
www.kit.eduKIT – The Research University in the Helmholtz Association

Dependability of Software-intensive Systems

Introduction to QiCode
Marvin Fuchs and Robert Gartmann (KIT)

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

RF-System-on-Chip (RFSoC)
• FPGA
• 2x Processing Unit
• 8x 14 bit DACs with 4 GS/s
• 8x 12 bit ADCs with 4 GS/s

Custom HF-Frontend
• Mixers for frequency conversion

Electronics for Cryogenic Applications

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

Custom Firmware and
Software
• Python-Client (QiCode)

on User PC
• Ethernet for

communication with the
platform

• ServiceHub as central
control instance

• Taskrunner to execute
real-time tasks

• One Unit Cell per Qubit

QiController: RFSoC Based Control Platform

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• Experiment description language to
interface the QiController

• Based on Python

• Usage similar to Qiskit; closer to the
sample

• Translation layer to Qiskit

SpinEcho pulses output by the QiController

Readout
Manipulation

QiCode

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as job:
 q = QiCells(1)

 # X-Gate
 Play(q[0], QiPulse(length=q[0]["pi"],
 shape=ShapeLib.gauss,
 phase=0.0,
 frequency=q[0]["manip_frequency"]))

 # H-Gate (Ry-Gate and X-Gate)
 Play(q[0], QiPulse(length=q[0]["pi"],
 shape=ShapeLib.gauss,
 phase=np.pi / 2,
 frequency=q[0]["manip_frequency"],
 amplitude=1 / 2))
 Play(q[0], QiPulse(length=q[0]["pi"],
 shape=ShapeLib.gauss,
 phase=0.0,
 frequency=q[0]["manip_frequency"]))

 # Z-Gate
 RotateFrame(q[0], angle=np.pi)

 # Y-Gate
 Play(q[0], QiPulse(length=q[0]["pi"],
 shape=ShapeLib.gauss,
 phase=np.pi / 2,
 frequency=q[0]["manip_frequency"]))

 # Measure
 PlayReadout(q[0], QiPulse(length=q[0]["rec_pulse"],
 frequency=q[0]["rec_frequency"]))
 Recording(q[0],
 duration=q[0]["rec_length"],
 offset=q[0]["rec_offset"],
 save_to="result")

job.run(qic, sample)

qc = QuantumCircuit(1,1)

qc.x(0)
qc.h(0)
qc.z(0)
qc.y(0)

qc.measure(0,0)

Qiskit

QiCode

Pulses

Manipulation Readout

This level of detail is possible in
QiCode, but gates can also be
encapsulated as QiGates

QiCode and Qiskit

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as job:
 q = QiCells(1)

 X_Gate(q[0])
 H_Gate(q[0])
 Z_Gate(q[0])
 Y_Gate(q[0])

 Measure(q[0], save_to="result")

job.run(qic, sample)

qc = QuantumCircuit(1,1)

qc.x(0)
qc.h(0)
qc.z(0)
qc.y(0)

qc.measure(0,0)

Qiskit QiCode Pulses

Manipulation Readout

QiCode and Qiskit

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• Oscillations between ground state |0⟩
and excited state |1⟩ due to a driving
field

• Used to determine pi-pulse length

What do we need?
• Manipulation pulses of varying length
• Readout of the qubit state

π-Pulse

Rabi Oscillations

Use Case: Rabi Oscillations

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as rabi:
 q = QiCells(1)
 length = QiTimeVariable()
 with ForRange(length, 0, 1e-6, 20e-9):
 Play(q[0], QiPulse(length, frequency=q[0]["manip_frequency"]))
 Readout(q[0], save_to="result")
 Thermalize(q[0]) # Wait for the qubit to thermalize

rabi.run(qic, sample, averages=1000)

sample = QiSample(1) # 1 cell/qubit only
sample[0]["rec_pulse"] = 416e-9 # s readout pulse length
sample[0]["rec_length"] = 400e-9 # s recording window size
sample[0]["rec_frequency"] = 60e6 # Hz readout pulse frequency
sample[0]["manip_frequency"] = 80e6 # Hz control pulse frequency

@QiGate
def Readout(cell: QiCell, save_to: str = None):
 PlayReadout(cell, QiPulse(length=cell["rec_pulse"],

 frequency=cell["rec_frequency"]))
 Recording(cell,
 duration=cell["rec_length"],
 offset=cell["rec_offset"],
 save_to=save_to)

@QiGate
def Thermalize(cell: QiCell):
 Wait(cell, delay=5 * cell["T1"])

