advantage over a sequence that only provides 
high-quality coverage for a k e d  n. 

A simple grid generated by scanning has good lattice 
structure and uniformity, but fails to provide good in- 
cremental quality. Quality coverage is only obtained at 
values of i that yield a complete grid at some resolution. 
It is intuitive that closed sequences (in which the total 
number of samples is specified in advance) can achieve 
better coverage than infinite or open sequences (in which 
the total number is not specified), but this sacrifices in- 
cremental quality; for many applications, paying a small 
penalty in coverage to achieve incremental quality is a 
welcome exchange. A random sequence exhibits incre- 
mental quality, but at the expense of lattice structure 
and even uniformity (clumps and gap are prevalent with 
high probability [ll, 131). Thus, random sequences and 
grids appear to be quite complementary. In probabilis- 
tic roadmap (PRM) approaches (e.g., 11, 10, 15, ZO]), one 
is usually willing to sacrifice the first two properties to 
obtain the last. 

After considering the tradeoffs, we wondered whether 
it is possible to define sequences that provide all three 
qualities listed above. It turns out that this can be 
done, and the resulting sequences of samples are the pri- 
mary contribution of this paper. We next provide formal 
definitions of discrepancy and dispersion, which our se- 
quence will optimize. 

2 Uniformity Measures 
Uniform sampling criteria and techniques have been 

developed by numerous mathematicians over the past 
century. Excellent overviews of the subject include [12, 
131. Here we briefly introduce only the concepts needed 
for this paper. Let X = LO, lld c Rd define a space over 
which to generate samples. Define a range space, R, as 
a collection of subsets of X. Let R E R denote one such 
subset. Reasonable choices for R include the set of all 
axis-aligned rectangles, the set of all balls, or the set of 
all convex subsets. 

Let p ( R )  denote the Lebesgue measure (or volume) of 
subset R. If the samples in P are uniform in some ideal 
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sense, then it seems reasonable that the fraction of these 
samples that lie in any subset R should be roughly p ( R )  
(divided by p ( X ) ,  which is simply one). We define the 
discrepancy 1181 to measure how far from ideal the point 
set P is: 

D ( P , R ) =  sup 1y +)I (1) 
R t R  

in which 1 .  I applied to a finite set denotes its cardinality. 
Whereas discrepancy is based on measure, a metric- 

based criterion, called dispersion, can be introduced: 

Above p denotes any metric, such as Euclidean distance 
or em. Intuitively, this corresponds to the radius of the 
largest empty ball (assuming all ball centers lie in [0, 1Id). 

3 One-Dimensional Sampling 
To gain an understanding of the issues, it is helpful 

to first consider the case of sampling a onedimensional 
space. In this case, a sequence introduced by van der 
Corput in 1935 achieves all three desired criteria with 
beautiful simplicity [17]. Consider a binary represent- 
tion of points in [0, 11. A onedimensional “grid” can be 
made by counting in binary. For example, if the resolu- 
tion is 8, then samples are taken at: 0.000, 0.001, 0.010, 
0,011, 0.100, etc. Of course, this scanning behavior of 
the sequence does not have incremental quality. 

The van der Coryut sequence simply takes the binary 
counting above and reverses the order of the bits. Dur- 
ing the original scan, the least significant bit alternates 
in every step, but this only yields a small change in value. 
By reversing bit order, the change is maximized, caus- 
ing the coverage to be nearly uniform at every point in 
the sequence. After bit reversal, the sequence is: 0.000, 
0.100, 0.010, 0.110, 0.001, 0.101, 0.011, 0.111. An infi- 
nite sequence is constructed by using reversed-bit rep- 
resentations of higher binary numbers. The next eight 
samples are obtained by reversing binary representations 
of 8 through 15. 

