PSyclone User Guide
Release 3.1.0-dev

Oakley Brunt, Andrew Coughtrie, Joshua Dendy,
Rupert Ford, Joerg Henrichs, Ilva Kavcic, Andrew Porter,
Sergi Siso and Joseph Wallwork

Feb 24, 2025

TABLE OF CONTENTS

1 Getting Going 3
1.1 Inmstallation e e e e e 3
1.2 Configuration L L e e e e e e e e e e 4
1.3 Running PSyclone e 4
2 The psyclone command 9
2.1 BasicUse o e e e e 10
2.2 Transformation sCript. L L e e e e e e e e e 10
2.3 Fortran INCLUDE Filesand Modules 10
24 Fortranline length L e e e e 11
25 Backend Options L e e 11
2.6 Automatic Profiling Instrumentation oL L e 12
2.7 Using PSyclone for PSYKAL DSLs e 12
3 Configuration 15
3.1 Optons e 15
4 Tutorial and Examples 19
4.1 Tutorial L e e e e e e e 19
4.2 Examples e 19
43 PSyIRExamples o o e e e e e e 21
4.4 GOcean Examples o o i e e e e e e e e e e 21
4.5 LFRic Examples o e e e e e e e e 24
4.6 NEMOExamples. 0 e e e e e e e e e e 28
5 Libraries 31
5.1 Available libraries e 31
52 Dependencies e e 32
5.3 Compilation L e e e e e e 32
6 PSylR: the PSyclone Intermediate Representation 35
6.1 PSyIRNodes e 35
6.2 Available language-level nodes 35
6.3 TextRepresentation e e e e e e e e e e e 36
6.4 Tree Navigation 0 e e e e e e e e e e e e 37
6.5 DataTypes o i e e e e e e e e e e e e 43
6.6 Symbolsand Symbol Tables 45
6.7 Creating PSyIR 0 o 48
6.8 Comparing PSyIRnodes e 51
6.9 Modifyingthe PSyIR e e e 51

7

10

11

12

Transformations

7.1 PSyclone User SCripts v v v i i i e
7.2 Finding transformations L e
7.3 Validating and Applying transformations o oL Lo
7.4 Available transformationsl
7.5 Algorithm-layer L e e e
7.6 Kernels o
TT 0OpenMP . . L e e e e e e e e
7.8 OpenCL e e e e e
7.9 OpenACC e e
T0 SIR .. e e

Introduction to PSyKAlI

.1 Usage . . . o v o e e e e e e e
8.2 Algorithmlayer. e
83 Kernellayer e e e e e e e
8.4 Built-ins e e
8.5 PSylayer L e e e

LFRic API

9.1 Algorithm o e e e e e
9.2 Algorithm Argument Types L e
9.3 Mixed Precision e e e e e
9.4 PSy-layer e e e e e
9.5 Kernel
9.6 Built-ins
9.7 Boundary Conditions e e
0.8 Conventions L e e e e e e e e e e e e e
0.9 Configuration L e e e e
9.10 Transformations i e e e e e

GOceanl.0 API

10.1 Introduction e e e e e e e e e e
10.2 The GOcean Infrastructure Library - dl_esm_inf
103 Algorithm o e e e e e e
104 Kernel e e e e e e e e e e e e
10.5 Built-ins L e e e e e e e e
10.6 Conventions i e e e e e e e e e e e e e e e e
10.7 Configuration o o e e e e e e e e e e e e e e e e e
10.8 Transformations i e e e e e e e e e

PSyclone Kernel Tools

11.1 The psyclone-kern Command 0 i e e e e e e
11.2° Kernel-stub Generator e e e e e e
11.3 Algorithm Generator o i i e e e e e

Line length

121 SCript . o o o o e e e e e e e e e e e
12.2 Interactive o e
12.3 Limitations e e e e e e e e e e

13 Fortran Naming Conventions

14 PSyData API

14.1 Read-Only Verification o e e e e e e e e e

55
55
56
57
58
104
104
108
109
111
112

113
113
114
115
116
117

119
119
120
123
128
128
150
167
167
167
169

181
181
181
185
186
192
192
193
195

201
201
202
208

211
211
211
212

213

215

142 ValueRange Check e
14.3 Integrating PSyData Libraries into the LFRic Build Environment

15 Profiling
15.1 Interface to Third Party Profiling Tools
15.2 Required Modifications to the Program
15.3 Profiling Command-Line Options e
15.4 Profiling in Scripts - ProfileTrans
15.5 Naming Profiling Regions

16 PSy Kernel Extractor (PSyKE)
16.1 Introduction e e e e e e e e e e e
16.2 USe . . . o e e e e e e e e e e e
16.3 Extraction Libraries e e e e e e e e e
16.4 Driver Summary Statistics e e e e e e e e e e e e

Bibliography

Index

221
221
222
223
226
227

231
231
233
236
238

241

243

PSyclone User Guide, Release 3.1.0-dev

PSyclone is a source-to-source Fortran compiler designed to programmatically optimise, parallelise and instrument
HPC applications via user-provided transformation scripts.

By encapsulating the performance-portability aspects (e.g. whether to parallelise with OpenMP or OpenACC), these
scripts enable a separation of concerns between the scientific implementation and the optimisation choices. This allows
each aspect to be explored and developed largely independently. Additionally, PSyclone supports the development of
kernel-based, Fortran-embedded DSLs following the PSyKAI model developed in the GungHo project.

PSyclone is currently used to support the LFRic mixed finite-element PSyKAl DSL for the UK MetOffice’s next gen-
eration modelling system and the GOcean finite-difference PSyKAl DSL for a prototype 2D ocean modelling system.
It is also used to insert GPU offloading directives into existing directly-addressed MPI applications such as the NEMO
ocean model.

More detailed implementation information is available in the Developer Guide and the Reference Guide.

TABLE OF CONTENTS 1

https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation
https://www.metoffice.gov.uk/research/modelling-systems/lfric/
https://gtr.ukri.org/projects?ref=NE%2FL01209X%2F1
https://www.nemo-ocean.eu/
https://www.nemo-ocean.eu/
https://psyclone-dev.readthedocs.io/
https://psyclone-ref.readthedocs.io/

PSyclone User Guide, Release 3.1.0-dev

2 TABLE OF CONTENTS

CHAPTER
ONE

GETTING GOING

1.1 Installation

The following instructions are intended for a PSyclone user who wants to work with a released version of the code. If
you are a developer or wish to test a specific branch of PSyclone from the GitHub repository please see the Installation
section in the Developer Guide.

From PyPI:

For a system-wide installation use:

[pip install psyclone]

For a user-local installation use:

[pip install --user psyclone]

For a specific release (where X.Y.Z is the release version) use:

[pip install psyclone==X.Y.Z J

For more information about using pip or encapsulating the installation in its own virtual environment we recom-
mend reading the Python Packaging User Guide.

From Spack:

To install psyclone to your loaded Spack installation use:

[spack install psyclone J

For more information about how to use Spack we recommend reading the Spack documentation.
From Source:

To download and install a specific PSyclone release (where X.Y.Z is the release version) from source, use:

wget https://github.com/stfc/PSyclone/archive/X.Y.Z.tar.gz
tar zxf X.Y.Z.tar.gz

cd PSyclone-X.Y.Z

pip install .

https://psyclone-dev.readthedocs.io/en/latest/working_practises.html#dev-installation
https://psyclone-dev.readthedocs.io/en/latest/working_practises.html#dev-installation
https://packaging.python.org/en/latest/tutorials/installing-packages/
https://spack-tutorial.readthedocs.io/

PSyclone User Guide, Release 3.1.0-dev

1.1.1 Installation location

The PSyclone installation location will vary depending on the specific installation method and options used. The
psyclone command will typically already be prepended to your PATH after following the instructions above, but
sometimes you will need to source the virtual environment or load the Spack module again after restarting your terminal.

Once psyclone is in your PATH you can execute which psyclone to see the installation directory. Some supporting
files such as configuration, examples and instrumentation libraries are installed under the share/psyclone directory
relative to the psyclone installation. You can replace bin/psyclone in the string returned by which psyclone with
share/psyclone to find their location.

1.2 Configuration

Various aspects of PSyclone are controlled through a configuration file, psyclone.cfg. The default version of this
file is located in the share/psyclone/psyclone. cfg file in the Installation location.

Warning

If PSyclone is installed in ‘editable’ mode (-e flag to pip), or in a non-standard location, then PSyclone will not
be able to find the default configuration file. There are two solutions to this:

1. copy a configuration file to the location specified above.
2. set the PSYCLONE_CONFIG environment variable (or the --config flag) to the full-path to the configuration file,
e.g.
[export PSYCLONE_CONFIG=/some/path/PSyclone/config/psyclone.cfg]

See Configuration for more details about the settings contained within the config file.

1.3 Running PSyclone

You are now ready to run PSyclone. One way of doing this is to use the psyclone command. To list the available
options run: psyclone -h, it should output:

usage: psyclone [-h] [--version] [--config CONFIG] [-s SCRIPT] [-I INCLUDE]
[-1 {off,all,output}] [--profile {invokes,routines,kernels}]
[--backend {enable-validation,disable-validation}] [-o.
—OUTPUT_FILE]
[-api DSL] [-oalg OUTPUT_ALGORITHM_FILE] [-opsy OUTPUT_
—PSY_FILE]
[-okern OUTPUT_KERNEL_PATH] [-d DIRECTORY] [-dm] [-nodm]
[--kernel-renaming {multiple,single}]
filename

Transform a file using the PSyclone source-to-source Fortran compiler

positional arguments:

filename input source code

options:
-h, --help show this help message and exit
--version, -v display version information

(continues on next page)

4 Chapter 1. Getting Going

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

--config CONFIG, -c CONFIG
config file with PSyclone specific options
-s SCRIPT, --script SCRIPT
filename of a PSyclone optimisation recipe
-I INCLUDE, --include INCLUDE
path to Fortran INCLUDE or module files
-1 {off,all,output}, --limit {off,all,output}
limit the Fortran line length to 132 characters (default 'off').
Use 'all' to apply limit to both input and output Fortran. Use
'output' to apply line-length limit to output Fortran only.
--profile {invokes,routines,kernels}, -p {invokes,routines,kernels}
add profiling hooks for 'kernels', 'invokes' or 'routines'
--backend {enable-validation,disable-validation}
options to control the PSyIR backend used for code generation.
Use 'disable-validation' to disable the validation checks that
are performed by default.
-0 OUTPUT_FILE (code-transformation mode) output file
-api DSL, --psykal-dsl DSL
whether to use a PSyKAl DSL (one of ['lfric', 'gocean'])
-oalg OUTPUT_ALGORITHM_FILE
(psykal mode) filename of transformed algorithm code
~opsy OUTPUT_PSY_FILE
(psykal mode) filename of generated PSy-layer code
-okern OUTPUT_KERNEL_PATH
(psykal mode) directory in which to put transformed kernels,..
—default
is the current working directory
-d DIRECTORY, --directory DIRECTORY
(psykal mode) path to a root directory structure containing..

- kernel
source code. Multiple roots can be specified by using multiple -d
arguments.
-dm, --dist_mem (psykal mode) generate distributed memory code
-nodm, --no_dist_mem (psykal mode) do not generate distributed memory code

--kernel-renaming {multiple,single}
(psykal mode) naming scheme to use when re-naming transformed.
—kernels

There is more detailed information about each flag in 7/e psyclone command section, but the main parameters are the in-
put source file that we aim to transform, and a transformation recipe that is provided with the -s flag. In addition to these,
note that psyclone can be used in two distinct modes: the code-transformation mode (when no -api/--psykal-dsl
flags are provided) or the PSyKAI DSL mode (when a -api/--psykal-dsl flag is provided). The following sections
provide a brief introduction to each mode.

1.3.1 PSyclone for Code Transformation

When using PSyclone for transforming existing Fortran files, only an input source file is required:

[psyclone input_file.f90 J

However, we usually want to redirect the output to a file so that we can later compile it. We can do this using the -o
flag:

1.3. Running PSyclone 5

PSyclone User Guide, Release 3.1.0-dev

[psyclone input_file.f90 -o output.f90 J

This should not transform the semantics of the code (only the syntax), and is what we sometimes refer to as a
“passthrough” run. This can be useful as an initial correctness test when applying PSyclone to a new code.

However, PSyclone allows users to programatically change the source code of the processed file. This is achieved using
transformation recipes which are python scripts with a trans function defined. For example:

def trans(psyir):
" Add OpenMP Parallel Loop directives.

