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The heat equation describing heat conduction in a material with source term is

ρc
∂T

∂t
= ∇ · k∇T +A(r⃗, t).

Here, T (r⃗, t) is the temperature field and A(r⃗, t) is the source term. The thermal properties, ρ, c, and
k (density, specific heat, and thermal conductivity) are in general function of space and time, but for a
homogeneous media, this can be rewritten as:

∂T

∂t
= α∇2T +

A(r⃗, t)

ρc

where α = κ
ρc is the thermal diffusivity. The Green’s function for the heat equation, expressed in Cartesian

coordinates, is

G(x, y, z, t, x′, y′, z′, t′) =

(
1

4πα(t− t′)

)3/2

e
− (x−x′)2+(y−y′)2+(z−z′)2

4α(t−t′) .

This function describes the thermal response of the media to an instantaneous point source delivered at the
point (x′, y′, z′) and time t′, and it can be used to compute the response of the media to the source term A,

T (x, y, z, t) =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(x, y, z, t;x′, y′, z′, t′)

A(x′, y′, z′, t′)

ρc
dx′dy′dz′dt′

A laser beam incident on a thin, linear absorbing layer of tissue will produce a spatial source term

A(x′, y′, z′) = µaE(x′, y′)e−µaz
′
= µaE0Ē(x′, y′)e−µaz

′

while the laser is on, where Ē denotes the normalized beam profile (Ē(0, 0, ) = 0) and E0 is the irradiance
at the center of the beam. For a circular flat top beam of radius R, this is

Ē(x′, y′) =

{
1 x′2 + y′2 ≤ R2

0 x′2 + y′2 > R2

For a circular Gaussian beam with 1/e radius σ, this is

Ē(x′, y′) = e−
x′2+y′2

σ2

Let the absorbing layer have a thickness d and span from z0 to z0+d. Then the temperature by the absorbing
layer while the laser is on will be

T (x, y, z, t) =

∫ t

0

∫ z0+d

z0

∫ ∞

−∞

∫ ∞

−∞

(
1

4παt′

)3/2

e−
(x−x′)2+(y−y′)2+(z−z′)2

4αt′
µaE(x′, y′)e−µa(z

′−z0)

ρc
dx′dy′dz′dt′,
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where we have used the fact that A does not depend on time to simplify the time-dependence. The axial
integral can be carried out analytically,∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µa(z
′−z0)dz′

Let β = 1√
4αt′

. Then,

∫ z0+d

z0

e−β2(z−z′)2−µa(z
′−z0)dz′ = eµaz0

∫ z0+d

z0

e−(β
2z2+β2z′2−2β2zz′+µaz

′)dz′

Completing the square for the exponent

β2z2+β2z′2−2β2zz′+µaz
′ =

(
βz′ +

µa

2β

)2

−
(
µa

2β

)2

+β2z2−2β2zz′ =

(
βz′ +

µa

2β
− βz

)2

−
(
µa

2β

)2

+µaz

gives

eµaz0e−µazeµ
2
a/2β

2

∫ z0+d

z0

e−(βz
′+µa

2β −βz)
2

dz′ = e−µa(z−z0)eµ
2
a/2β

2

∫ β(z0+d)+µa/2β−βz

βz0+µa/2β−βz

e−u2 du′

β

with u = βz′ + µa/2β − βz, which can be integrated using definition of the error function

erf(x) =
2√
π

∫ x

0

e−u2

du,

to give

√
π

2β
e−µa(z−z0)eµ

2
a/2β

2

[
erf

(
β(z0 + d− z) +

µa

2β

)
− erf

(
β(z0 − z) +

µa

2β

)]
=

√
παt′e−µa(z−z0)eαt

′µ2
a

[
erf

(
z0 + d− z√

4αt′
+

√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
To simplify transverse integrals we consider only the temperature along the z axis. Then we need to evaluate∫ ∫

Ē(x′, y′)e−
x′2+y′2

4αt′ dx′dy′

For circularly symmetric beams, we can switch to polar coordinates and integrate the azimuthal angle,∫ 2π

0

∫ ∞

0

Ē(r′)e−
r′2
4αt′ r′dr′dθ′ = 2π

∫ ∞

0

Ē(r′)e−
r′2
4αt′ r′dr′

To evaluate radial integral, we need to specify the beam profile. For a flat top beam of radius R, we will
have

2π

∫ R

0

e−
r′2
4αt′ r′dr′ = 4παt′

[
1− e−R2/4αt′

]
For a Gaussian beam with 1/e radius σ clipped by a circular aperture of radius R, we will have

2π

∫ R

0

e−
r′2
σ2 e−

r′2
4αt′ r′dr′ =

π

1/4αt′ + 1/σ2

[
1− e

− R2

4αt′+σ2

]
=

4παt′σ2

4αt′ + σ2

[
1− e

− R2

4αt′+σ2

]
.