This deterministic sequence is ideal in many ways; it 
satisfies all three of the criteria from Section 1. It is 
asymptotically optimal in terms of discrepancy (R is a 
set of intervals), and also in terms of dispersion (note 
that this would not be achieved by a random sequence). 
It bas a trivial lattice structure. Finally, the sequence 
is incremental because at any given time, the sequence 
can be stopped while still yielding low discrepancy and 
low dispersion. If the sequence is stopped at i = Zk for 
any integer k, then all samples are equally spaced, much 
as in a classical grid. More importantly, if the sequence 
is stopped elsewhere, the distribution of points is still 
good, which would not be the case of the resolution was 
simply improved by scanning. 

4 Higher Dimensional Sampling 
For use in motion planning, straightforward exten- 

sions of the van der Corput sequence to (0, 1ld would he 
very useful; unfortunately, such sequences have not been 
found. Simply making a vector-valued sequence will only 
generate samples along a diagonal line. Halton used the 
bit-reversal technique to extend the sequence, using a dif- 
ferent base for each dimension [7]. His method is as fol- 
lows: choose d distinct primes pl ,pz, .  . . ,pd (usually the 
first d primes, pl  = 2 ,  p2 = 3, . . . ). To construct the ith 
sample, consider the digit,s of the base p representation 
for i in the reverse order: i = a. +pal +p2a2 +p3a3 + . . ., 
in which a, E {O,  1 , .  . . , p  - l}. Define the following e l e  
ment of [O, 11: 

This sequence is known to produce asymptotically- 
optimal discrepancy. It satisfies the first and last cri- 
teria from Section 1; therefore, it is a useful sequence. 
For virtually all randomized motion planning algorithms, 
one can replace a pseud-random sequence with the de- 
terministic Halton sequence because of the satisfaction 
of these properties. Recent experimental results in [6] 
show Halton points performing well versus other sam- 
pling techniques in the context of the PRM. 

It is possible, though, to construct an alternative gen- 
eralization of the van der Corput sequence, which is able 
to satisfy all three criteria? The neighborhood structure 
offered by a lattice is particularly useful in the context 
of motion planning. For example, in the probabilistic 
roadmap method, substantial time is invested in per- 
forming nearest-neighbor queries to build the roadmap. 
In a lattice, this information is already implicitly defined. 

In addition to having grid structure, the van der Cor- 
put sequence naturally creates a multiresolution grid as 
it progressively fills in gaps in the unit interval. A gen- 
eralization of the van der Corput sequence which has 
grid structure should have this property as well, for sev- 
eral reasons. First, for many problems it is impossible 
to know ahead of time what an appropriate resolution 
might be. In addition to this, it is intuitive that a 
multiresolution approach yields more incremental qual- 
ity than a grid of fixed resolution. Finally, any open 
sequence (such as the van der Corput sequence) which 
also has grid structure must be multiresolution, because 
if the resolution is fixed, then the number of samples is 
k e d  as well, which is a contradiction for an open s e  
quence. 

In summary, what is required is a multi-dimensional 
generalization of the van der Corput sequence: an open 
sequence generating a multiresolution grid and satisfying 
the criteria given a t ~ t h e  beginning of this paper. Below, 
we present such a sequence. 
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5 A New Sequence 
Before proceeding to describe our new sequence, sev- 

eral definitions will prove useful. Consider a classical grid 
in the d-dimensional unit cube, (0, lId c Rd; we define a 
multiresolution classical grid of resolution level 1 to be a 
grid with 2d' points (i.e., 2' points per axis). From this 
definition, it is apparent that a grid of resolution level 
1 contains all the points from resolution level (1 - l), 
and that of all grids having this property, it is the one 
with the fewest points (assuming that all dimensions are 
required to have the same number of points per axis). 

In addition to considering classical grids, it is worth- 
while to examine Sukharev grids as well [Il, 161. Con- 
sider a grid in the d-dimensional unit cube, with k points 
per axis; the unit cube may then be divided into kd re- 
gions. While the classical grid places a vertex at the 
origin of each region, the Sukharev grid places a vertex 
at the center of each region. This 'has the advantage of 
optimizing em dispersion,' defined in Section 2 .  While 
this difference may not seem very large, i t  is significant 
when the grids are taken to be multiresolution; while a 
multiresolution classical grid has 2d' points for resolution 
level 1, a multiresolution Sukharev grid has 3d' points. 
Most of our ideas apply equally to both classical and 
Sukharev grids; while we will deal primarily with classi- 
cal grids for the sake of brevity, we will note applications 
to the Sukharev case as well. 