Manipulation pulses of varying
length Readout of the qubit

state

QiSample

QiGate
QiSample

Use Case: Rabi Oscillations

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

-2.30

-2.35

-2.40

-2.45

-2.50

-2.55
0.0 0.5 1.0 1.5 2.0 2.5 3.0

1e-5pulse length

ph
as

e
av

g
0

2π

Use Case: Rabi Oscillations

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• The physical properties of a
sample can be stored in an
instance of QiSample

• A sample can consist of one
or more cells

• Each cell corresponds to a
qubit and defines all relevant
properties

sample = QiSample(1) # 1 cell/qubit only
sample[0]["rec_pulse"] = 416e-9 # s readout pulse length
sample[0]["rec_length"] = 400e-9 # s recording window size
sample[0]["rec_frequency"] = 60e6 # Hz readout pulse frequency
sample[0]["manip_frequency"] = 80e6 # Hz control pulse frequency

Represents the UnitCell

Represents the Sample
(physical qubit)

QiSample

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• Reusable building blocks can
be defined with the
decorator QiGate

• Equivalent to functions in
programming languages

• Can use the physical
properties of the cells stored
in a QiSample

@QiGate
def Readout(cell: QiCell, save_to: str = None):
 PlayReadout(cell, QiPulse(length=cell["rec_pulse"],

 frequency=cell["rec_frequency"]))
 Recording(
 cell,
 duration=cell["rec_length"],
 offset=cell["rec_offset"],
 save_to=save_to
)

@QiGate
def PiPulse(cell: QiCell):
 Play(cell, QiPulse(length=cell["pi"],
 frequency=cell["manip_frequency"]))

@QiGate
def Thermalize(cell: QiCell):
 Wait(cell, delay=5 * cell["T1"])

QiGate

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• Entire experiments can be
described in a generic way
as instances of QiJob

• Can use the concepts of
QiSample and QiGate for
abstraction

• Can be created to be
easily reusable for
different samples

• QiJobs can be executed

Commands are always encapsulated within the QiJob context
with QiJob() as rabi:
 # First, we define how many qubits the experiment requires
 q = QiCells(1)
 # Rabi consists of variable length excitation pulses,
 # so we need to create a time variable
 length = QiTimeVariable()
 # The variable can then be changed within a for loop
 with ForRange(length, 0, 1e-6, 20e-9):
 # Output the manipulation pulse with variable length
 Play(q[0], QiPulse(length, frequency=q[0]["manip_frequency"]))
 # Perform a consecutive readout (using the above QiGate)
 # The data can later by accessed via the specified name "result"
 Readout(q[0], save_to="result")
 # Wait for the qubit to thermalize (also a QiGate)
 Thermalize(q[0])

rabi.run(qic, sample, averages=1000)
data = rabi.cells[0].data("result")

QiJob

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• Play(cell, pulse)
– Play the given pulse at the manipulation output for the given cell.

• PlayReadout(cell, pulse)
– Same as Play but outputs readout pulses.

• Recording(cell, duration, offset, save_to, state_to)
– Records the input of the cell with given duration and offset (e.g. to compensate electrical

delay). Typically used directly after a PlayReadout command. Using the save_to
argument, the result data can be stored and accessed later using the given string. With
state_to, the obtained qubit state can be saved to a QiVariable.

• Wait(cell, delay)
– The specified cell waits for the specified delay before continuing with the next command.

Basics (Commands)

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• QiVariable(type), QiTimeVariable() and QiStateVariable()
– A variable that can be used during the control flow or to temporarily store a

measured qubit state.
• QiPulse(length, shape, amplitude, phase)

– A pulse object that can be used in other commands such as Play.

Basics (Parameters)

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• with If(condition):
– Conditional branching, only executes the indented block that follows if the

condition is true.
• with Else():

– Can follow after with If and does exactly what you would expect it to do.
• with ForRange(variable, start, end, step):

– The passed variable will be looped from start to end (exclusive) with given
increment (default: 1). The following block will be repeated for every value of
the variable.

Basics (Context Managers)

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as rabi:
 q = QiCells(1)
 length = QiTimeVariable()
 with ForRange(length, 0, 100e-9, 4e-9):
 Play(q[0], QiPulse(length, frequency=q[0]["manip_frequency"]))
 Readout(q[0], save_to="result")
 Thermalize(q[0])

Rabi Experiment

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as job:
 q = QiCells(1)
 length = QiTimeVariable()
 with ForRange(length, start, stop, step):
 PiPulse(q[0])
 Wait(q[0], delay=length)
 Readout(q[0], save_to="result")
 Thermalize(q[0])