For an unclipped beam, R = ∞.
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Putting this all together, for a flat top beam we have

T (r = 0, z, t) =
µa

ρc

∫ t

0

(
1

4παt′

)3/2
{∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µa(z
′−z0)dz′

}{
2π

∫ R

0

E0e
− r′2

4αt′ r′dr′

}
dt′

=
µaE0

ρc

∫ t

0

(
1

4παt′

)3/2

×
{√

παt′e−µa(z−z0)eαt
′µ2

a

[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]}
×
{
4παt′

[
1− e−R2/4αt′

]}
dt′

=
µaE0

2ρc
e−µa(z−z0)

∫ t

0

eαt
′µ2

a

×
[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
×
[
1− e−R2/4αt′

]
dt′ (1)

For a Gaussian beam we have

T (r = 0, z, t) =
µa

ρc

∫ t

0

(
1

4παt′

)3/2
{∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µa(z
′−z0)dz′

}{
2π

∫ R

0

E0e
− r′2

σ2 e−
r′2
4αt′ r′dr′

}
dt′

=
µaE0

2ρc
e−µa(z−z0)

∫ t

0

eαt
′µ2

a

×
[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
× 1

1 + 4αt′/σ2

[
1− e−R2/4αt′

]
dt′ (2)

0.1 Approximations

In theory, Equation 1 and 2 can be integrated numerically to calculate the temperature at r = 0 at any time
t. However, in practice the calculation is difficult. One of the issues is that the terms arising from the z
integral become very large or small individually and exceed the precision of standard floating point numbers
for long time. This is especially an issue when the absorption coefficient is large.

0.1.1 For long time

The z portion of the integral is∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µa(z
′−z0)dz′ = eµaz0

∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µaz
′
dz′

The Gaussian term can be written as a power series

e−
(z−z′)2

4αt′ = 1− (z − z′)2

4αt′
+

1

2

(
(z − z′)2

4αt′

)2

+ . . .

If (z − z′)2/4αt′ is small, which will be the case for positions z close to the source at long times, then

eµaz0

∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µaz
′
dz′ ≈ eµaz0

∫ z0+d

z0

[
1− (z − z′)2

4αt′

]
e−µaz

′
dz′

3



[
1− (z − z′)2

4αt′

]
e−µaz

′
=

[
1− z2

4αt′
+

2zz′

4αt′
− z′2

4αt′

]
e−µaz

′

There are three integrals to evaluate

eµaz0

∫ z0+d

z0

(
1− z2

4αt′

)
e−µaz

′
dz′ = eµaz0

(
1− z2

4αt′

)
e−µaz

′

−µa

∣∣∣∣∣
z0+d

z0

=

(
1− z2

4αt′

)
1− e−µad

µa

eµaz0

∫ z0+d

z0

2zz′

4αt′
e−µaz

′
dz′ = eµaz0

2z

4αt′

(
−µaz

′ − 1

µ2
a

)
e−µaz

′
∣∣∣∣z0+d

z0

= eµaz0
2z

4αt′

(
µaz0 + 1

µ2
a

e−µaz0 − µa(z0 + d) + 1

µ2
a

e−µa(z0+d)

)
=

2z

4αt′

(
µaz0 + 1

µ2
a

− µa(z0 + d) + 1

µ2
a

e−µad

)

eµaz0

∫ z0+d

z0

z′2

4αt′
e−µaz

′
dz′ = eµaz0

1

4αt′

(
z′2

−µa
− 2z′

µ2
a

+
2

−µ3
a

)
e−µaz

′
∣∣∣∣z0+d

z0

= eµaz0
1

4αt′

(
z′2

µa
+

2z′

µ2
a

+
2

µ3
a

)
e−µaz

′
∣∣∣∣z0
z0+d

= eµaz0
1

4αt′

[(
z20
µa

+
2z0
µ2
a

+
2

µ3
a

)
e−µaz0 −

(
(z0 + d)2

µa
+

2(z0 + d)