We describe the points of a classical grid of resolution 
1 as follows: 

P? = { ($ ,. . .  , $) : i E z,o < i 5 2' - 1 I 
One may also define the grid region associated with point 
j at resolution level 1 as: 

Similar definitions may he made for the Sukharev case. 
With these definitions in mind, we may proceed to 

consider the sequence itself. To motivate the way our 
sequence is generated, consider a d-dimensional classi- 
cal grid of resolution level 1, having 2d total points. A 
first question is raised immediately: in what order should 
these points be placed? Two possible criteria for mak- 
ing a decision are dispersion and discrepancy. As seen 
above, these measure the uniformity of coverage of the 
space; therefore, they are natural criteria for choosing 
the optimal placement order. However, using dispersion 
as the decision criterion for a multiresolution grid often 
results in ties. In fact, in the case of a Sukharcv grid or 
a classical grid on a toroidal manifold, the em dispersion 
remains constant between complete resolution levels. For 
example, a Sukharev grid with i points, 3d' 5 i < 3d('++') 
will have the same e- dispersion as the grid with 3d' 
points (for a more-detailed explanation of the relation- 
ship between tm dispersions of classical and Sukharev 

grids, see 1111). Given this fact, it seems best to use 
discrepancy as the decision criterion. 

From the discussion of discrepancy in Section 2, a 
range space R must he chosen over which to calculate 
the discrepancy. Preferably, we should choose one which 
is suitable for grids and grid regions. Hence, we define 
the set of canonical rectangles, similar to the bary canon- 
ical boxes in [U]: given positive integers n and m, let 
Qk be the following family of n-dimensional canonical 
rectangles: 

i , j  EZ,O Si< 2"- 1,l < j  5 min(Zm-i,2) 

This closely relates to the previous definitions regarding 
the points of a multiresolution grid and their associated 
grid regions. In fact, the rectangles of Q; may be as 
wide in any dimension as a single grid region a t  resolution 
level m- 1, or two grid rcgions at resolution level m. For 
the case of m = 1, visualize P; as the set of all convex 
unions of the Z d  grid regions of a unit cube. Finally, 
define Qz = Uz, Q;. Again, these definitions apply 
to the case of classical grids, but analogous formulations 
may be made for Sukharcv grids. 

Now, let discrepancy be taken over the set Qf be the 
criterion for determining the optimal order of the points 
of resolution level 1. Using this criterion, an optimal 
ordering list L of the first Z d  grid points (the first r e s  
olution level) may be explicitly computed (or, if we are 
dealing with a Sukharev grid and use a suitable modified 
range space, we inay compute the optimal ordering list 
L ,  for the first 3d points). Hence, from this point on as- 
sume that we have such an ordering. Note that this only 
yields the correct ordering for the first resolution level. 
How should we fill in the next resolution level? 

To answer this question, recognize that L may be 
viewed as an ordering not only of the first 2d samples, 
hut of the grid regions of the unit cube. This identifica- 
tion can be made because the discrepancy is calculated 
over a range space consisting of unions of these grid re- 
gions. Since this is the case, to maintain optimality over 
Qf,  any future samplcs must follow this ordering: each 
future group of Zd points must iterate through the or- 
dering L in the same way as the first 2d points. Hence, 
sample i must fall into the region of the unit cube spec- 
ified by L[i  mod Z d ] .  However, this solves only part of 
our problem. Suppose that we know that point i of the 
second resolution level must fall into Gj,l for sonie j; 
however, where within Gj,l should it be placcd? Recog- 
nize that during the transition from resolution level 1 to 
(1+ I), each grid region is subdivided into 2d subregions. 
Since our initial ordering scheme determined the opti- 
mal ordering of placement of Zd points within a region, 
we may recursively apply it to each subregion (with an 