T1 Experiment

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as spin_echo:
 q = QiCells(1)
 length = QiTimeVariable()
 length_half = QiTimeVariable()
 with ForRange(length, start, stop, step):
 Assign(dst=length_half, calc=length >> 1)
 PiHalfPulse(q[0])
 Wait(q[0], delay=length_half)
 PiPulse(q[0])
 Wait(q[0], delay=length_half)
 PiHalfPulse(q[0])
 Readout(q[0], save_to="result")
 Thermalize(q[0])

Spin Echo Experiment

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

with QiJob() as ramsey:
 q = QiCells(1)
 length = QiTimeVariable()
 with ForRange(length, start, stop, step):
 PiHalfPulse(q[0], detuning=detuning)
 Wait(q[0], delay=length)
 PiHalfPulse(q[0], detuning=detuning)
 Readout(q[0], save_to="result")
 Thermalize(q[0])

Ramsey Experiment

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

With shorter pulses, Fourier
components become a concern
→ alternative pulse shapes

• Envelopes are used to shape
pulses

• 9 predefined envelopes
• User can create additional

envelopes
• Maximal length currently ~4µs

rect gauss

ramp r_sphere

Play(q[0], QiPulse(length=200e-9,
 shape=ShapeLib.gauss,
 frequency=100e6))

Pulse Shapes

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

Preparational steps:
1.Describe the sample (QiSample)
2.Connect to the QiController

(Ethernet)
3.Calibrate the amplitude of

manipulation and readout pulses
4.Calibrate the electrical delay
5.Connect to and configure the

analog RF frontend (Ethernet)

All steps for a setup are usually collected in a Jupyter notebook

Characterisation:
1.Find resonator frequency fres
2.Find qubit frequency f01
3.Rabi
4.T1
5.SpinEcho
6.Ramsey

Current Application of QiCode: (Single)
Qubit Characterisation

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

1.Describe the sample (QiSample)
#specify a 1D Sample object (1 Qubit chip)
sample = QiSample(1)

#necessary paramters to be provided
sample[0]["rec_pulse"] = 416e-9 #pulse length of the readout pulse
sample[0]["rec_length"] = 400e-9 #length of the recording window
sample[0]["T1"] = 20e-6 # Start with some conservative value so qubit can definitely thermalize
sample[0]["rec_frequency"] = 80e6
sample[0]["manip_frequency"] = 200e6
sample[0]["f_res"] = 8.5758e9
sample[0]["f_01"] = 6344.268e6

#calculate target LO frequencies
sample[0]["f_LO (R)"] = sample[0]["f_res"] + sample[0]["rec_frequency"]
sample[0]["f_LO (M)"] = sample[0]["f_01"] + sample[0]["manip_frequency"]

#you can also put in your own fields in this dict, as for example a subsample name
sample[0]["subsample"] = "test"

Pulse Shapes

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

2.Connect to the QiController (Ethernet)
qic = ql.QiController('controller ip')

3.Calibrate the amplitude of manipulation and readout pulses for every unit cell
for cell in qic.cell:
 cell.readout.amplitude_calibration = (1,1) #(I,Q)
 cell.manipulation.amplitude_calibration = (1,1) #(I,Q)

4.Calibrate the electrical delay
#crop recording window to electrical delay
ql.init.crop_recording_window(qic, sample, averages=10000)

#calibration of global phase offset
ql.init.calibrate_readout_phase(qic, sample, averages=1000, set_sample=True)

Preparational Steps

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

5.Connect to and configure the analog RF frontend (Ethernet)
#Load board with correct driver
hf_manip = qkit.instruments.create(name="HF-PCB Manipulation", instype="RFPCB", address="10.22.197.146:4242")
hf_readout = qkit.instruments.create(name="HF-PCB Readout", instype="RFPCB", address="10.22.197.147:4242")

#configure readout board Demodulation path
hf_readout.set_demod_gain(7)
hf_readout.set_demod_attenuation(0)

#output attenuation
hf_readout.set_hf_attenuation(25)

#Set LO frequncies and power on
hf_readout.set_frequency(sample[0]["f_LO (R)"], offset=0)
hf_readout.on()

#manipulation board output attenuation
hf_manip.set_hf_attenuation(8)

#set LOs and power on
hf_manip.set_frequency(sample[0]["f_LO (M)"], offset=0)
hf_manip.on()

The Qkit framework is used to control
the RF frontend (
https://github.com/qkitgroup/qkit)

Preparational Steps

https://github.com/qkitgroup/qkit

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

1.Find resonator frequency fres
#specification of scan parameters
cid = 0 #sample id
freq_center = sample[cid]["rec_frequency"]
freq_span = 20e6
freq_step = 0.1e6
averages = 1000