:param psyir: the PSyIR of the provided file.
:type psyir: :py:class: psyclone.psyir.nodes.FileContainer"

"

omp_trans = TransInfo().get_trans_name('OMPParallellLoopTrans')

for loop in psyir.walk(Loop):
try:
omp_trans.apply(loop)
except TransformationError as err:
print(f"Loop not paralellised because: {err.value}")

Warning

Before PSyclone 3.0 the transformation scripts took a PSy object as argument:

def trans(psy):
" Add OpenMP Parallel Loop directives.

:param psy: the PSy object that PSyclone has constructed for the
'invoke'(s) found in the Algorithm file.
:type psy: :py:class: psyclone.dynamo®p3.DynamoPSy"

"

for invoke in psy.invokes.invoke_list:
invoke.schedule

This is deprecated and will stop working in PSyclone releases post version 3.0

And can be applied using the -s flag:

[psyclone input_file.f90 -s trans_script.py -o output.f90]

To see more complete examples of PSyclone for code transformation, see the examples/nemo folder in the PSyclone
repository.

1.3.2 PSyclone for PSyKAI DSLs

As indicated above, the psyclone command can also be used to process PSYKAI DSLs (--psykal-ds1 flag). In this
case the command takes as input the Fortran source file containing the algorithm specification (in terms of calls to
invoke()). It parses this, finds the necessary kernel source files and produces two Fortran files. The first contains the
middle, PSy-layer and the second a re-write of the algorithm code to use that layer. These files are named according
to the user-supplied arguments (options -opsy and -oalg respectively). If those arguments are not supplied then the

6 Chapter 1. Getting Going

PSyclone User Guide, Release 3.1.0-dev

script writes the re-written Fortran Algorithm layer to the terminal. For details of the other command-line arguments
please see the The psyclone command Section.

Examples are provided in the examples/1fric and examples/gocean directories of the PSyclone repository. Alter-
natively, if you have installed PSyclone using pip then they may be found in the share/psyclone directory under your
PSyclone installation (see which psyclone for the location of the PSyclone installation). In this case you should copy
the whole examples directory to some convenient location before attempting to carry out the following instructions.

In this case we are going to use one of the LFRic examples:

cd <EGS_HOME>/examples/lfric/egl
psyclone --psykal-dsl lfric -d ../code -nodm -oalg alg.f90 \
-opsy psy.f90 ./single_invoke.x90

You should see two new files created, called alg. £90 (containing the re-written algorithm layer) and psy.£90 (con-
taining the generated PSy- or middle-layer). Since this is an LFRic example the Fortran source code has dependencies
on the LFRic system and therefore cannot be compiled stand-alone.

The PSy-layer that PSyclone creates is constructed using the PSyclone Internal Representation (PSy/R). Accessing this
is demonstrated by the print_psyir_trans.py script in the second LFRic example:

cd <EGS_HOME>/examples/lfric/eg?2
psyclone --psykal-dsl 1lfric -d ../code -s ./print_psyir_trans.py \
-opsy psy.f90 -oalg alg.f90 ./multi_invoke_mod.x90

Take a look at the print_psyir_trans. py script for more information. Hint; you can insert a single line in that script
in order to break into the Python interpreter during execution: import pdb; pdb.set_trace(). This then enables
interactive exploration of the PSyIR if you are interested.

1.3. Running PSyclone 7

PSyclone User Guide, Release 3.1.0-dev

8 Chapter 1. Getting Going

CHAPTER
TWO

THE PSYCLONE COMMAND

The psyclone command is an executable script designed to be run from the command line, e.g.:

[> psyclone <args>

The optional -h argument gives a description of the options provided by the command:

> psyclone -h
usage: psyclone [-h] [--version] [--config CONFIG] [-s SCRIPT] [-I INCLUDE]
[-1 {off,all,output}] [--profile {invokes,routines,kernels}]
[--backend {enable-validation,disable-validation}] [-o.
< OUTPUT_FILE]
[-api DSL] [-oalg OUTPUT_ALGORITHM_FILE] [-opsy OUTPUT_
—PSY_FILE]
[-okern OUTPUT_KERNEL_PATH] [-d DIRECTORY] [-dm] [-nodm]
[--kernel-renaming {multiple,single}]
filename

Transform a file using the PSyclone source-to-source Fortran compiler

positional arguments:

filename input source code

options:
-h, --help show this help message and exit
--version, -v display version information

--config CONFIG, -c CONFIG
config file with PSyclone specific options
-s SCRIPT, --script SCRIPT
filename of a PSyclone optimisation recipe
-I INCLUDE, --include INCLUDE
path to Fortran INCLUDE or module files
-1 {off,all,output}, --limit {off,all,output}
limit the Fortran line length to 132 characters (default 'off').
Use 'all' to apply limit to both input and output Fortran. Use
'output' to apply line-length limit to output Fortran only.
--profile {invokes,routines,kernels}, -p {invokes,routines,kernels}
add profiling hooks for 'kernels', 'invokes' or 'routines'
--backend {enable-validation,disable-validation}
options to control the PSyIR backend used for code generation.
Use 'disable-validation' to disable the validation checks that
are performed by default.

(continues on next page)

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

-0 OUTPUT_FILE (code-transformation mode) output file
-api DSL, --psykal-dsl DSL
whether to use a PSyKAl DSL (one of ['lfric', 'gocean'])
-oalg OUTPUT_ALGORITHM_FILE
(psykal mode) filename of transformed algorithm code
-opsy OUTPUT_PSY_FILE
(psykal mode) filename of generated PSy-layer code
-okern OUTPUT_KERNEL_PATH
(psykal mode) directory in which to put transformed kernels,..
—default
is the current working directory.
-d DIRECTORY, --directory DIRECTORY
(psykal mode) path to a root directory structure containing..

—kernel
source code. Multiple roots can be specified by using multiple -
—d
arguments.
-dm, --dist_mem (psykal mode) generate distributed memory code
-nodm, --no_dist_mem (psykal mode) do not generate distributed memory code

--kernel-renaming {multiple,single}
(psykal mode) naming scheme to use when re-naming transformed.
—kernels

2.1 Basic Use

The simplest way to use psyclone is to provide a Fortran input source file:

[psyclone input.£90 J

If the input file is valid Fortran, PSyclone will print the output Fortran (in this case the same unmodified code but with
normalised syntax) to stdout. Otherwise it will print the errors detected while parsing the Fortran file.

Usually we want to redirect the output to a file that we can later compile. We can do this with the -o flag:

[psyclone input.f90 -o output.f90 J

2.2 Transformation script

By default, the psyclone command will not apply any transformation (other than canonicalising the code and gener-
ating a normalised syntax). To apply transformations to the code, a recipe needs to be specified with the -s flag. This
option is discussed in more detail in the PSyclone User Scripts section. With a transformation recipe the command
looks like:

[psyclone input.f90 -s transformation_recipe.py]

2.3 Fortran INCLUDE Files and Modules

If the source code to be processed by PSyclone contains INCLUDE statements then the location of any INCLUDE’d
files must be supplied to PSyclone via the -I or --include option. (This is necessary because INCLUDE lines are a
part of the Fortran language and must therefore be parsed - they are not handled by any pre-processing step.) Multiple
locations may be specified by using multiple -I flags, e.g.:

10 Chapter 2. The psyclone command

PSyclone User Guide, Release 3.1.0-dev

[psyclone -I /some/path -I /some/other/path input.f90 J

If no include paths are specified then the directory containing the source file currently being parsed is searched by
default. If the specified INCLUDE file is not found then PSyclone will abort with an appropriate error. For example:

PSyclone configuration error: Include path 'nonexisting' does not exist

psyclone -I nonexisting test.f90 ’

Currently, the PSyKAl-based APIs (LFRic and GOcean - see below) will ignore (but preserve) INCLUDE statements
in algorithm-layer code. However, INCLUDE statements in kernels will, in general, cause the kernel parsing to fail
unless the file(s) referenced in such statements are in the same directory as the kernel file. Once kernel parsing has
been re-implemented to use fparser2 (issue #239) and the PSyclone Intermediate Representation then the behaviour
will be the same as for generic code-transformations.

Since PSyclone does not attempt to be a full compiler, it does not require that the code be available for any Fortran
modules referred to by use statements. However, certain transformations do require that e.g. type information be
determined for all variables in the code being transformed. In this case PSyclone will need to be able to find and
process any referenced modules. To do this it searches in the directories specified by the -I/--include flags.

2.3.1 C Pre-processor #include Files

PSyclone currently only supports Fortran input. As such, if a file to be processed contains CPP #include statements
then it must first be processed by a suitable pre-processor before being passed to PSyclone. PSyclone will abort with an
appropriate error if it encounters a #include in any code being processed (whether or not a PSykAL DSL is in use).

2.4 Fortran line length

By default the psyclone command will generate Fortran code with no consideration of Fortran line-length limits. As
the line-length limit for free-format Fortran is 132 characters, the code that is output may be non-conformant.

Line length is not an issue for many compilers as they provide flags to increase or disable Fortran standard line lengths
limits. However this is not the case for all compilers.

When either the -1 all or -1 output option is specified to the psyclone command, the output will be line wrapped
so that the output lines are always within the 132 character limit.

The -1 all additionally checks the input Fortran files for conformance and raises an error if they do not conform.

Line wrapping is not performed by default. There are two reasons for this. This first reason is that most compilers
are able to cope with long lines. The second reason is that the line wrapping implementation could fail in certain
pathological cases. The implementation and limitations of line wrapping are discussed in the Limitations section.

2.5 Backend Options

The final code generated by PSyclone is created by passing the PSyIR tree to one of the ‘backends’ (see PSyIR Back-ends
in the Developer Guide for more details). The --backend flag permits a user to tune the behaviour of this code gener-
ation. Currently, the only option is {en,dis}able-validation which turns on/off the validation checks performed
when doing code generation. By default, such validation is enabled as it is only at code-generation time that certain
constraints can be checked (since PSyclone does not mandate the order in which code transformations are applied).
Occasionally, these validation checks may raise false positives (due to incomplete implementations), at which point it
is useful to be able to disable them. The default behaviour may be changed by adding the BACKEND_CHECKS_ENABLED
entry to the configuration file. Any command-line setting always takes precendence though. It is recommended that
validation only be disabled as a last resort and for as few input source files as possible.

2.4. Fortran line length 11

https://psyclone-dev.readthedocs.io/en/latest/psyir_backends.html#psyir-backends

PSyclone User Guide, Release 3.1.0-dev

2.6 Automatic Profiling Instrumentation

The --profile option allows the user to instruct PSyclone to automatically insert profiling calls in addition to the code
transformations specified in the recipe. This flag accepts the options: routines, invokes and kernels. PSyclone
will insert profiling-start and -stop calls at the beginning and end of each routine, PSy-layer invoke or PSy-layer kernel
call, respectively. The generated code must be linked against the PSyclone profiling interface and the profiling tool
itself. The application that calls the PSyclone-generated code is responsible for initialising and finalising the profiling
library that is being used (if necessary). For more details on the use of this profiling functionality please see the Profiling
section.

2.7 Using PSyclone for PSyKAL DSLs

In addition to the default code-transformation mode, psyclone can also be used to process Fortran files that implement
PSyKAL DSLs (see Introduction to PSyKAl). To do this you can choose a DSL API with the -api or --psykal-dsl
flag.

The main difference is that, instead of providing a single file to process, for PSyKAIl DSLs PSyclone expects an
algorithm-layer file that describes the high-level view of an algorithm. PSyclone will use this algorithm file and the
metadata of the kernels that it calls to generate a PSy(Parallel System)-layer code that connects the Algorithm layer to
the Kernels. In this mode of operation, any supplied transformation recipe is applied to the PSy-layer.

By default, the psyclone command for PSyKAl APIs will generate distributed memory (DM) code (unless otherwise
specified in the Configuration file). Alternatively, whether or not to generate DM code can be specified as an argument
to the psyclone command using the -dm/--dist_mem or -nodm/--no_dist_mem flags, respectively. For exampe the
following command will generate GOcean PSyKAl code with DM:

[psyclone -api gocean -dm algorithm.f90]

See psyclone usage for PSyKAl section for more information about how to use PSyKAI DSLs.

2.7.1 PSyKAI file output

By default the modified algorithm code and the generated PSy code are output to the terminal. These can instead be
output to files by using the -oalg <file> and -opsy <file> options, respectively. For example, the following will
output the generated PSy code to the file ‘psy.f90’ but the algorithm code will be output to the terminal:

[psyclone -opsy psy.f90 algorithm.f90 }

If PSyclone is being used to transform Kernels then the location to write these to is specified using the -okern
<directory> option. If this is not supplied then they are written to the current working directory. By default, PSy-
clone will overwrite any kernel of the same name in that directory. To change this behaviour, the user can use the
--no_kernel_clobber option. This causes PSyclone to re-name any transformed kernel that would clash with any
of those already present in the output directory.