I 

- 
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GET.SAMPLE(n, L ,  origin, factor) 
1 Paint sample t o r i g i n ;  
2 
3 
4 
5 if (neztN = 0) 
G return sample; 
7 else 
8 f - factor/2; 
9 

index + n % ILI; //remainder of integer division 
neztN + n/lLl; //quotient of integer division 
sample + sample f (currentFador x Ljindez]); 

return GETSAMPLE(neztN, L, sample, f); 

Figure 1: Recursively generate a new sample from the 
vertices of a classical grid. 

appropriate scaling factor, of course). An algorithm that 
implements this approach is given in Figure 1 

Therefore, define the infinite sequence for 
a classical grid as Sd = {so,sl,. . .  : si = 
GET.SAMPLE(i,L,6,1.0)}, in which the zero 
vector denotes the origin and L is the ordering list 
appropriate for dimension d. A brief examination of 
GET-SAMPLE will yield insight into the behavior of 
the sample sequence. At each recursion level, the integer 
remainder (which is less than Z d )  tells the function 
which grid region of the current resolution level it 
should go to. The function then updates the saniple to 
he the origin of that grid region. The integer quotient 
tells the function how many times that grid region has 
previously bcen visited, which in turn specifies how the 
function behaves when it is called recursively on that 
region. Finally, the function returns when it determines 
that it has found the exact location of the sample. 

It is important to note one particular feature. Snp- 
pose that point i of resolution level 1 is added to grid 
region Gi>(~-l). Then, by the nature of the recursion, 
a corresponding point will have to be added to every 
other grid region Gk,(,-ll, k # j before another point is 
added to Gj,(~-ll.  This feature contributes to the qual- 
ity of uniformity discussed in the introduct,ion, and will 
contribute to the following proof, which shows that the 
sequence retains optirnality under recursion. 

Theorem 1 Take the first i elements oJ the sampling 
sequence Sd.  

1 .  This sequence i s  a multiresolution grid sampling se- 
quence of length i. 

2. From the set of niultiresolution grid s_ampling se- 
quences, it i s  discrepancy-optimal over e;, in which 
1 = [logzd i1, i.e., the current resolution level. 

Proof: (1) For this to he the case, the sequence must 
form a classical grid for every i = 2d', 1 E Z. We show 
this to be the case by induction on 1. First, takc the 
base case 1 = 0. The first point of the sequence is the 

origin, which is a classical grid of size 1. Now, assume 
that i = Zd l ,  a,nd that the sequence formed a classical 
grid for every j = Zdm, rn E Z, 0 5 m 5 1 - 1. Now, Zd' - 
Zd('-') = Zd("i)(2d - 1); by the observation preceding 
this theorem, bhis implies that each grid region Gj,(~-l)  

had 2d - 1 points added to the point already placed in 
it at the previous resolution level. Moreover, these were 
added according to the specification of the ordering list 
L, which places points on the Zd grid vertices of a certain 
region. Therefore, each region contains the 2d points of 
a classical grid. Since the union of two classical grids of 
uniform resolution results in a classical grid of the same 
resolution, at i = Zd' the samples form a classical grid 
of resolution 1. Therefore, our inductive hypothesis is 
shown to he true, and part (1) is proven. 

(2) We also show this by induction on the current res- 
olution 1. First, we note that resolution level 0 consists 
of only one point, which-is placed on the origin, and it 
is trivially optimal over e;, which consists simply of the 
unit cube. Now, assume that i is snch that the current 
resolution level is 1, and that all sequences up to length 
2d('-1) are optimal over el"_'. We will show that the 
sequence is optimal over e;, and the proof will be com- 
plete. 

From the definition of 8;, 8; = ~ , - , , U Q ; .  Also, we 
know that the first Zd('-') points were added in the opti- 
mal order with respect to e!-'), by assumption; denote 
the grid region associated with the j-th sample of that 
complete grid as Gj,(,-ll (the j - th  sample is located at 
the origin of Gj,(~-i)). Each of the points of the current 
resolution level fall into one of the Gj , (1~1 ] ;  moreover, 
by the nature of the recursion, the order in which they 
fall into the G,,(L-~I is the same order that the original 
Zd('- ' )  points did. Consequently, all points of the cur- 
rent resolution level are optimal with respect to the set 
of rectangles et-,,. 