µ2
a

+
2

µ3
a

)
e−µa(z0+d)

]
=

1

4αt′

[(
z20
µa

+
2z0
µ2
a

+
2

µ3
a

)
−
(
(z0 + d)2

µa
+

2(z0 + d)

µ2
a

+
2

µ3
a

)
e−µad

]

eµaz0

∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µaz
′
dz′ ≈

(
1− z2

4αt′

)
1− e−µad

µa

+
2z

4αt′

(
µaz0 + 1

µ2
a

− µa(z0 + d) + 1

µ2
a

e−µad

)
− 1

4αt′

[(
z20
µa

+
2z0
µ2
a

+
2

µ3
a

)
−
(
(z0 + d)2

µa
+

2(z0 + d)

µ2
a

+
2

µ3
a

)
e−µad

]
For z = z0 = 0, this simplifies to

eµaz0

∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µaz
′
dz′ ≈ 1− e−µad

µa
− 1

4αt′

[(
2

µ3
a

)
−
(
d2

µa
+

2d

µ2
a

+
2

µ3
a

)
e−µad

]
For “long” time, 4αt′ >> z, we can keep just the first term,

eµaz0

∫ z0+d

z0

e−
(z−z′)2

4αt′ e−µaz
′
dz′ ≈ 1− e−µad

µa
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Inserting the approximation into Equation 1

T (r = 0, z, t) =
µaE0

ρc

∫ t

0

(
1

4παt′

)3/2

×
{(

1− z2

4αt′

)
1− e−µad

µa

+
2z

4αt′

(
µaz0 + 1

µ2
a

− µa(z0 + d) + 1

µ2
a

e−µad

)
− 1

4αt′

[(
z20
µa

+
2z0
µ2
a

+
2

µ3
a

)
−
(
(z0 + d)2

µa
+

2(z0 + d)

µ2
a

+
2

µ3
a

)
e−µad

]}
×
{
4παt′

[
1− e−R2/4αt′

]}
dt′ (3)

=
E0

ρc

∫ t

0

(
1

4παt′

)1/2

×
{[

1− e−µad
]
− z2

4αt′
[
1− e−µad

]
+

2z

4αt′

(
µaz0 + 1

µa
− µa(z0 + d) + 1

µa
e−µad

)
− 1

4αt′

[(
z20 +

2z0
µa

+
2

µ2
a

)
−
(
(z0 + d)2 +

2(z0 + d)

µa
+

2

µ2
a

)
e−µad

]}
×
[
1− e−R2/4αt′

]
dt′ (4)

0.2 For large absorption

The approximation in the previous section for long times has been implemented, and it works, however it
does not solve the problem. Evaluating the z integral without approximation leads to

eαt
′µ2

a

[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
.

The issue is that as t′ increases, eαt
′µ2

a becomes very large. The difference between the two error functions
becomes small, so the product of the two remains finite (it actually decreases with time). However, trying
to compute the two terms separately leads to floating point overflow. In Python, both the standard math
module and numpy overflow when passing an argument greater than about 700 to the exp function. For
visible light, the absorption coefficient of the RPE can be on the order of 1000 cm−1, which means (assuming
the thermal properties of water, α = 0.0015 cm2 s−1) that we will get an overflow when t′ > 0.46 s.This
is much too short a time to simulate a laser exposure. But even before an overflow, we will get a loss of
precision.

The problem with the long-time approximation is that it is valid when (z′ − z0)/4αt
′ ≪ 1, which does

not depend on the absorption coefficient at all. So its possible to overflow with a large absorption coefficient
before the approximation can be employed.

Instead, it is possible to approximate the result of the integral using an asymptotic expansion for the
error function

erf(x) = 1− erfc(x) = 1− e−x2

x
√
π

∞∑
n=0

(−1)n
(2n− 1)!!

(2x2)n
= 1− e−x2

x
√
π
+

e−x2

x
√
π

1

2x2
−O(1/x5). (5)

This approximation of the error function works for ”large” values, however, the argument does not need to
be that ”large”. Keeping only the first two terms gives less than 0.1 error for x > 0.88. x > 1.38 gives an
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error less than 0.01, x > 1.86 gives and error less than 0.001, and x > 2.28 give an error less than 0.0001.
Keeping the third term reduces the values of x to 0.92, 1.30, 1.69, and 2.07 to reach these error threshold.
Looking at the arguments of the two error functions, there are two terms. The first gets smaller with time,
the second gets larger. The second term is the only one that depends on µa. If we assume that the first
term is small, then we can estimate the time at which the 2 term asymptotic expansion would give less than
0.001 error as 1.86 =

√
αt′µa. For µa = 1000 cm−1, this gives t′ = 0.001 s.