2.7.2 Algorithm files with no invokes

If psyclone is provided with a file that contains no invoke calls then the command outputs a warning to stdout and
copies the input file to stdout, or to the specified algorithm file (if the -oalg <file> option is used). No PSy code
will be output. If a file is specified using the -opsy <file> option this file will not be created.

> psyclone -opsy psy.f90 -oalg alg_new.f90 empty_alg.f90
Warning: 'Algorithm Error: Algorithm file contains no invoke() calls: refusing to
generate empty PSy code'

12 Chapter 2. The psyclone command

PSyclone User Guide, Release 3.1.0-dev

2.7.3 Kernel search directory

When an algorithm file is parsed, the parser looks for the associated kernel files. The way in which this is done requires
that any user-defined kernel routine (as opposed to Built-ins) called within an invoke must have an explicit use statement.
For example, the following code gives an error:

> cat no_use.f90
program no_use
call invoke(testkern_type(a,b,c,d,e))
end program no_use
> psyclone -api gocean no_use.f90
"Parse Error: kernel call 'testkern_type' must either be named in a use statement or be.
—a recognised built-in (one of '[]' for this API)"

(If the chosen API has any Built-ins defined then these will be listed within the [] in the above error message.) If the
name of the kernel is provided in a use statement then the parser will look for a file with the same name as the module
in the use statement. In the example below, the parser will look for a file called “testkern.f90” or “testkern.F90™:

> cat use.f90
program use
use testkern, only : testkern_type
call invoke(testkern_type(a,b,c,d,e))
end program use

Therefore, for PSyclone to find kernel files, the module name of a kernel file must be the same as its filename. By
default the parser looks for the kernel file in the same directory as the algorithm file. If this file is not found then an
error is reported.

> psyclone use.f90
Kernel file 'testkern.[fF]90' not found in <location>

The -d option can be used to tell psyclone where to look for kernel files by supplying it with a directory. The
execution will recurse from the specified directory path to look for the required file. There must be only one instance
of the specified file within (or below) the specified directory:

> cd <PSYCLONEHOME>/src/psyclone

> psyclone -d . use.f90

More than one match for kernel file 'testkern.[fF]90' found!
> psyclone -d tests/test_files/dynamoOp3 -api lfric use.f90
[code output]

Note

The -d option can be repeated to add as many search directories as is required, with the constraint that there must
be only one instance of the specified file within (or below) the specified directories.

2.7.4 Transforming PSyKAI Kernels
When transforming kernels there are two use-cases to consider:

1. a given kernel will be transformed only once and that version then used from multiple, different Invokes and
Algorithms;

2. agiven kernel is used from multiple, different Invokes and Algorithms and is transformed differently, depending
on the Invoke.

2.7. Using PSyclone for PSyKAL DSLs 13

PSyclone User Guide, Release 3.1.0-dev

Whenever PSyclone is used to transform a kernel, the new kernel must be re-named in order to avoid clashing with
other possible calls to the original. By default (--kernel-renaming multiple), PSyclone generates a new, unique
name for each kernel that is transformed. Since PSyclone is run on one Algorithm file at a time, it uses the chosen
kernel output directory (-okern) to ensure that names created by different invocations do not clash. Therefore, when
building a single application, the same kernel output directory must be used for each separate invocation of PSyclone.

Alternatively, in order to support use case 1, a user may specify --kernel-renaming single: now, before trans-
forming a kernel, PSyclone will check the kernel output directory and if a transformed version of that kernel is already
present then that will be used. Note, if the kernel file on disk does not match with what would be generated then
PSyclone will raise an exception.

14 Chapter 2. The psyclone command

CHAPTER
THREE

CONFIGURATION

PSyclone reads various run-time configuration options from the psyclone.cfg file. As described in Configuration,
the default psyclone. cfg configuration file is installed in <python-base-prefix>/share/psyclone/ during the
installation process. The original version of this file is in the PSyclone/config directory of the PSyclone distribution.

At execution-time, the user can specify a custom configuration file to be used. This can either be done with
the --config command-line option, or by specifying the (full path to the) configuration file to use via the
PSYCLONE_CONFIG environment variable. If the specified configuration file is not found then PSyclone will fall back
to searching in a list of default locations.

The ordering of these locations depends upon whether PSyclone is being run within a Python virtual environment (such
as venv). If no virtual environment is detected then the locations searched, in order, are:

1. ${PWD}/.psyclone/
2. ${HOME}/.local/share/psyclone/
3. <python-base-dir>/share/psyclone/
where <python-base-dir> is the path stored in Python’s sys.prefix.

If a virtual environment is detected then it is assumed that the share directory will be a part of that environment.
In order to maintain isolation of distinct virtual environments this directory is then checked before the user’s home
directory. i.e. the list of locations searched is now:

1. ${PWD}/.psyclone/
2. <python-base-dir>/share/psyclone/
3. ${HOME}/.local/share/psyclone/

As alast resort, the location <psyclone-src-base>/config/ is searched in case PSyclone was installed in editable
mode.

Note that for developers a slightly different configuration handling is implemented, see Module: configuration for
details.

3.1 Options

The configuration file is read by the Python ConfigParser class (https://docs.python.org/3/library/configparser.html)
and must be formatted accordingly. It currently consists of a DEFAULT section e.g.:

[DEFAULT]

DISTRIBUTED_MEMORY = true
REPRODUCIBLE_REDUCTIONS = false
REPROD_PAD_SIZE = 8
PSYIR_ROOT_NAME = psyir_tmp

(continues on next page)

15

https://psyclone-dev.readthedocs.io/en/latest/modules.html#dev-configuration
https://docs.python.org/3/library/configparser.html

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

VALID_PSY_DATA_PREFIXES = profile, extract
FORTRAN_STANDARD = £2008

and an optional API specific section, for example for the 1fric section:

[1fric]
access_mapping = gh_read: read, gh write: write, gh_readwrite: readwrite,
gh_inc: inc, gh_readinc: readinc, gh_sum: sum

COMPUTE_ANNEXED_DOFS = false
supported_fortran_datatypes = real, integer, logical
default_kind = real: r_def, integer: i_def, logical: 1_def
precision_map = i_def: 4,

1 def: 1,

r_def: 8,

r_double: 8,

r_ncdf: 8,

r_quad: 16,

r_second: 8,

r_single: 4,

r_solver: 4,

r_tran: 8,

r_bl: 8,

r_phys: 8,

r_um: 8
RUN_TIME_CHECKS = false
NUM_ANY_SPACE = 10
NUM_ANY_DISCONTINUOUS_SPACE = 10

or for gocean:

[gocean]

access_mapping = go_read:read, go_write:write, go_readwrite:readwrite

grid-properties = go_grid_xstop: {0}%%grid¥%%subdomain%%internal%%xstop: scalar,
go_grid_ystop: {0}%%grid%%subdomain%%internal%%ystop: scalar,
go_grid_data: {0}%%data: array,

The meaning of the various entries is described in the following sub-sections.

LEIT3

Note that ConfigParser supports various forms of boolean entry including “true/false”, “yes/no” and “1/0”. See https:
/Idocs.python.org/3/library/configparser.html#supported-datatypes for more details.

3.1.1 DEFAULT Section

This section contains entries that are, in principle, applicable to all APIs supported by PSyclone.

16 Chapter 3. Configuration

https://docs.python.org/3/library/configparser.html#supported-datatypes
https://docs.python.org/3/library/configparser.html#supported-datatypes

PSyclone User Guide, Release 3.1.0-dev

| Entry

Description Type |

DISTRIBUTED_MEMORY Whether or not to generate code for distributed-memory bool

REPRODUCIBLE_REDUCTIONS | Whether or not to generate code for reproducible OpenMP bool

REPROD_PAD_SIZE If generating code for reproducible OpenMP reductions, this int

PSYIR_ROOT_NAME The root for generated PSyIR symbol names if one is not str
VALID_PSY_DATA_PREFIXES Which class prefixes are permitted in any PSyData-related list of str

BACKEND_CHECKS_ENABLED | Optional (defaults to True). Whether or not the PSyIR bool

FORTRAN_STANDARD Optional (defaults to f2008). The Fortran standard that str

parallelism by default. Note that this is currently only
supported for the LFRic (Dynamo 0.3) APL

reductions (see Reductions) by default.

setting controls the amount of padding used between
elements of the array in which each thread accumulates its
local reduction. (This prevents false sharing of cache lines by
different threads.)

supplied when creating a symbol. Defaults to “psyir_tmp”.
transformations. See PSyData API for details.

backend should validate the tree that it is passed. Can be

overridden by the --backend command-line flag (see
Backend Options).

should be used by fparser. Valid values are 2003 and f2008.

3.1.2 Common Sections

The following entries must be defined for each API in order for PSyclone to work as expected:

| Entry

Description

access_mapping

This field defines the strings that are used by a particular API to indicate write, read, ...
access. Its value is a comma separated list of access-string:access pairs, e.g.:

gh_read: read, gh_write: write, gh_readwrite: readwrite, gh_inc:
inc, gh_readinc: gh_sum: sum

At this stage these 6 types are defined for read, write, read+write, increment, read+increment
and summation access by PSyclone. Sum is a form of reduction. The GOcean API does not
support increment or sum, so it only defines three mappings for read, write, and readwrite.

3.1.3 1fric Section

This section contains configuration options that are only applicable when using the LFRic (Dynamo 0.3) APIL.

3.1. Options

17

PSyclone User Guide, Release 3.1.0-dev

| Entry | Description

COMPUTE_ANNEXED_DOFS Whether or not to perform redundant computation over annexed dofs
in order to reduce the number of halo exchanges, see Annexed DoF's.

supported_fortran_datatypes Captures the supported Fortran data types of LFRic arguments, see
Supported Data Types and Default Kind.

default_kind Captures the default kinds (precisions) for the supported Fortran
data types in LFRic, see Supported Data Types and Default Kind.

precision_map Captures the value of the actual precisions in bytes, see Precision
Map

RUN_TIME_CHECKS Specifies whether to generate run-time validation checks, see
Run-time Checks.

NUM_ANY_SPACE Sets the number of ANY_SPACE function spaces in LFRic, see
Number of Generalised ANY_*_SPACE Function Spaces.

NUM_ANY_DISCONTINUOUS_SPACE | Sets the number of ANY_DISCONTINUOUS_SPACE function spaces in
LFRic, see Number of Generalised ANY_*_SPACE Function Spaces.

3.1.4 gocean Section

This section contains configuration options that are only applicable when using the Gocean 1.0 APIL

| Entry | Description \

iteration-spaces | This contains definitions of additional iteration spaces used by PSyclone. A detailed
description can be found in the /teration-spaces section of the GOceanl1.0 chapter.

grid-properties | This key contains definitions to access various grid properties. A detailed description can be
found in the Grid Properties section of the GOcean1.0 chapter.

18 Chapter 3. Configuration

CHAPTER
FOUR

TUTORIAL AND EXAMPLES

4.1 Tutorial

PSyclone provides a hands-on tutorial. The easiest way to follow it is reading the Readme files in github. The tutorial
is divided into two sections, a first section that introduces PSyclone and how to use it to transform generic Fortran
code (this is the recommended starting point for everybody). And a second section about the LFRic DSL (this is only
recommended for people interested in PSYKAL DSLs and LFRic in particular).

To do the proposed hands-on you will need a linux shell with Python installed and to download the hands-on directory
with:

git clone --recursive git@github.com:stfc/PSyclone.git

cd PSyclone

If psyclone isn't already installed you can use 'pip' in this folder to
install a version that matches the downloaded tutorials

pip install .

cd tutorial/practicals

4.2 Examples

Various examples of the use of PSyclone are provided under the examples directory in the Git repository. If you have
installed PSyclone using pip then the examples may be found in share/psyclone/examples in psyclone Installation
location.

Running any of these examples requires that PSyclone be installed on the host system, see Section Getting Going. This
section is intended to provide an overview of the various examples so that a user can find one that is appropriate to them.
For details of what each example does and how to run each example please see the README .md files in the associated
directories.

For the purposes of correctness checking, the whole suite of examples may be executed using Gnu make (this func-
tionality is used by GitHub Actions alongside the test suite). The default target is transform which just performs
the PSyclone code transformation steps for each example. For those examples that support it, the compile target
also requests that the generated code be compiled. The notebook target checks the various Jupyter notebooks using
nbconvert.

Note

As outlined in the Run section, if working with the examples from a PSyclone installation, it is advisable to copy
the whole examples directory to some convenient location before running them. If you have copied the examples
directory but still wish to use make then you will also have to set the PSYCLONE_CONFIG environment variable to
the full path to the PSyclone configuration file, e.g. PSYCLONE_CONFIG=/some/path/psyclone.cfg make.