Now, examinc the rectangles which are past of Q;, 
which can be partitioned into the set of all rectangles 
which are completely contained within one of the G j , ( ~ - l )  
above, and those which are not. For those which are com- 
pletely contained within one of the Gi,(i-l), optimality 
is clearly scen. Denote as p j  the subset of the sample 
sequence contained in Gj,(l-l); by the definition of the 
recursion, the points Gj,(l-,) are added to G,,(i71) in 
precisely the optimal order defined in L; since this 1s the 
case for all Gj,(l-ll, the point sequence is optimal for all 
rectangles completely enclosed in some Gj,(l-l). 

Finally, we must consider the set of all rectangles in 
&; which are not enclosed in any Gj,(l-ll. First, note 
that for Q y  the maximum width of any rectangle in a sin- 
gle dimension is 1/2('-'), the size of each block Gj,(1-1). 
Let T E Q; be a rectangle partially enclosed in grj; then, 
there are three possibilities for each dimension of r: first, 
it is entirely in Gj , (~- l l ;  second, it covers the top half 
of G ~ , ( L _ ~ )  and the bottom half of some other block; or 

- 

I 

- 
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third, it covers the bottom half of Gj,ll-l) and the top 
half of some other block. Denote hy r0 the portion of T 
which is outside of Gj,(l-l), and by ~i the portion which 
is inside. Now, one can take the reflection of T about ri; 
then, each part of T. is mapped to a place inside G j , ( ~ - ~ l .  
Define q to be a rectangle resulting from such a reflec- 
tion, and note that q C Gj,ll-l, and q E Qr. Hence, 
we know that q is part of a set of rectangles for which 
optimal discrepancy has already been shown. 

Let P, be the set of points in the sequence for which 
analogous points can be found in every grid region 
Gj,ll-l), and let Pi be the remaining points. Note that 
all points in P, are analogous to each other by the obser- 
vation immediately preceding this theorem; this implies 
that no rectangle in Qr can contain more than one of 
these points. Now, take some rectangle r as described 
above. If this rectangle contains a point p E P;, then de- 
note Gj![l-l) as the grid region containing this point; else, 
choose I t  to be any grid region containing a portion of T .  

Define ro, ~i as above; then, we may once again take the 
reflection of T about T;.  The rectangle q obtained from 
this reflection has measure identical to rectangle T ,  and 
it contains the same number of points. We know this to 
be the case, because by assumption all points in ro have 
analogues in Gj,(1-,). This is the case since p E Pi is 
contained in ~ i ,  by our choice of Gj,ll-l); thus, all points 
in r. are part of P, and consequently have analogues in 
every grid region of resolution (1-1). Thus, since T and q 
have identical measures and numbers of enclosed points, 
and q is part of the set for which optimal discrepancy 
has been shown, it is impossible for r to hurt the total 
discrepancy. 

Since we have now shown that the sequence is opti- 
mal over QC-,) and Q;, we know that the sequence is 

optimal over = Q:-l) U QF. Therefore, our induc- 
tive hypothesis is shown to he true and part (2) of the 

- 
I 

theorem is proven. 

6 Useful Properties for Motion Planning 
Thus far we have defined a sample sequence which 

incrementally builds a multiresolution grid in an order 
which is discrepancy-optimal over an appropriately cho- 
sen range space. While this is of value on its own, we 
are particularly interested in using this sequence for mw 
tion planning applications, especially those which de- 
pend heavily on having a good sample set (e.g., the 
PRM). Hence, we now examine several properties of this 
sample sequence, to demonstrate the potential benefits 
of this sequence in motion planning applications. 

A first consideration is the amount of time required to 
generate each sample. If it is computationally expensive 
to generate the sample sequence, this may offset time 
gained through the quality of the sequence. Hence, we 
give bounds on the time required to generate a particular 
sample. (In this and all future Considerations, all scalar 
mathematical operations are considered to be constant 

time, since they depend on internal representation only. 
Vector operations are considered to be O(d) time.) 