To simplify the algebra, let us define the following variables:

A =
√
αt′µa

B =
z0 − z√
4αt′

C =
d√
4αt′

Then the product we want to approximate can be written

eA
2

[erf (C +B +A)− erf (B +A)].

The issue is eA
2

, it will overflow at short times. If we only had eA, then we would not get an overflow until
t′ = 326 s, which should be sufficient for most laser exposures, sine we would expect to reach steady-state
long before that time.

(A+B + C)2 = A2 +B2 + C2 + 2AB + 2AC + 2BC

(A+B)2 = A2 +B2 + 2AB

eA
2

[erf (C +B +A)− erf (B +A)] = eA
2

[(
1− e−(A2+B2+C2+2AB+2AC+2BC)

(A+B + C)
√
π

∑
· · ·

)
−

(
1− e−(A2+B2+2AB)

(A+B)
√
π

∑
· · ·

)]

=
−e−(B2+C2+2AB+2AC+2BC)

(A+B + C)
√
π

∑
· · ·+ e−(B2+2AB)

(A+B)
√
π

∑
· · ·

=
e−(B2+2AB)

(A+B)
√
π

[
1− 1

2(A+B)
2 + . . .

]
− e−(B2+C2+2AB+2AC+2BC)

(A+B + C)
√
π

[
1− 1

2(A+B + C)
2 + . . .

]

This gives us way to calculate the product without having to evaluate eA
2

and cause an overflow. We have
the following

A2 = αt′µ2
a

B2 =
(z0 − z)2

4αt′

C2 =
d2

4αt′

2AB = 2
√
αt′µa

z0 − z√
4αt′

= (z0 − z)µa

2AC = 2
√
αt′µa

d√
4αt′

= dµa

2BC = 2
z0 − z√
4αt′

d√
4αt′

=
d(z0 − z)

2αt′

6



substituting in

eαt
′µ2

a

[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
=

e
−
(

(z0−z)2

4αt′ + d2

4αt′ +(z0−z)µa+dµa+
d(z0−z)

2αt′

)
(
√
αt′µa +

z0−z√
4αt′

+ d√
4αt′

)
√
π

∑
· · ·

− e
−
(

(z0−z)2

4αt′ +(z0−z)µa

)
(
√
αt′µa +

z0−z√
4αt′

)
√
π

∑
· · ·

0.3 Off Axis Temperatures

The derivation of Equations 1 and 2 assumed x = y = 0, i.e., it is only valid for the temperature rise on the
z axis. To compute the temperature off axis, we need to evaluate∫ ∞

−∞

∫ ∞

−∞
Ē(x′, y′)e−

(x−x′)2+(y−y′)2
4αt′ dx′dy′.

We can switch to polar coordinates by noting that (x − x′)2 + (y − y′)2 = |r⃗ − r⃗′|2 = (r⃗ − r⃗′) · (r⃗ − r⃗′) =
r⃗ · r⃗ + r⃗′ · r⃗′ − 2rr′ cos(ϕ− ϕ′)∫ ∞

0

∫ 2π

0

Ē(r′, ϕ′)e−
r2

4αt′ e−
r′2
4αt′ e

2rr′ cos(ϕ−ϕ′)
4αt′ r′dϕ′dr′.

If the source term is symmetric about the z axis, we can evaluate the integral at ϕ = 0 without loss of
generality. ∫ ∞

0

Ē(r′)r′e−
r2

4αt′ e−
r′2
4αt′

∫ 2π

0

e2rr
′ cos(ϕ′)/4αt′dϕ′dr′.

That the zero’th order Modified Bessel Function of the First Kind, I0(x) has an integral representation

I0(x) =
1

π

∫ π

0

ex cos(ϕ)dϕ. (6)

The azimuthal integral then can be carried out by noting that the integrand is symmetric about ϕ′ = π∫ 2π

0

e2rr
′ cos(ϕ′)/4αt′dϕ′ = 2

∫ π

0

e2rr
′ cos(ϕ′)/4αt′dϕ′ = 2πI0

(
2rr′

4αt′

)
.