19

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/generic
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/generic
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals/LFRic

PSyclone User Guide, Release 3.1.0-dev

4.2.1 Compilation

Some of the examples support compilation (and some even execution of a compiled binary). Please consult the README .
md to check which ones can be compiled and executed.

As mentioned above, by default each example will execute the transform target, which performs the PSyclone code
transformation steps. In order to compile the sources, use the target compile:

[make compile J

which will first perform the transformation steps before compiling any created Fortan source files. If the example also
supports running a compiled and linked binary, use the target:

[make run }

This will first trigger compilation using the compile target, and then execute the program with any parameters that
might be required (check the corresponding README . md document for details).

All Makefiles support the variables F90 and FOOFLAGS to specify the compiler and compilation flags to use. By
default, the Gnu Fortran compiler (gfortran) is used, and the compilation flags will be set to debugging. If you want
to change the compiler or flags, just define these as environment variables:

[F9®:ifort F9QFLAGS="-g -check bounds" make compile]

To clean all compiled files (and potential output files from a run), use:

[make clean]

This will clean up in the examples directory. If you want to change compilers or compiler flags, you should run make
allclean, see the section about Dependencies for details.

4.2.2 Supported Compilers

All examples have been tested with the following compilers. Please let the developers know if you have problems using
a compiler that has been tested or if you are working with a different compiler so it can be recorded in this table.

Compiler | Version |
Gnu Fortran 9.3
Intel Fortran 17,21

NVIDIA Fortran | 23.5

4.2.3 Dependencies

Any required library that is included in PSyclone (typically the infrastructure libraries for the APIs, or PSyData wrapper
libraries) will automatically be compiled with the same compiler and compilation flags as the examples.

Note

Once a dependent library is compiled, changing the compilation flags will not trigger a recompilation of this library.
For example, if an example is first compiled with debug options, and later the same or a different example is compiled
with optimisations, the dependent library will not automatically be recompiled!

All Makefiles support an allclean target, which will not only clean the current directory, but also all libraries the
current example depends on.

20 Chapter 4. Tutorial and Examples

PSyclone User Guide, Release 3.1.0-dev

Important

Using make allclean is especially important if the compiler is changed. Typically, one compiler cannot read
module information from a different compiler, and then compilation will fail.

NetCDF

Some examples require NetCDF for compilation. Installation of NetCDF is described in detail in the hands-on practicals
documentation.

4.3 PSyIR Examples

Examples may all be found in the examples/psyir directory. Read the README . md file in this directory for full details.

4.3.1 Example 1: Constructing PSyIR and Generating Code

create.py is a Python script that demonstrates the use of the various create methods to build a PSyIR tree from
scratch.

4.3.2 Example 2: Creating PSyIR for Structure Types

create_structure_types.py demonstrates the representation of structure types (i.e. Fortran derived types or C
structs) in the PSyIR.

4.4 GOcean Examples

4.4.1 Example 1: Loop transformations

Examples of applying various transformations (loop fusion, OpenMP, OpenMP Taskloop, OpenACC, OpenCL) to the
semi-PSyKAI’d version of the Shallow benchmark. (“semi” because not all kernels are called from within invoke()’s.)
Also includes an example of generating a DAG from an InvokeSchedule.

4.4.2 Example 2: OpenACC

This is a simple but complete example of using PSyclone to enable an application to run on a GPU by adding OpenACC
directives. A Makefile is included which will use PSyclone to generate the PSy code and transformed kernels and
then compile the application. This compilation requires that the dl_esm_inf library be installed/available - it is provided
as a Git submodule of the PSyclone project (see Installation in the Developers’ Guide for details on working with
submodules).

The supplied Makefile also provides a second, profile target which performs the same OpenACC transformations
but then encloses the whole of the resulting PSy layer in a profiling region. By linking this with the PSyclone NVTX
profiling wrapper (and the NVTX library itself), the resulting application can be profiled using NVIDIA’s nvprof or
nvvp tools.

4.4.3 Example 3: OpenCL

Example of the use of PSyclone to generate an OpenCL driver version of the PSy layer and OpenCL kernels. The
Makefile in this example provides a target (make compile-ocl) to compile the generated OpenCL code. This requires
an OpenCL implementation installed in the system. Read the README provided in the example folder for more details
about how to compile and execute the generated OpenCL code.

4.3. PSyIR Examples 21

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://github.com/stfc/dl_esm_inf
https://psyclone-dev.readthedocs.io/en/latest/working_practises.html#dev-installation

PSyclone User Guide, Release 3.1.0-dev

4.4.4 Example 4: Kernels containing use statements

Transforming kernels for use with either OpenACC or OpenCL requires that we handle those that access data and/or
routines via module use statements. This example shows the various forms for which support is being implemented.
Although there is support for converting global-data accesses into kernel arguments, PSyclone does not yet support
nested use of modules (i.e. data accessed via a module that in turn imports that symbol from another module) and
kernels that call other kernels (Issue #342).

4.4.5 Example 5: PSyData

This directory contains all examples that use the PSyData API. At this stage there are three runnable examples:

Example 5.1: Kernel data extraction

This example shows the use of kernel data extraction in PSyclone. It instruments each of the two invokes in the example
program with the PSyData-based kernel extraction code. Detailed compilation instructions are in the README.md
file, including how to switch from using the stand-alone extraction library to the NetCDF-based one (see Extraction
Libraries for details).

The Makefile in this example will create the binary that extracts the data at run time, as well as two driver programs
that can read in the extracted data, call the kernel, and compare the results. These driver programs are independent of
the dl_esm_inf infrastructure library. These drivers can only read the corresponding file format, i.e. a NetCDF driver
program cannot read in extraction data that is based on Fortran IO and vice versa.

Note

At this stage the driver program still needs the infrastructure library when compiling the kernels, see #1757.

Example 5.2: Profiling

This example shows how to use the profiling support in PSyclone. It instruments two invoke statements and can link
in with any of the following profiling wrapper libraries: template, simple_timer, dl_timer, TAU, Vernier, and DrHook
(see Interface to Third Party Profiling Tools). The README .md file contains detailed instructions on how to build the
different executables. By default (i.e. just using make without additional parameters) it links in with the template
profiling library included in PSyclone. This library just prints out the name of the module and region before and after
each invoke is executed. This example can actually be executed to test the behaviour of the various profiling wrappers,
and is also useful if you want to develop your own wrapper libraries.

Example 5.3: Read-only-verification

This example shows the use of read-only-verification with PSyclone. It instruments each of the two invokes in the exam-
ple program with the PSyData-based read-only-verification code. It uses the dl_esm_inf-specific read-only-verification
library (1ib/read_only/dl_esm_inf/).

Note

The update_field_mod subroutine contains some very buggy and non-standard code to change the value of some
read-only variables and fields, even though the variables are all declared with intent (in). It uses the addresses
of variables and then out-of-bound writes to a writeable array to actually overwrite the read-only variables. Using
array bounds checking at runtime will be triggered by these out-of-bound writes.

The Makefile in this example will link with the compiled read-only-verification library. You can execute the created
binary and it will print two warnings about modified read-only variables:

22 Chapter 4. Tutorial and Examples

PSyclone User Guide, Release 3.1.0-dev

Double precision field b_fld has been modified in main : update
Original checksum: 4611686018427387904
New checksum: 4638355772470722560

Double precision variable z has been modified in main : update
Original value: 1.0000000000000000
New value: 123.00000000000000

Example 5.4: Value Range Check

This example shows the use of valid number verification with PSyclone. It instruments each of the two invokes in the
example program with the PSyData-based Value-Range-Check code. It uses the dl_esm_inf-specific value range check
library (1ib/value_range_check/dl_esm_inf/).

Note

The update_field_mod subroutine contains code that will trigger a division by O to create NaNs. If the compiler
happens to add code that handles floating point exceptions , this will take effect before the value testing is done by
the PSyData-based verification code.

The Makefile in this example will link with the compiled value_range_check library. You can then execute the binary
and enable the value range check by setting environments (see value range check for details).

PSYVERIFY_ _main__init__b_fld=2:3 ./value_range_check

PSyData: Variable b_fld has the value 0.0000000000000000 at index/indices 6 1 in module
—'main', region 'init', which is not between '2.0000000000000000' and '3.
- 0000000000000000 ' .

PSyData: Variable a_fld has the invalid value 'Inf' at index/indices 1 1 in module 'main
', region 'update'.

As indicated in value range check, you can also check a variable in all kernels of a module, or in any instrumented code
region (since the example has only one module, both settings below will create the same warnings):

PSYVERIFY__main__b_fld=2:3 ./value_range_check
PSYVERIFY__b_fld=2:3 ./value_range_check

PSyData: Variable b_fld has the value 0.0000000000000000 at index/indices 6 1 in module
< 'main', region 'init', which is not between '2.0000000000000000' and '3.
—0000000000000000 ' .

PSyData: Variable b_fld has the value 0.0000000000000000 at index/indices 6 1 in module
—'main', region 'update', which is not between '2.0000000000000000' and '3.
- 0000000000000000' .

Notice that now a warning is created for both kernels: init and update.

Support for checking arbitrary Fortran code is tracked as issue #2741.

4.4. GOcean Examples 23

PSyclone User Guide, Release 3.1.0-dev

4.4.6 Example 6: PSy-layer Code Creation using PSyIR

This example informs the development of the code generation of PSy-layer code using the PSyIR language backends.

4.5 LFRic Examples

These examples illustrate the functionality of PSyclone for the LFRic domain.

4.5.1 Example 1: Basic Operation

Basic operation of PSyclone with an invoke () containing two kernels, one user-supplied, the other a Built-in. Code
is generated both with and without distributed-memory support. Also demonstrates the use of the -d flag to specify
where to search for user-supplied kernel code (see The psyclone command section for more details).

4.5.2 Example 2: Applying Transformations

A more complex example showing the use of PSyclone transformations to change the generated PSy-layer code. Pro-
vides examples of kernel-inlining and loop-fusion transformations.

4.5.3 Example 3: Distributed and Shared Memory

Shows the use of colouring and OpenMP for the Dynamo 0.3 API. Includes multi-kernel, named invokes with both
user-supplied and built-in kernels. Also shows the use of Wchi function space metadata for coordinate fields in LFRic.
4.5.4 Example 4: Multiple Built-ins, Named Invokes and Boundary Conditions

Demonstrates the use of the special enforce_bc_kernel which PSyclone recognises as a boundary-condition kernel.

4.5.5 Example 5: Stencils

Example of kernels which require stencil information.

4.5.6 Example 6: Reductions

Example of applying OpenMP to an InvokeSchedule containing kernels that perform reduction operations. Two scripts
are provided, one of which demonstrates how to request that PSyclone generate code for a reproducible OpenMP
reduction. (The default OpenMP reduction is not guaranteed to be reproducible from one run to the next on the same
number of threads.)

4.5.7 Example 7: Column-Matrix Assembly Operators

Example of kernels requiring Column-Matrix Assembly operators.

4.5.8 Example 8: Redundant Computation

Example of the use of the redundant-computation and move transformations to eliminate and re-order halo exchanges.

4.5.9 Example 9: Writing to Discontinuous Fields

Demonstrates the behaviour of PSyclone for kernels that read and write quantities on horizontally-discontinuous func-
tion spaces. In addition, this example demonstrates how to write a PSyclone transformation script that only colours
loops over continuous spaces.

24 Chapter 4. Tutorial and Examples

PSyclone User Guide, Release 3.1.0-dev

4.5.10 Example 10: Inter-grid Kernels

Demonstrates the use of “inter-grid” kernels that prolong or restrict fields (map between grids of different resolutions),
as well as the use of ANY_DISCONTINUOUS_SPACE function space metadata.

4.5.11 Example 11: Asynchronous Halo Exchanges

Example of the use of transformations to introduce redundant computation, split synchronous halo exchanges into asyn-
chronous exchanges (start and stop) and move the starts of those exchanges in order to overlap them with computation.

4.5.12 Example 12: Code Extraction

Example of applying code extraction to Nodes in an Invoke Schedule:

> psyclone -nodm -s ./extract_nodes.py \
gw_mixed_schur_preconditioner_alg_mod.x90

or to a Kernel in an Invoke after applying transformations:

> psyclone -nodm -s ./extract_kernel_with_transformations.py \
gw_mixed_schur_preconditioner_alg_mod.x90

For now it only inserts comments in appropriate locations while the the full support for code extraction is being devel-
oped.

This example also contains a Python helper script f£ind_kernel . py which displays the names and Schedules of Invokes
containing call(s) to the specified Kernel:

[> python find_kernel.py

4.5.13 Example 13 : Kernel Transformation

Demonstrates how an LFRic kernel can be transformed. The example transformation makes Kernel values constant
where appropriate. For example, the number of levels is usually passed into a kernel by argument but the transformation
allows a particular value to be specified which the transformation then sets as a parameter in the kernel. Hard-coding
values in a kernel helps the compiler to do a better job when optimising the code.