P r o p e r t y  1 The position of the i-th sample in the 
&dimensional sampling sequence Sd can be generated in 
O(l0gi) time. 

Proof: The recursive function specified in Figure 1 
may be written as GL(i )  = GL(i/Zd) + O(d). The so- 
lution to this recursion is O(dlog2, i). Since logzd i = 
(logi)/d, the final result is O(d(logi)/d) = O(1ogi). W 

For purposes of comparison, pseudwrandom samples 
usually require O(d) time and Halton samples require 

In the introduction, we stated that lattice structure 
is desirable because the location of neighbors can eas- 
ily be determined. It is well-known that all points in 
a lattice can be specified in terms of a colloction of d 
linearly-independent basis vectors bl, . . . , bd. In the case 
of a grid, the basis vectors are simply the columns of the 
d x d identity matrix. By adding (or subtracting) these 
basis vectors, the neighbors of a point can be found im- 
mediately. We define the i-neighbors of a point p as those 
points which may he reached by adding or subtracting i 
distinct basis vectors, 1 5 i 5 n. 

However, our points are specified in terms of their 
index in the sequence; based on this index alone, it is 
unclear how to calculate the index of a neighbor in the 
sample space. It is possible to do so, however. The 
algorithm is too long to  present here in its entirety; thus, 
we will sketch its operation. 

For any element in the ordering list L,  it is possible 
to store the order indices of all of the i-neighbors of each 
element. Since any i-neighbor may he found through 
a sequence of 1-neighbors, it suffices to store the order 
indices of each elements 1-neighbors, of which there are 
2d. The space required to do this is Consequently O(dZd), 
since ILI = zd .  

Now, suppose we wish to find a particular 1-neighbor 
of sample i. As in the GETSAMPLE function, we may 
execute a recursion, storing the sample index of each 
"ancestor" and the order index between ancestors. We 
then use this information along with the neighborhood 
information stored with each element in the ordering 
list L to find the sample index of the desired neighbor. 
Then, we perform a simple query to see if the sample 
corresponding to  this index exists. 

Property 2 Let the number of samples taken so far be 
N .  Then, a 1-neighbor of any of these samples can be 
found in O((logN)/d) time. 

O(dl0g i). 

Proof: Apply the algorithm described above. The 
function will recurse at most O((logN)/d) times 
and generate as many ancestors, similar to the 
GET-SAMPLE function. Note that this requires only 
O((logN)/d) rather than O(logN) time as in the analy- 
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sis of GET-SAMPLE because the actual sample location 
is not being remenibered; only indices are being calcu- 
lated, which are dimension-independent. Now, to find 
the desired neighbor, the entire ancestor chain may have 
to be traversed (this is similar to binary addition, in 
which adding 1 may result in each bit needing to  be 
changed). However, only a constant amount of work is 
done each time (applying some simple formulas to o b  
tain new indices). After doing this, the sample index of 
the desired neighbor has been calculated; if this value 
is larger than N, then the neighbor does not exist. If 
a, vector of pointers to previous samples is kept, simply 
indexing iuto this vector will allow one to determine the 
previously-calculated position of this sample. Therefore, 

w 
The scheme described in the proof above can easily be 

adapted to the case of motion planning, in which some 
samples of index less than N may not exist, due to be- 
ing in collision with some obstacle. In this case, the 
corresponding entry in the vector is nil, and the qucry 
returns that the vertex does not exist. Also, the fact 
that we can calculate neighbors in this way suggests the 
potential for developing "lazy" planners that can search 
the space without allocating huge amounts of space for 
st,oring edge Connections and neighborhood information. 