#Job specification to run on the platform
with QiJob() as job:
 q = QiCells(1)
 f = QiVariable()
 with ForRange(f, freq_center-freq_span/2, freq_center+freq_span/2, freq_step):
 PlayReadout(q[0], QiPulse(length=q[0]["rec_pulse"], frequency=f))
 Recording(q[0], duration=q[0]["rec_length"], offset=q[0]["rec_offset"], save_to="result")
 Wait(q[0], delay=10e-6)

exp = job.create_experiment(qic, sample, averages=averages, cell_map=[cid])

#The Qkit framework is used to execute the experiment (github.com/qkitgroup/qkit)
m = Measure_td(exp.qkit_sample)
m.measure_1D_AWG()

Characterisation

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

3.Rabi
Drive Rabi oscillation to get the pi-pulse length for the sample.

1
.

2
.

sepcify parameters
t_max = 2e-6
t_step = 20e-9
averages = 5000
iterations = 1
cid = 0
qubit = sample[cid]["subsample"]

def measure_rabi(t_max,t_step,averages,iterations,cid,qubit):
 exp = ql.jobs.Rabi(start=0, stop=t_max, step=t_step).create_experiment(
 qic, sample, cell_map=[cid], averages=averages)

 #The Qkit framework is used to execute the experiment
 m = Measure_td(qic.sample, exp.readout)
 m.measure_1D_AWG(iterations=iterations)

measure_rabi(t_max,t_step,averages,iterations,cid,qubit)

Fit the oscillation with qfit, to extract the pi pulse length
qf = qfit.QFIT()
qf.load(entries=['pulse_length', f'phase_avg_0'])

qf.fit_damped_sine()
t_pi = 0.5/qf.popt[0]
print(f"Cell {cid}: t_pi = {t_pi*1e9:.2f} ns")

if fit is fine the pi pulse length is saved in the sample object.
if input("Save pi pulse time in sample as pi? y/n") == "y":
 print(f"Ok, saving in cell {cid}!")
 sample[cid]["pi"] = t_pi

-2.30

-2.35

-2.40

-2.45

-2.50

-2.55
0.0 0.5 1.0 1.5 2.0 2.5 3.0

1e-5pulse length

ph
as

e
av

g
0

Characterisation

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• QiCode is a Python based experiment description language developed to improve the
usability of the QiController Hardware

• The modular approach of QiCode allows to create reusable building blocks (QiGate)
• Describing a qubit chip as a QiSample allows to simply reuse this description in

various applications
• Some standard experiments (e.g. Rabi, T1, SpinEcho, Ramsey) are predefined in

QiCode
• The language is already in use, mainly for the characterization of individual qubits

Conclusion

BACKUP

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• The readout phase is usually at
some arbitrary phase, depending
on the electrical delay

• This causes inconsistencies in
the recorded data

• To avoid this, it is possible to
normalize the phase of the read
back signal

def calibrate_readout_phase(qic: QiController,
 sample: QiSample,
 averages: int,
 set_sample: bool = False,
 cell: int = 0):
 qic_cell = sample[cell](qic)
 if qic_cell.recording.interferometer_mode:
 raise SystemError("Resetting the phase is not possible in interferometer mode.")
 with QiJob() as job:
 q = QiCells(1)
 Readout(q[0], save_to="result")
 Wait(q[0], 2e-6)
 job.run(qic, sample, averages, cell_map=[cell], data_collection="amp_pha")
 _, [pha_old] = job.cells[0].data("result")
 pha_old_calib = qic_cell.recording.phase_offset
 pha_calib = pha_old_calib - pha_old
 qic_cell.recording.phase_offset = pha_calib + 2 * np.pi
 if set_sample:
 sample[cell]["rec_phase"] = pha_calib
 job.run(qic, sample, averages, cell_map=[cell], data_collection="amp_pha")
 _, [pha_new] = job.cells[0].data("result")
 print(f"Phase was {pha_old:.5f} and is now calibrated to {pha_new:.5f}.")
 return pha_calib

The Function ”calibrate_readout_phase“

Institute for Data Processing and Electronics (IPE)Introduction to QiCode – Marvin Fuchs and Robert Gartmann

• With the correct setup, single
shot measurements are possible

• Mainly depending on
amplification and dampening in
the cryostat

Accumulation of one state

Accumulation of an other state
Equal distribution of both states

ql.jobs.Readout(q[0], "result")
ql.jobs.Thermalize(q[0])
ql.jobs.PiPulse(q[0])
ql.jobs.Readout(q[0], "result")
ql.jobs.Thermalize(q[0])

Singe Shot Rabi Measurement

11/24/2023 32

	Slide 1
	What Would We Like to Build?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