4.5.14 Example 14: OpenACC

Example of adding OpenACC directives in the LFRic API. A single transformation script (acc_parallel.py) is
provided which demonstrates how to add OpenACC Kernels and Enter Data directives to the PSy-layer. It supports
distributed memory being switched on by placing an OpenACC Kernels directive around each (parallelisable) loop,
rather than having one for the whole invoke. This approach avoids having halo exchanges within an OpenACC Parallel
region. The script also uses ACCRoutineTrans to transform the one user-supplied kernel through the addition of an
I$acc routine directive. This ensures that the compiler builds a version suitable for execution on the accelerator
(GPU).

This script is used by the supplied Makefile. The invocation of PSyclone within that Makefile also specifies the
--profile invokes option so that each invoke is enclosed within profiling calipers (by default the ‘template’ pro-
filing library supplied with PSyclone is used at the link stage). Compilation of the example using the NVIDIA compiler
may be performed by e.g.:

[> F90=nvfortran F90FLAGS="-acc -Minfo=all" make compile

Launching the resulting binary with NV_ACC_NOTIFY set will show details of the kernel launches and data transfers:

4.5. LFRic Examples 25

PSyclone User Guide, Release 3.1.0-dev

> NV_ACC_NOTIFY=3 ./example_openacc

Step 5 : chksm = 2.1098315506694516E-004

PreStart called for module 'main_psy' region 'invoke_2-setval_c-r2'
upload CUDA data file=PSyclone/examples/lfric/egl4/main_psy.f90 function=invoke_2..
—1ine=183 device=0 threadid=1 variable=.attach. bytes=144
upload CUDA data file=PSyclone/examples/lfric/egl4/main_psy.f90 function-invoke_2.
—1ine=183 device=0 threadid=1 variable=.attach. bytes=144

launch CUDA kernel file=PSyclone/examples/lfric/egl4/main_psy.f90 function=invoke_2.
—1ine=186 device=0 threadid=1 num_gangs=5 num_workers=1 vector_length=128 grid=5.
—block=128

PostEnd called for module 'main_psy' region 'invoke_2-setval_c-r2'

download CUDA data file=PSyclone/src/psyclone/tests/test_files/dynamo®p3/
—infrastructure//field/field_r64_mod.f90 function=log_minmax line=756 device=0.
—threadid=1 variable=self%data(:) bytes=4312

20230807214504.374+0100:INFO : Min/max minmax of fieldl = 0.30084014E+00 0.
—17067212E+01

However, performance will be very poor as, with the limited optimisations and directives currently applied, the NVIDIA
compiler refuses to run the user-supplied kernel in parallel.

4.5.15 Example 15: CPU Optimisation of Matvec

Example of optimising the LFRic matvec kernel for CPUs. This is work in progress with the idea being that PSyclone
transformations will be able to reproduce hand-optimised code.

There is one script which, when run:

[> psyclone ./matvec_opt.py ../code/gw_mixed_schur_preconditioner_alg_mod.x90 J

will print out the modified matvec kernel code. At the moment no transformations are included (as they are work-in-
progress) so the code that is output is the same as the original (but looks different as it has been translated to PSyIR
and then output by the PSyIR Fortran back-end).

4.5.16 Example 16: Generating LFRic Code Using LFRic-specific PSyIR

This example shows how LFRic-specific PSyIR can be used to create LFRic kernel code. There is one Python script
provided which when run:

[> python create.py]

will print out generated LFRic kernel code. The script makes use of LFRic-specific data symbols to simplify code
generation.

4.5.17 Example 17: Runnable Simplified Examples

This directory contains three simplified LFRic examples that can be compiled and executed - of course, a suitable
Fortran compiler is required. The examples are using a subset of the LFRic infrastructure library, which is contained
in PSyclone and which has been slightly modified to make it easier to create stand-alone, non-MPI LFRic codes.

26 Chapter 4. Tutorial and Examples

PSyclone User Guide, Release 3.1.0-dev

Example 17.1: A Simple Runnable Example

The subdirectory full_example contains a very simple example code that uses PSyclone to process two invokes. It
uses unit-testing code from various classes to create the required data structures like initial grid etc. The code can be
compiled with make compile, and the binary executed with either make run or ./example.

Example 17.2: A Simple Runnable Example With NetCDF

The subdirectory full_example_netcdf contains code very similar to the previous example, but uses NetCDF to
read the initial grid from the NetCDF file mesh_BiP128x16-400x100.nc. Installation of NetCDF is described in
the hands-on practicals documentation. The code can be compiled with make compile, and the binary executed with
either make runor ./example.

Example 17.3: Kernel Data Extraction

The example in the subdirectory full_example_extract shows the use of kernel extraction. The code can be com-
piled with make compile, and the binary executed with either make run or ./extract.standalone. By default,
it will be using a stand-alone extraction library (see Extraction Libraries). If you want to use the NetCDF version, set
the environment variable TYPE to be netcdf:

[TYPE:netcdf make compile]

This requires the installation of a NetCDF development environment (see here for installing NetCDF). The binary will
be called extract.netcdf, and the output files will have the .nc extension.

Running the compiled binary will create two Fortran binary files or two NetCDF files if the NetCDF library was used.
They contain the input and output parameters for the two invokes in this example:

cd full_example_extraction
TYPE=netcdf make compile
./extract.netcdf

ncdump ./main-update.nc | less

4.5.18 Example 18: Special Accesses of Continuous Fields - Incrementing After
Reading and Writing Before (Potentially) Reading

Example containing one kernel with a GH_READINC access and one with a GH_WRITE access, both for continuous fields.
A kernel with GH_READINC access first reads the field data and then increments the field data. This contrasts with a
GH_INC access which simply increments the field data. As an increment is effectively a read followed by a write, it may
not be clear why we need to distinguish between these cases. The reason for distinguishing is that the GH_INC access is
able to remove a halo exchange (or at least reduce its depth by one) in certain circumstances, whereas a GH_READINC
is not able to take advantage of this optimisation.

A kernel with a GH_WRITE access for a continuous field must guarantee to write the same value to a given shared DoF,
independent of which cell is being updated. As described in the Developer Guide, this means that annexed DoFs are
computed correctly without the need to iterate into the L1 halo and thus can remove the need for halo exchanges on
those fields that are read.

4.5.19 Example 19: Mixed Precision

This example shows the use of the LFRic mixed-precision support to call a kernel with scalars, fields and operators of
different precision.

4.5. LFRic Examples 27

https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://psyclone-dev.readthedocs.io/en/latest/APIs.html#iterators-continuous

PSyclone User Guide, Release 3.1.0-dev

4.5.20 Example 20: Algorithm Generation

Ilustration of the use of the psyclone-kern tool to create an algorithm layer for a kernel. A makefile is provide that
also runs psyclone to create an executable program from the generated algorithm layer and original kernel code. To
see the generated algorithm layer run:

cd eg20/
psyclone-kern -gen alg ../code/testkern_mod.F90

4.6 NEMO Examples

These examples may all be found in the examples/nemo directory.

4.6.1 Example 1: OpenMP parallelisation of tra_adv

Demonstrates the use of PSyclone to parallelise loops in a NEMO tracer-advection benchmark using OpenMP for CPUs
and for GPUs.

4.6.2 Example 2: OpenMP parallelisation of traldf_iso

Demonstrates the use of PSyclone to parallelise in some NEMO tracer-diffusion code using OpenMP for CPUs and for
GPUs.

4.6.3 Example 3: OpenACC parallelisation of tra_adv

Demonstrates the introduction of simple OpenACC parallelisation (using the data and kernels directives) for a
NEMO tracer-advection benchmark.

4.6.4 Example 4: Transforming Fortran code to the SIR

Demonstrates that simple Fortran code can be transformed to the Stencil Intermediate Representation (SIR). The SIR is
the front-end language to DAWN (https://github.com/MeteoSwiss- APN/dawn), a tool which generates optimised cuda,
or gridtools code. Thus various simple Fortran examples and the computational part of the tracer-advection benchmark
can be transformed to optimised cuda and/or gridtools code by using PSyclone and then DAWN.

4.6.5 Example 5: Kernel Data Extraction

This example shows the use of kernel data extraction in PSyclone for generic Fortran code. It instruments each ker-
nel in the NEMO tracer-advection benchmark with the PSyData-based kernel extraction code. Detailed compilation
instructions are in the README .md file, including how to switch from using the stand-alone extraction library to the
NetCDF-based one (see Extraction Libraries for details).

4.6.6 Example 6: Read-only Verification

This example shows the use of read-only verification with PSyclone for generic Fortran code. It instruments each kernel
in a small Fortran program with the PSyData-based read-only verification code. Detailed compilation instructions are
in the README . md file.

4.6.7 Scripts

This contains examples of two different scripts that aid the use of PSyclone with the full NEMO model. The first,
process_nemo.py is a simple wrapper script that allows a user to control which source files are transformed, which only
have profiling instrumentation added and which are ignored altogether. The second, kernels_trans.py is a PSyclone
transformation script which adds the largest possible OpenACC Kernels regions to the code being processed.

28 Chapter 4. Tutorial and Examples

https://github.com/MeteoSwiss-APN/dawn

PSyclone User Guide, Release 3.1.0-dev

For more details see the examples/nemo/README . md file.

Note that these scripts are here to support the ongoing development of PSyclone to transform the NEMO source. They
are not intended as ‘turn-key’ solutions but as a starting point.

4.6. NEMO Examples 29

PSyclone User Guide, Release 3.1.0-dev

30

Chapter 4. Tutorial and Examples

CHAPTER
FIVE

LIBRARIES

PSyclone provides PSyData-API-based wrappers to various external libraries. These wrapper libraries provide PSy-
clone transformations that insert callbacks to an external library at runtime. The callbacks then allow third-party li-
braries to access data structures at specified locations in the code for different purposes, such as profiling and extraction
of argument values.

These wrapper libraries can be found under the 1ib directory in the Git repository. If you have installed PSyclone using
pip then the libraries may be found in share/psyclone/1ib in PSyclone Installation location.

Note

If working with wrapper libraries from a PSyclone installation, it is advisable to copy the entire 1ib directory to
some convenient location before building and using them. The provided Makefiles support the options to specify
paths to the libraries and their dependencies, see compilation for more information.

5.1 Available libraries

An overview of the currently available functionality is below. For details of what each library does and how to build and
use it please see the related sections in the User Guide and the specific README . md files in the associated directories.

5.1.1 Profiling

PSyclone provides wrapper libraries for some common performance profiling tools, such as dl_timer, TAU, and Dr
Hook. More information can be found in the Profiling section.

Profiling libraries are located in the 1ib/profiling directory. For detailed instructions on how to build and use them
please refer to their specific README . md documentation.

5.1.2 Kernel Data Extraction

These libraries enable PSyclone to add callbacks that provide access to all input variables before, and output variables
after a kernel invocation. More information can be found in the PSy Kernel Extractor (PSyKE) section.

Example libraries that extract input and output data into a NetCDF file for LFRic and GOcean APIs are included with
PSyclone in the 1ib/extract/netcdf directory. For detailed instructions on how to build and use these libraries
please refer to their specific README . md documentation.

31

https://github.com/stfc/PSyclone/tree/master/lib/profiling
https://github.com/stfc/PSyclone/tree/master/lib/extract/netcdf

PSyclone User Guide, Release 3.1.0-dev

5.1.3 Access Verification

Read-only libraries check that a field declared as read-only is not modified during a kernel call. More information can
be found in the Read-Only Verification section.

The libraries for LFRic, GOcean APIs and generic Fortran code are included with PSyclone in the 1ib/read_only
directory. For detailed instructions on how to build and use these libraries please refer to their specific README . md
documentation.

5.1.4 Value Range Check

These libraries can test if user-defined variables are within a specified range. Additionally, they also verify that they
are not NaN or infinite. More information can be found in the Value Range Check section.

The libraries for LFRic and GOcean APIs are included with PSyclone in the 1ib/value_range_check directory. For
detailed instructions on how to build and use these libraries please refer to their specific README . md documentation.

5.2 Dependencies

Building and using the wrapper libraries requires that PSyclone be installed on the host system, see section Getting
Going. A Fortran compiler (e.g. Gnu Fortran compiler, gfortran, is free and easily installed) and Gnu Make are also
required.

The majority of wrapper libraries use Jinja templates to create PSyData-derived classes (please refer to psy_data and
Jinja Support in the Base Class for full details about the PSyData API).