This method is an improvement over nayve search (in 
which the proximity of every sample to the initial point 
is checked), and can he used to find 2-,. . .&neighbors 
in addition to 1-neighhors; however, there may be situa- 
tions in which it is desired to determine the radius neces- 
sary to connect to the i-neighbors of a particular point at  
resolution level 1, for use in naive search. At resolution 
level 1, the distance between 1-neighbors is 112'; hence, 
the distance between i-neighbors is = &/2'. 
Thns, by setting the connection radius appropriately, 
one may use some other technique to connect neighbor- 
ing grid points. In passing, it should be noted that to 
prevent a point from connecting with non-neighboring 
points (e.g., those of distance 2 / Z 1  in a single direction), 
i must be 3 or less. 

Finally, since the grid is multiresolution, it may be 
possible to reduce collision checks in resolution level 1 by 
remembering some results from resolution level ( 1  - 1). 
We give a bound on the number of collision checks that 
niay be saved in this way. 

Property 3 If samples are connected only to  their 
I-neighbors, then at  most a fraction of &(1 - &) 
of the collision checks required at  resolution level 1 m.ay 
be s a d .  

the total time required is simply O((logN)/d). 

Proof: The total number of points in a grid of resolu- 
tion level 1 is Zd'. Assume for a moment that we are on a 
toroidal manifold, so that each point has 2d I-neighbors. 
Then the total numbrr of edges is d2d', since each edge is 
shared by two points. Now, to correct for being in Rd, we 

must remove some edges. For each dimension, a fraction 
of 2' of the edges cross the boundary (since we may re- 
call that  the number of points per axis is 2'). Therefore, 
we must remove d2d'/21 = d2(d-')1 edges, leading to a 
total of dZd1 - d2(d-')' edges in resolution level 1. Since 
the fraction of collision checks saved is the same as the 
fraction of new edges covered by edges of the previous 
resolution level, we find that we may save: 

2(2d('-l) - 2(d-1)('-11) 
Zd' - Z(d-1) 

Zdl  - 2 . 2 ( d - l ) 1 )  

 dl - 2(d-1) 
- = 2.2-d - 

From the equation above, it can he seen that while 
there may be some savine for low-dimensional appli- 
cations, there will be only slight savings for higher- 
dimensional problems. Consequently, we expect the pri- 
mary benefits of our sequence's lattice structure to be in 
its implicitly-defined neighbors, rather than in collision 
check savings. 

7 Experimental Results 
While extensive empirical testing is needed to conclu- 

sively determine the practical utility of our sequences, 
we have conducted several experiments using the classi- 
cal grid-based sequence in a PRM-like planner. Our ex- 
periments indicate that dispersion and discrepancy are 
good measures of sample sequence quality and that grid- 
based sequences with high incremental quality can be 
acceptable replacements for random samples in roadmap 
planners. For comparison purposes, we tried three differ- 
ent sampling schemes: random sampling, multiresolution 
grid sampling in scanning order, and the discrepancy- 
optimal order discussed in this paper. The four experi- 
mental setups can he seen in Figures 2 and 3, and results 
in Figures 4 and 5. In these experiments, all grid sam- 
pling methods were configured to connect only to their 
neighbors in the current grid resolution level (although 
the algorithm described in Section 6 was not used). We 
used two different connection rules with the random Sam- 
ples: one uses a fixed radius, and the other attempts to 
connect to the k nearest neighbors. Since our grid sam- 
pling methods attempted at  most 2d connections per new 
node, wc set k = 2d. 

In each experiment, we found that grid-sampling 
methods performed well when compared to random sam- 
pling. Discrepancy-optimal grid sampling outperformed 
random sampling in each experiment, and scanning- 
order grid sampling performed reasonably well. How- 
ever, we believe that in general, scanning-order grid sam- 
pling will not perform as well as random sampling, be- 
cause its incremental quality is so low. On the other 
hand, discrepancy-optimal grid sampling sequences have 
good incremental quality and we would therefore expect 
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Figure 2: Preliminary experiments: top row, from the 
left: moving a rigid bar through a maze (d = 3), mov- 
ing a rigid chain through a maze ( d  = 5); bottom row, 
removing an L-shaped robot from a spring (d = 6) .  