The radian integral is then

2π

∫ ∞

0

Ē(r′)e−
r2

4αt′ e−
r′2
4αt′ I0

(
2rr′

4αt′

)
r′dr′.

0.3.1 Flat Top Beams

For a flat top beam with radius R, we need to evaluate the integral

2π

∫ R

0

e−
r2

4αt′ e−
r′2
4αt′ I0

(
2rr′

4αt′

)
r′dr′.

The integral can be carried out using the the Marcum Q-function, which is defined as

Qν(a, b) = 1− 1

aν−1

∫ b

0

xνe−
x2+a2

2 Iν−1(ax)dx.
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In our case, ν = 1. To cast our integral into this form, let x = r′/
√
2αt′, a = r/

√
2αt′, which gives

2π2αt′
∫ R/

√
2αt′

0

e−a2/2e−x2/2I0(ax)xdx = 4παt′
(
1−Q1(r/

√
2αt′, R/

√
2αt′)

)
Plugging this into Equation 1 gives

T (r = 0, z, t) =
µaE0

2ρc
e−µa(z−z0)

∫ t

0

eαt
′µ2

a

×
[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
×
[
1−Q1

(
r/
√
2αt′, R/

√
2αt′

)]
dt′ (7)

0.3.2 Gaussian Beams

For a Gaussian beam with 1/e radius σ we need to evaluate

2π

∫ ∞

0

e−
r′2
σ2 e−

r2

4αt′ e−
r′2
4αt′ I0

(
2rr′

4αt′

)
r′dr′ = 2πe−

r2

4αt′

∫ ∞

0

e−(
1
σ2 + 1

4αt′ )r
′2
I0

(
2rr′

4αt′

)
r′dr′.

The integral can be cast into a standard form and evaluated [“Table of Integrals, Series, and Products”,
Gradshteyn and Ryzhik pg. 707],∫ ∞

0

xe−αx2

Iν(βx)Jν(γx)dx =
1

2α
exp

(
β2 − γ2

4α

)
Jν

(
βγ

2α

)
In our case, ν = γ = 0, β = 2r/4αt′, and α =

(
1
σ2 + 1

4αt′

)
, which gives

2πe−
r2

4αt′

∫ ∞

0

e−(
1
σ2 + 1

4αt′ )r
′2
I0

(
2rr′

4αt′

)
r′dr′ = 2πe−

r2

4αt′
1

2
(

1
σ2 + 1

4αt′

)e(2r/4αt′)2/4( 1
σ2 + 1

4αt′ )

= 4παt′e−
r2

4αt′
1

1 + 4αt′

σ2

e

r2

4αt′
1

1+ 4αt′
σ2

= 4παt′
1

1 + 4αt′

σ2

e

r2

4αt′

(
1

1+ 4αt′
σ2

−1

)

= 4παt′
σ2

σ2 + 4αt′
e

−r2

σ2+4αt′

Plugging this into Equation 2 gives

T (r = 0, z, t) =
µaE0

2ρc
e−µa(z−z0)

∫ t

0

eαt
′µ2

a

×
[
erf

(
z0 + d− z√

4αt′
+
√
αt′µa

)
− erf

(
z0 − z√
4αt′

+
√
αt′µa

)]
×
[

σ2

σ2 + 4αt′
e

−r2

σ2+4αt′

]
dt′ (8)

0.4 Pulsed Exposures

The temperature rises caused by a CW exposure is given by integrating the Green’s Function,

∆T (t) =

∫ t

0

G(t′)dt′. (9)
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Because the temperature rise is linear, we can use the CW temperature rise to compute the temperature
rise caused by a pulsed exposure,

∆T (t) =

{∫ t

0
G(t′)dt′ t ≤ τ∫ t

0
G(t′)dt′ −

∫ t−τ

0
G(t′)dt′ t > τ.

(10)

After the pulse, the temperature rise is given by the difference between the CW temperature rise at the
times t and t− τ . We can either calculate ∆T (t) and ∆(t− τ), or evaluate the integral over a different set
of limits, ∫ t

0

G(t′)dt′ −
∫ t−τ

0

G(t′)dt′ = ∆T (t)−∆T (t− τ) =

∫ t

t−τ

G(t′)dt′ (11)
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