Compilation of extract, value_range_check, read_only and some of the profiling wrapper libraries depends on
infrastructure libraries relevant to the API they are used for. The LFRic API uses the LFRic infrastructure and GOcean
uses the dl_esm_inf library. The LFRic infrastructure can be obtained from the LFRic code repository, however this
requires access to the Met Office Science Repository Service (MOSRS). A useful contact for LFRic-related questions
(including access to MOSRS) is the “Ifric”” mailing list which gathers the Met Office and external LFRic developers
and users. The dl_esm_inf library is freely available and can be downloaded from https://github.com/stfc/dl_esm_inf.

Some libraries require NetCDF for compilation. Installation of NetCDF is described in details in the hands-on practicals
documentation.

Profiling wrapper libraries that depend on external tools (e.g. dl_timer) require these tools be installed and configured
beforehand.

5.3 Compilation

Each library is compiled with make using the provided Makefile that has configurable options for compiler flags and
locations of dependencies.

As in case of examples, F90 and FOOFLAGS specify the compiler and compilation flags to use. The default value for
F90 is gfortran.

Locations of the top-level 1ib directory and the required Jinja templates are specified with the PSYDATA_LIB_DIR and
LIB_TMPLT_DIR variables. For testing purposes their default values are set to relative paths to the respective directories
in the PSyclone repository.

The locations of the infrastructure libraries for LFRic and GOcean applications can be configured with the variables
LFRIC_INF_DIR and GOCEAN_INF_DIR, respectively. Their default values are set to relative paths to the locations of
these libraries in the PSyclone repository. The dl_esm_inf library is provided as a Git submodule of the PSyclone project
(see Installation in the Developers’ Guide for details on working with submodules) and a pared-down version of LFRic
infrastructure is also available in the PSyclone repository (please refer to the README.md documentation of relevant
wrapper libraries). However, the infrastructure libraries are not available in a PSyclone installation and they need to be

32 Chapter 5. Libraries

https://github.com/stfc/PSyclone/tree/master/lib/read_only
https://github.com/stfc/PSyclone/tree/master/lib/value_range_check
https://pypi.org/project/Jinja/
https://psyclone-dev.readthedocs.io/en/latest/psy_data.html#psy-data
https://psyclone-dev.readthedocs.io/en/latest/psy_data.html#jinja
https://code.metoffice.gov.uk/trac/lfric/browser
https://code.metoffice.gov.uk/trac/home
mailto:lfric@cmpd1.metoffice.gov.uk
https://github.com/stfc/dl_esm_inf
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://github.com/stfc/PSyclone/tree/master/tutorial/practicals#user-content-netcdf-library-lfric-examples
https://psyclone-dev.readthedocs.io/en/latest/working_practises.html#dev-installation

PSyclone User Guide, Release 3.1.0-dev

downloaded separately, see Dependencies for more information. In this case LFRIC_INF_DIR and GOCEAN_INF_DIR
must be set to the exact paths to where the respective infrastructure source can be found. For instance,

[GOCEAN_INF_DIR:$HOME/d1_e sm_inf/finite_difference make

Profiling wrapper libraries that depend on external tools have specific variables that configure paths to where these
libraries are located in a user environment.

For more information on how to build and configure a specific library please refer to its README . md documentation.

Similar to compilation of the examples, the compiled library can be removed by running make clean. There is also
the allclean target that removes the compiled wrapper library as well as the compiled infrastructure library that the
wrapper may depend on.

The compilation of wrapper libraries was tested with the Gnu and Intel Fortran compilers, see here for the full list.
Please let the PSyclone developers know if you have problems using a compiler that has been tested or if you are
working with a different compiler.

5.3. Compilation 33

PSyclone User Guide, Release 3.1.0-dev

34

Chapter 5. Libraries

CHAPTER
SIX

PSYIR: THE PSYCLONE INTERMEDIATE REPRESENTATION

The PSyIR is at the heart of PSyclone, representing code for existing code and PSyKAl DSLs (at both the PSy- and
kernel-layer levels). A PSyIR tree may be constructed from scratch (in Python) or by processing existing source code
using a frontend. Transformations act on the PSyIR and ultimately the generated code is produced by one of the PSyIR’s
backends.

6.1 PSyIR Nodes

The PSyIR consists of classes whose instances can be connected together to form a tree which represent computation
in a syntax-independent way. These classes all inherit from the Node baseclass and, as a result, PSyIR instances are
often referred to collectively as ‘PSyIR nodes’.

At the present time PSyIR classes can be essentially split into two types: language-level nodes, which are nodes that
the PSyIR backends support, and therefore they can be directly translated to code; and higher-level nodes, which are
additional nodes that each domain can insert. These nodes must implement a lower_to_language_level method in
order to be converted to their equivalent representation using only language-level nodes. This then permits code to be
generated for them.

The rest of this document describes only the language-level nodes, but as all nodes inherit from the same base classes,
the methods described here are applicable to all PSyIR nodes.

6.2 Available language-level nodes

e ArrayMember

* ArrayReference

e ArrayOfStructuresMember
* ArrayOfStructuresReference
e Assignment

e BinaryOperation

* Call

* CodeBlock

* Container

* FileContainer

* IfBlock

¢ IntrinsicCall

e Literal

35

https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.ArrayMember
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.ArrayReference
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.ArrayOfStructuresMember
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.ArrayOfStructuresReference
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Assignment
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.BinaryOperation
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Call
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.CodeBlock
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Container
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.FileContainer
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.IfBlock
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.IntrinsicCall
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Literal

PSyclone User Guide, Release 3.1.0-dev

* Loop

* Member

* Node

* Range

» Reference

* Return

* Routine

e Schedule
 Statement

¢ StructureMember
e StructureReference
e UnaryOperation
* WhileLoop

6.3 Text Representation

When developing a transformation script it is often necessary to examine the structure of the PSyIR. All nodes in
the PSyIR have the view method that provides a text-representation of that node and all of its descendants. If the
termcolor package is installed (see Getting Going) then colour highlighting is used as part of the output string. For
instance, part of the Schedule constructed for the second NEMO example is rendered as:

36 Chapter 6. PSyIR: the PSyclone Intermediate Representation

https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Loop
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Member
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Node
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Range
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Reference
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Return
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Routine
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Schedule
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.Statement
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.StructureMember
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.StructureReference
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.UnaryOperation
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.nodes.html#psyclone.psyir.nodes.WhileLoop
https://github.com/stfc/PSyclone/blob/master/examples/nemo/eg2/omp_levels_trans.py

PSyclone User Guide, Release 3.1.0-dev

[operator: 'OR']
[operator: 'AND']
[operator: 'EQ']
Reference[name: 'kpass']
Literallvalue:'l"', Scalar<INTEGER, UNDEFINED>]
Reference[name: 'ln_traldf_lap']
[operator:'AND']
[operator: 'EQ"']
Reference[name: 'kpass']
Literal[value:'2"', Scalar<INTEGER, UNDEFINED>]
Reference[name: 'ln_traldf_blp']
Schedule[]
0: [annotations='was_single_stmt"']
Reference[name:'l_ptr']
Schedule[]

0: [name='dia_ptr_hst']
Reference[name: 'dia_ptr_hst']
Reference[name:'jn']
Literal[value:'ldf', Scalar<CHARACTER, UNDEFINED>]
[operator: '"MINUS']
ArrayReference[name:'zftv']
Rangel[]

[name="LBOUND"']

Referencelname: 'LBOUND']

Referencel[name: 'zftv']

Literallvalue:'l"', Scalar<INTEGER, UNDEFINED>]
[name="UBOUND"']

Referencel[name: "UBOUND"']

Referencel[name: 'zftv']

Literallvalue:'1l"', Scalar<INTEGER, UNDEFINED>]

Literal[value:'1', Scalar<INTEGER, UNDEFINED>]

Note that in this view, only those nodes which are children of Schedules have their indices shown. This means that
nodes representing e.g. loop bounds or the conditional part of if statements are not indexed. For the example
shown, the PSyIR node representing the £ (1_hst) code would be reached by schedule.children[14].if_body.
children[1] or, using the shorthand notation (see below), schedule[14].if_body[1] where schedule is the
overall parent Schedule node (omitted from the above image).

One problem with the view method is that the output can become very large for big ASTs and is not readable for users
unfamiliar with the PSyIR. An alternative to it is the debug_string method that generates a text representation with
Fortran-like syntax but on which the high abstraction constructs have not yet been lowered to Fortran level and instead
they will be embedded as < node > expressions.

6.4 Tree Navigation

Each PSyIR node provides several ways to navigate the AST. These can be categorised as homogeneous naviation meth-
ods (available in all nodes), and heterogenous or semantic navigation methods (different methods available depending
on the node type). The homogeneous methods must be used for generic code navigation that should work regardless
of its context. However, when the context is known, we recommend using the semantic methods to increase the code
readability.

The homogeneous navigation methods are:

Node.children()

Returns
the immediate children of this Node.

6.4. Tree Navigation 37

PSyclone User Guide, Release 3.1.0-dev

Return type
List[psyclone.psyir.nodes.Node]

Node.siblings()

Returns
list of sibling nodes, including self.

Return type
List[psyclone.psyir.nodes.Node]

Node.parent()

Returns
the parent node.

Return type
psyclone.psyir.nodes.Node or NoneType

Node.root()

Returns
the root node of the PSyIR tree.

Return type
psyclone.psyir.nodes.Node

Node.walk()

Recurse through the PSyIR tree and return all objects that are an instance of ‘my_type’, which is
either a single class or a tuple of classes. In the latter case all nodes are returned that are instances of
any classes in the tuple. The recursion into the tree is stopped if an instance of ‘stop_type’ (which is
either a single class or a tuple of classes) is found. This can be used to avoid analysing e.g. inlined
kernels, or as performance optimisation to reduce the number of recursive calls. The recursion into
the tree is also stopped if the (optional) ‘depth’ level is reached.

Parameters

e my_type (type | Tuple[type, ...])-the class(es)for which the instances are
collected.

e stop_type (Optional[type | Tuple[type, ...J]]) — class(es) at which re-
cursion is halted (optional).

* depth (Optional [int]) — the depth value the instances must have (optional).

Returns
list with all nodes that are instances of my_type starting at and including this node.

Return type
List[psyclone.psyir.nodes.Node]

Node.get_sibling_lists()

Recurse through the PSyIR tree and return lists of Nodes that are instances of ‘my_type’ and are
immediate siblings. Here ‘my_type’ is either a single class or a tuple of classes. In the latter case all
nodes are returned that are instances of any classes in the tuple. The recursion into the tree is stopped
if an instance of ‘stop_type’ (which is either a single class or a tuple of classes) is found.

Parameters

e my_type (type | Tuple[type, ...])-the class(es)for which the instances are
collected.

38 Chapter 6. PSyIR: the PSyclone Intermediate Representation

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

PSyclone User Guide, Release 3.1.0-dev

e stop_type (Optional[type | Tuple[type, ...]]) — class(es) at which re-
cursion is halted (optional).

Returns
list of lists, each of which containing nodes that are instances of my_type and are im-
mediate siblings, starting at and including this node.

Return type
List[List[psyclone.psyir.nodes.Node]]

Node.ancestor()

Search back up the tree and check whether this node has an ancestor that is an instance of the supplied
type. If it does then we return it otherwise we return None. An individual (or tuple of) (sub-) class(es)
to ignore may be provided via the excluding argument. If include_self is True then the current node
is included in the search. If limit is provided then the search ceases if/when the supplied node is
encountered. If shared_with is provided, then the ancestor search will find an ancestor of both this
node and the node provided as shared_with if such an ancestor exists.

Parameters
e my_type (type | Tuple[type, ...J])- class(es) to search for.
e excluding (Optional[type | Tuple[type, ...]]) — (sub-)class(es) to ig-

nore or None.
* include_self (bool) — whether or not to include this node in the search.

e limit (Optional[psyclone.psyir.nodes.Node]) — an optional node at which to
stop the search.

e shared_with (Optional[psyclone.psyir.nodes.Node]) — an optional node
which must also have the found node as an ancestor.

Returns
First ancestor Node that is an instance of any of the requested classes or None if not
found.

Return type
Optional[psyclone.psyir.nodes.Node]

Raises
e TypeError — if excluding is provided but is not a type or tuple of types.
» TypeError — if limit is provided but is not an instance of Node.

Node.scope()

Some nodes (e.g. Schedule and Container) allow symbols to be scoped via an attached symbol table.
This property returns the closest ScopingNode node including self.

Returns
the closest ancestor ScopingNode node.

Return type
psyclone.psyir.node.ScopingNode

Raises
SymbolError — if there is no ScopingNode ancestor.

Node.path_from()
Find the path in the psyir tree between ancestor and node and returns a list containing the path.

The result of this method can be used to find the node from its ancestor for example by:

6.4.