Bar 3 
Links 5 
Elbow 6 
Arm 6 

them to perform well across a broad range of tests. In our 
experiments, we did not see the running time correspond 
precisely to the number of nodes in the roadmap; there 
are several r e a m s  for this. Most importantly, the per- 
formance of the roadmap planners can depend heavily on 
the connection method chosen and its implementation. 
In particular, a fixed-radius connection technique with a 
large radius may result in few nodes but a large number 
of connection attempts, while a k-nearest approach or 
grid-based connection technique may have more nodes 
yet attempt connections more conservatively. After a 
Connection method has been chosen, there are still sev- 
eral ways one can tune parameters or optimize perfor- 
mance for certain problems. Other researchers have rec- 
ognized the difficulty of making good experimental com- 
parisons for PRM-style planners, and work has been done 
to develop a more complete experimental analysis of dif- 
ferent techniques [SI. While this degree of thoroughness 
is outside the scope of this paper, we believe that our ex- 
periments give a good estimate of expected performance. 

8 Conclusions and Future Work 
In conclusion, we have presented a new sample se- 

quence, which satisfies all of the desirable criteria 
explained in Section 1 (uniformity, lattice structure, 
and incremental quality), and which is an arbitrary- 
dimensional generalization of the van der Corput se- 

1.98 1.81 1.08 1.48 
373.26 844.58 438.00 219.10 
71.11 777.08 63.20 29.56 
44.28 6993 33.91 13.94 

~~~~~~ 

. -  

Figure 3: Moving a robot arm with a fixed base through 
a rectangle (d = 6). On the left is the initial state, on 
the right the goal state. 

I Prab. I Dim I RRad I RXNear 1 Scan I Oot 1 
Bar 3 440.52 922.44 684 877 

Links 5 6674.04 2404.84 6785 4854 
Elbow 4399.58 4518.04 3168 2413 
Arm 6 148.58 1040.13 2704 1652 

__ _ _ _ _ _ _ _ _ ~  

F i y r e  4 Comparisons of the number of nodes used in 
the experiments. R R a d  uses random samples and a 
fixed connection radius, RXNear uses random samples 
and attempts k-nearest connections, Scan uses multires- 
olution grid samples in scanning order, and Opt uses the 
sequences introduced in this paper. Random sampling 
sequences are averaged over 50 trials. 

quence. As a low-discrepancy, low-dispersion sequence, 
it provides good coverage of the sample space; as a lat- 
tice, it has implicit neighborhood structure, which can be 
exploited in planuing algorithms; and having incremen- 
tal quality, it provides good coverage if terminated after 
any sample and can be easily interchanged with other 
incremental sampling techniques. These properties sug- 
gest that this sequence will be of benefit to the motion 
planning community. In particular, we helieve that this 
sequence is a useful replacement for random sampling in 
PRM-style planners. 

There are several directions for future work. In the 
previous section, we expressed the desire to do compre- 

Figure 5: Comparisons of the construction times (in sec- 
onds) corresponding to the results of the previous figure. 
The experiments were implemented in Gnu C++ on a 
2.OGHz PC running Linux. 
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hensive experimental analysis; as part of this, we would 
like to determine limits on the dimensions for which this 
sequence is useful, and to gain insight into the relative 
merits of different types of grid sampling methods. Sec- 
ond, we would like to discover a more elegant way to de- 
scribe and generate the sequence (such as the bit-reversal 
description appropriate for the van der Corput and Hal- 
ton sequences); currently, we use a less-appealing recur- 
sive scheme based on an explicitly-calculated ordering 
for the first rcsolution level. Third, we would like to in- 
vestigate the possibility of using other sets of rectangles 
for discrepancy calculations. Fourth, we have already 
mentioned that the extension to the Sukharev grid is 
fairly straightforward; similarly, an extension to an a- 
bitrary lattice is not difficult. We would like to imple- 
ment and test both of these extensions. Finally, we plan 
to continue to develop software generating and utilizing 
this saniple sequence for use in our own planners, and 
to make the software available for use by the commu- 
nity (the latest versions of this software are available at 
http://msl.cs.uiuc.edu/ ). 
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