Tree Navigation 39

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

PSyclone User Guide, Release 3.1.0-dev

>>> index_list = node.path_from(ancestor)
>>> cursor = ancestor

>>> for index in index_list:

>>> cursor = cursor.children[index]
>>> assert cursor is node

Parameters
ancestor (psyclone.psyir.nodes.Node) — an ancestor node of self to find the path
from.

Raises
ValueError — if ancestor is not an ancestor of self.

Returns
a list of child indices representing the path between ancestor and self.

Return type
List[int]
In addition to the navigation methods, nodes also have homogeneous methods to interrogate their location and sur-

rounding nodes.

Node.immediately_precedes()

Parameters
node — the node to compare it to.

Returns
whether this node immediately precedes the given node.

Return type
bool

Node.immediately_follows()
Parameters
node — the node to compare it to.

Returns
whether this node immediately follows the given node.

Return type
bool
Node.position()

Find a Node’s position relative to its parent Node (starting with 0 if it does not have a parent).

Returns
relative position of a Node to its parent

Return type
int
Node.abs_position()
Find a Node’s absolute position in the tree (starting with O if it is the root). Needs to be computed
dynamically from the starting position (0) as its position may change.

Returns
absolute position of a Node in the tree.

40 Chapter 6. PSyIR: the PSyclone Intermediate Representation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PSyclone User Guide, Release 3.1.0-dev

Return type
int
Raises
InternalError - if the absolute position cannot be found.

Node.sameParent ()

Returns
True if node_2 has the same parent as this node, False otherwise.

Return type
bool

The semantic navigation methods are:

¢ Schedule:
subscript operator for indexing the statements (children) inside the Schedule, e.g. sched[3] or
sched[2:4].

e Assignment:

Assignment.lhs()

Returns

the child node representing the Left-Hand Side of the assignment.
Return type

psyclone.psyir.nodes.Node
Raises

InternalError — Node has fewer children than expected.

Assignment.rhs()

Returns

the child node representing the Right-Hand Side of the assignment.
Return type

psyclone.psyir.nodes.Node
Raises

InternalError — Node has fewer children than expected.

* IfBlock:

IfBlock.condition()

Return the PSyIR Node representing the conditional expression of this IfBlock.
Returns
IfBlock conditional expression.
Return type
psyclone.psyir.nodes.Node
Raises
InternalError - If the IfBlock node does not have the correct number of children.

IfBlock.if_body()

Return the Schedule executed when the IfBlock evaluates to True.
Returns
Schedule to be executed when IfBlock evaluates to True.
Return type
psyclone.psyir.nodes.Schedule
Raises
InternalError — If the IfBlock node does not have the correct number of children.

6.4. Tree Navigation 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

IfBlock.else_body()

If available return the Schedule executed when the IfBlock evaluates to False, otherwise return None.
Returns
Schedule to be executed when IfBlock evaluates to False, if it doesn’t exist returns None.
Return type
psyclone.psyir.nodes.Schedule or NoneType

* Loop:

Loop.loop_body ()

Returns

the PSyIR Schedule with the loop body statements.
Return type

psyclone.psyir.nodes.Schedule

e WhileLoop:

WhileLoop.condition()

Return the PSyIR Node representing the conditional expression of this WhileLoop.
Returns
WhileLoop conditional expression.
Return type
psyclone.psyir.nodes.Node
Raises
InternalError — If the WhileLoop node does not have the correct number of children.

WhileLoop.loop_body()

Return the Schedule executed when the WhileLL.oop condition is True.
Returns
Schedule to be executed when WhileLoop condition is True.
Return type
psyclone.psyir.nodes.Schedule
Raises
InternalError - If the WhileL.oop node does not have the correct number of children.

e Array nodes (e.g. ArrayReference, ArrayOfStructuresReference):

ArrayReference.indices()

Supports semantic-navigation by returning the list of nodes representing the index expressions for this
array reference.
Returns
the PSyIR nodes representing the array-index expressions.
Return type
list of psyclone.psyir.nodes.Node
Raises
InternalError - if this node has no children or if they are not valid array-index expres-
sions.

¢ RegionDirective:

RegionDirective.dir_body ()

Returns
the Schedule associated with this directive.
Return type
psyclone.psyir.nodes.Schedule
Raises
InternalError — if this node does not have a Schedule as its first child.

42 Chapter 6. PSyIR: the PSyclone Intermediate Representation

PSyclone User Guide, Release 3.1.0-dev

RegionDirective.clauses()

Returns

the Clauses associated with this directive.
Return type

List of psyclone.psyir.nodes.Clause

* Nodes representing accesses of data within a structure (e.g. StructureReference, StructureMember):

StructureReference.member ()

Returns
the PSyIR child representing the accessor component.
Return type
psyclone.psyir.nodes.Member
Raises
InternalError — if the first child of this node is not an instance of Member.

6.5 DataTypes

The PSyIR supports the following datatypes: ScalarType, ArrayType, StructureType, UnresolvedType,
UnsupportedType and NoType. These datatypes are used when creating instances of DataSymbol, RoutineSym-
bol and Literal (although note that NoType may only be used with a RoutineSymbol). UnresolvedType and
UnsupportedType are both used when processing existing code. The former is used when a symbol is being im-
ported from some other scope (e.g. via a USE statement in Fortran) that hasn’t yet been resolved and the latter is used
when an unsupported form of declaration is encountered.

More information on each of these various datatypes is given in the following subsections.

6.5.1 Scalar DataType
A Scalar datatype consists of an intrinsic and a precision.
The intrinsic can be one of INTEGER, REAL, BOOLEAN and CHARACTER.

The precision can be UNDEFINED, SINGLE, DOUBLE, an integer value specifying the precision in bytes, or a datasymbol
(see Section Symbols and Symbol Tables) that contains precision information. Note that UNDEFINED, SINGLE and
DOUBLE allow the precision to be set by the system so may be different for different architectures. For example:

>>> char_type = ScalarType(ScalarType.Intrinsic.CHARACTER,

ces ScalarType.Precision.UNDEFINED)

>>> int_type = ScalarType(ScalarType.Intrinsic.INTEGER,

Sac ScalarType.Precision.SINGLE)

>>> bool_type = ScalarType(ScalarType.Intrinsic.BOOLEAN, 4)

>>> symbol = DataSymbol("rdef", int_type, initial_value=4)

>>> scalar_type = ScalarType(ScalarType.Intrinsic.REAL, symbol)

For convenience PSyclone predefines a number of scalar datatypes:

REAL_TYPE, INTEGER_TYPE, BOOLEAN_TYPE and CHARACTER_TYPE all have precision set to UNDEFINED;
REAL_SINGLE_TYPE, REAL_DOUBLE_TYPE, INTEGER_SINGLE_TYPE and INTEGER_DOUBLE_TYPE;
REAL4_TYPE, REAL8_TYPE, INTEGER4_TYPE and INTEGER8_TYPE.

6.5. DataTypes 43

PSyclone User Guide, Release 3.1.0-dev

6.5.2 Array DataType

An Array datatype itself has another datatype (or DataTypeSymbol) specifying the type of its elements and a shape.
The shape can have an arbitrary number of dimensions. Each dimension captures what is known about its extent. It is
necessary to distinguish between four cases:

| Description Entry in shape list
An array has a static extent known at compile time. ArrayType.ArrayBounds containing integer Literal
values

PSyIR expression. Operation nodes

An array has a definite extent which is not known at compile time = ArrayType.Extent.ATTRIBUTE
but can be queried at runtime.

It is not known whether an array has memory allocated to it in = ArrayType.Extent.DEFERRED
the current scoping unit.

An array has an extent defined by another symbol or (constant) ~ArrayType.ArrayBounds containing Reference or

where ArrayType.ArrayBounds is a namedtuple with lower and upper members holding the lower- and upper-
bounds of the extent of a given array dimension.

The distinction between the last two cases is that in the former the extents are known but are kept internally with the
array (for example an assumed shape array in Fortran) and in the latter the array has not yet been allocated any memory
(for example the declaration of an allocatable array in Fortran) so the extents may have not been defined yet.

For example:

>>> array_type = ArrayType(REAL4_TYPE, [5, 10])

>>> n_var = DataSymbol('n", INTEGER_TYPE)
>>> array_type = ArrayType(INTEGER_TYPE, [Reference(n_var),
Reference(n_var)])

ArrayType (REAL8_TYPE, [ArrayType.Extent.ATTRIBUTE,
ArrayType.Extent.ATTRIBUTE])

>>> array_type

>>> array_type = ArrayType(BOOLEAN_TYPE, [ArrayType.Extent.DEFERRED])

6.5.3 Structure Datatype

A Structure datatype consists of a dictionary of components where the name of each component is used as the corre-
sponding key. Each component is stored as a named tuple with name, datatype and visibility members.

For example:

Shorthand for a scalar type with REAL_KIND precision
SCALAR_TYPE = ScalarType(ScalarType.Intrinsic.REAL, REAL_KIND)

Structure-type definition

GRID_TYPE = StructureType.create([
("dx", SCALAR_TYPE, Symbol.Visibility.PUBLIC),
("dy", SCALAR_TYPE, Symbol.Visibility.PUBLIC)])

GRID_TYPE_SYMBOL = DataTypeSymbol("grid_type", GRID_TYPE)

A structure-type containing other structure types
(continues on next page)

44 Chapter 6. PSylR: the PSyclone Intermediate Representation

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

FIELD_TYPE_DEF = StructureType.create(

[("data", ArrayType(SCALAR_TYPE, [10]), Symbol.Visibility.PUBLIC),
("grid", GRID_TYPE_SYMBOL, Symbol.Visibility.PUBLIC),
("sub_meshes", ArrayType(GRID_TYPE_SYMBOL, [3]),

Symbol.Visibility.PUBLIC),
("flag", INTEGER4_TYPE, Symbol.Visibility.PUBLIC)])

6.5.4 Unknown DataType

If a PSyIR frontend encounters an unsupported declaration then the corresponding Symbol is given UnsupportedType.
The text of the original declaration is stored in the type object and is available via the declaration property.

6.5.5 NoType

NoType represents the empty type, equivalent to void in C. It is currently only used to describe a RoutineSymbol that
has no return type (such as a Fortran subroutine).

6.6 Symbols and Symbol Tables

Some PSyIR nodes have an associated Symbol Table (psyclone.psyir.symbols.SymbolTable) which keeps a record of
the Symbols (psyclone.psyir.symbols.Symbol) specified and used within them.

Symbol Tables can be nested (i.e. a node with an attached symbol table can be an ancestor or descendent of a node with
an attached symbol table). If the same symbol name is used in a hierarchy of symbol tables then the symbol within
the symbol table attached to the closest ancestor node is in scope. By default, symbol tables are aware of other symbol
tables and will return information about relevant symbols from all symbol tables.

The SymbolTable has the following interface:
class psyclone.psyir.symbols.SymbolTable (node=None, default_visibility=Visibility.PUBLIC)

Encapsulates the symbol table and provides methods to add new symbols and look up existing symbols. Nested
scopes are supported and, by default, the add and lookup methods take any ancestor symbol tables into consid-
eration (ones attached to nodes that are ancestors of the node that this symbol table is attached to). If the default
visibility is not specified then it defaults to Symbol. Visbility. PUBLIC.

Parameters

* node (Optional[psyclone.psyir.nodes.Schedule | psyclone.psyir.nodes.
Container]) — reference to the Schedule or Container to which this symbol table belongs.

» default_visibility — optional default visibility value for this symbol table, if not pro-
vided it defaults to PUBLIC visibility.

Raises
TypeError — if node argument is not a Schedule or a Container.

Where each element is a Symbol with an immutable name:

class psyclone.psyir.symbols.Symbol (name, visibility=Visibility.PUBLIC, interface=None)

Generic Symbol item for the Symbol Table and PSyIR References. It has an immutable name label because it
must always match with the key in the SymbolTable. If the symbol is private then it is only visible to those nodes
that are descendants of the Node to which its containing Symbol Table belongs.

Parameters

* name (str)— name of the symbol.

6.6. Symbols and Symbol Tables 45

https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.symbols.html#psyclone.psyir.symbols.UnsupportedType
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

» visibility (psyclone.psyir.symbols.Symbol.Visibility) — the visibility of the
symbol.

» interface (Optional[psyclone.psyir.symbols.symbol.SymbolInterface]) — op-
tional object describing the interface to this symbol (i.e. whether it is passed as a rou-
tine argument or accessed in some other way). Defaults to psyclone.psyir.symbols.
AutomaticInterface

Raises
TypeError — if the name is not a str.

There are several Symbol sub-classes to represent different labeled entities in the PSyIR. At the moment the available
symbols are:
¢ class psyclone.psyir.symbols.ContainerSymbol (name, **kwargs)

Symbol that represents a reference to a Container. The reference is lazy evaluated, this means that the
Symbol will be created without parsing and importing the referenced container, but this can be imported
when needed.

Parameters

name (str)— name of the symbol.

wildcard_import (bool) — if all public Symbols of the Container are imported into the
current scope. Defaults to False.

is_intrinsic (bool) — if the module is an intrinsic import. Defauts to False.

kwargs (unwrapped dict.) — additional keyword arguments provided by psyclone.
psyir.symbols.Symbol.

¢ class psyclone.psyir.symbols.DataSymbol (name, datatype, is_constant=Fualse, initial_value=None,
**kwargs)

Symbol identifying a data element. It contains information about: the datatype, the shape (in column-major
order) and the interface to that symbol (i.e. Local, Global, Argument).

Parameters

name (str)— name of the symbol.

datatype (psyclone.psyir.symbols.DataType) — data type of the symbol.

is_constant (bool) — whether this DataSymbol is a compile-time constant (default is
False). If True then an initial_value must also be provided.

initial_value (Optional[item of TYPE_MAP_TO_PYTHON | psyclone.psyir.
nodes.Node]) — sets a fixed known expression as an initial value for this DataSym-
bol. If is_constant is True then this Symbol will always have this value. If the value
is None then this symbol does not have an initial value (and cannot be a constant).
Otherwise it can receive PSyIR expressions or Python intrinsic types available in the
TYPE_MAP_TO_PYTHON map. By default it is None.

— kwargs (unwrapped dict.) — additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

¢ class psyclone.psyir.symbols.DataTypeSymbol (name, datatype, visibility=Visibility.PUBLIC,
interface=None)

Symbol identifying a user-defined type (e.g. a derived type in Fortran).
Parameters

— name (str) — the name of this symbol.

46 Chapter 6. PSyIR: the PSyclone Intermediate Representation

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

— datatype (psyclone.psyir.symbols.DataType) — the type represented by this sym-
bol.

— visibility (psyclone.psyir.symbols.Symbol.Visibility) — the visibility of this
symbol.

— interface (psyclone.psyir.symbols.SymbolInterface) — the interface to this
symbol.

¢ class psyclone.psyir.symbols.IntrinsicSymbol (name, intrinsic, **kwargs)
Symbol identifying a callable intrinsic routine.

Parameters
— name (str) — name of the symbol.

— intrinsic (psyclone.psyir.nodes.IntrinsicCall.Intrinsic) — the intrinsic
enum describing this Symbol.

— kwargs (unwrapped dict.) — additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

TODO #2541: Currently name and the intrinsic should match, we really # just need the name, and make
all the Intrinsic singature information # live inside the IntrinsicSymbol class.

¢ class psyclone.psyir.symbols.RoutineSymbol (name, datatype=None, **kwargs)
Symbol identifying a callable routine.

Parameters
— name (str) — name of the symbol.

— datatype (psyclone.psyir.symbols.DataType) — data type of the symbol. Default
to NoType().

— kwargs (unwrapped dict.) — additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

¢ class psyclone.psyir.symbols.GenericInterfaceSymbol (name, routines, **kwargs)

Symbol identifying a generic interface that maps to a number of different callable routines.
Parameters
— name (str)— name of the interface.

— routines (list[tuple[psyclone.psyir.symbols.RoutineSymbol, bool]]) — the rou-
tines that this interface provides access to and whether or not each of them is a module
procedure.

— kwargs (unwrapped dict.) — additional keyword arguments provided by psyclone.
psyir.symbols.TypedSymbol

See the reference guide for the full API documentation of the SymbolTable and the Symbol types.

6.6.1 Symbol Interfaces

Each symbol has a Symbol Interface with the information about how the variable data is provided into the local context.
The currently available Interfaces are:

¢ class psyclone.psyir.symbols.AutomaticInterface

The symbol is declared without attributes. Its data will live during the local context.

6.6. Symbols and Symbol Tables 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.symbols.html#psyclone.psyir.symbols.SymbolTable
https://psyclone-ref.readthedocs.io/en/latest/autogenerated/psyclone.psyir.symbols.html#module-psyclone.psyir.symbols

PSyclone User Guide, Release 3.1.0-dev

¢ class psyclone.psyir.symbols.DefaultModuleInterface

The symbol contains data declared in a module scope without additional attributes.

¢ class psyclone.psyir.symbols.ImportInterface(container_symbol, orig_name=None)

Describes the interface to a Symbol that is imported from an external PSyIR container. The symbol can be
renamed on import and, if so, its original name in the Container is specified using the optional ‘orig_name’

argument.
Parameters
— container_symbol (psyclone.psyir.symbols.ContainerSymbol) — symbol repre-
senting the external container from which the symbol is imported.
— orig_name (Optional [str]) — the name of the symbol in the external container before
it is renamed, or None (the default) if it is not renamed.
Raises

TypeError — if the orig_name argument is an unexpected type.

e class psyclone.psyir.symbols.ArgumentInterface (access=None)

Captures the interface to a Symbol that is accessed as a routine argument.

Parameters
access (psyclone.psyir.symbols.ArgumentInterface.Access) — specifies how the
argument is used in the Schedule

¢ class psyclone.psyir.symbols.StaticInterface

The symbol contains data that is kept alive through the execution of the program.

e class psyclone.psyir.symbols.CommonBlockInterface

A symbol declared in the local scope but acts as a global that can be accessed by any scope referencing the

same CommonBlock name.

¢ class psyclone.psyir.symbols.UnresolvedInterface

We have a symbol but we don’t know where it is declared.

¢ class psyclone.psyir.symbols.UnknownInterface

We have a symbol with a declaration but PSyclone does not support its attributes.

¢ class psyclone.psyir.symbols.PreprocessorInterface

The symbol exists in the file through compiler macros or preprocessor directives.

Note that this is different from UnresolvedInterface because the backend will not check if is importing

statements that could bring them into scope.

6.7 Creating PSyIR

6.7.1 Symbol names

PSyIR symbol names can be specified by a user. For example:

var_name = "my_name"

symbol_table = SymbolTable()

data = DataSymbol (var_name, REAL_TYPE)
symbol_table.add(data)

reference = Reference(data)

48 Chapter 6. PSyIR: the PSyclone Intermediate Representation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

PSyclone User Guide, Release 3.1.0-dev

However, the SymbolTable add () method will raise an exception if a user tries to add a symbol with the same name
as a symbol already existing in the symbol table.

Alternatively, the SymbolTable also provides the new_symbol () method (see Section Symbols and Symbol Tables
for more details) that uses a new distinct name from any existing names in the symbol table. By default the generated
name is the value PSYIR_ROOT_NAME variable specified in the DEFAULT section of the PSyclone config file, followed
by an optional “_" and an integer. For example, the following code:

from psyclone.psyir.symbols import SymbolTable
symbol_table = SymbolTable()
for i in range(®, 3):
var_name = symbol_table.new_symbol() .name
print(var_name)

gives the following output:

psyir_tmp
psyir_tmp_0
psyir_tmp_1

As the root name (psyir_tmp in the example above) is specified in PSyclone’s config file it can be set to whatever the
user wants.

Note

The particular format used to create a unique name is the responsibility of the SymbolTable class and may change
in the future.

A user might want to create a name that has some meaning in the context in which it is used e.g. idx for an index, i
for an iterator, or temp for a temperature field. To support more readable names, the new_symbol () method allows
the user to specify a root name as an argument to the method which then takes the place of the default root name. For
example, the following code:

from psyclone.psyir.symbols import SymbolTable

symbol_table = SymbolTable()

for i in range(®, 3):
var_name = symbol_table.new_symbol(root_name="something")
print(var_name)

gives the following output:

something
something_0
something_1

By default, new_symbol () creates generic symbols, but often the user will want to specify a Symbol subclass with some
given parameters. The new_symbol () method accepts a symbol_type parameter to specify the subclass. Arguments
for the constructor of that subclass may be supplied as keyword arguments. For example, the following code:

from psyclone.psyir.symbols import SymbolTable, DataSymbol, REAL_TYPE
symbol_table = SymbolTable()
symbol_table.new_symbol (root_name="something",
symbol_type=DataSymbol,
datatype=REAL_TYPE,

(continues on next page)

6.7. Creating PSyIR 49

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

is_constant=True,
initial_value=3)

declares a symbol named “something” of REAL_TYPE datatype where the is_constant and initial_value argu-
ments will be passed to the DataSymbol constructor.

An example of using the new_symbol () method can be found in the PSyclone examples/psyir directory.

6.7.2 Nodes

PSyIR nodes are connected together via parent and child methods provided by the Node baseclass.

These nodes can be created in isolation and then connected together. For example:

assignment = Assignment()

literal = Literal("0.0", REAL_TYPE)
reference = Reference(symbol)
assignment.children = [reference, literal]

However, as connections get more complicated, creating the correct connections can become difficult to manage and
error prone. Further, in some cases children must be collected together within a Schedule (e.g. for IfBlock, Loop
and WhileLoop).

To simplify this complexity, each of the Kernel-layer nodes which contain other nodes have a static create method
which helps construct the PSyIR using a bottom up approach. Using this method, the above example then becomes:

literal = Literal("0.0", REAL_TYPE)
reference = Reference(symbol)
assignment = Assignment.create(reference, literal)

Creating the PSyIR to represent a complicated access of a member of a structure is best performed using the
create() method of the appropriate Reference subclass. For a relatively straightforward access such as (the Fortran)
fieldl%region%nx, this would be:

from psyclone.psyir.nodes import StructureReference
fld_sym = symbol_table.lookup("fieldl")
ref = StructureReference.create(fld_sym, ["region", "nx"])

where symbol_table is assumed to be a pre-populated Symbol Table containing an entry for “field1”.

A more complicated access involving arrays of structures such as field1%sub_grids(idx, 1)%nx would be con-
structed as:

from psyclone.psyir.symbols import INTEGER_TYPE
from psyclone.psyir.nodes import StructureReference, Reference, Literal
idx_sym = symbol_table.lookup("idx")
fld_sym = symbol_table.lookup("fieldl")
ref = StructureReference.create(fld_sym,
[("sub_grids", [Reference(idx_sym), Literal("1", INTEGER_TYPE)]),
"nx"1)

Note that the list of quantities passed to the create() method now contains a 2-tuple in order to describe the array
access.

More examples of using this approach can be found in the PSyclone examples/psyir directory.

50 Chapter 6. PSyIR: the PSyclone Intermediate Representation

PSyclone User Guide, Release 3.1.0-dev

6.8 Comparing PSyIR nodes

The == (equality) operator for PSyIR nodes performs a specialised equality check to compare the value of each node.
This is also useful when comparing entire subtrees since the equality operator automatically recurses through the
children and compares each child with the appropriate equality semantics, e.g.

Is the loop upper bound expression exactly the same?
if loopl.stop_expr == loop2.stop_expr:
print("Same upper bound!")

The equality operator will handle expressions like my_array%my_field(:3) with the derived type fields and the
range components automatically, but it cannot handle symbolically equivalent fields, i.e. my_array%my_field(:3)
I= my_array¥my_field(:2+1).

Annotations and code comments are ignored in the equality comparison since they don’t alter the semantic meaning of
the code. So these two statements compare to True:

a=a+1
a =a + 1 !Increases a by 1

Sometimes there are cases where one really means to check for the specific instance of a node. In this case, Python
provides the is operator, e.g.

Is the self instance part of this routine?
is_here = any(node is self for node in routine.walk(Node))

Additionally, PSyIR nodes cannot be used as map keys or similar. The easiest way to do this is just use the id as the
key:

node_map = {}
node_map[id(mynode)] = "element"

6.9 Modifying the PSyIR

Once we have a complete PSyIR AST there are 2 ways to modify its contents and/or structure: by applying trans-
formations (see next section Transformations), or by direct PSyIR API methods. This section describes some of the
methods that the PSyIR classes provide to modify the PSyIR AST in a consistent way (e.g. without breaking its many
internal references). Some complete examples of modifying the PSyIR can be found in the PSyclone examples/
psyir/modify.py script.

The rest of this section introduces examples of the available direct PSyIR modification methods.

6.9.1 Renaming symbols

The symbol table provides the method rename_symbol () that given a symbol and an unused name will rename the
symbol. The symbol renaming will affect all the references in the PSyIR AST to that symbol. For example, the PSyIR
representing the following Fortran code:

subroutine work(psyir_tmp)
real, intent(inout) :: psyir_tmp
psyir_tmp=0.0

end subroutine

could be modified by the following PSyIR statements:

6.8. Comparing PSyIR nodes 51

PSyclone User Guide, Release 3.1.0-dev

symbol = symbol_table.lookup("psyir_tmp")
symbol_table.rename_symbol (tmp_symbol, "new_variable")

which would result in the following Fortran output code:

subroutine work(new_variable)
real, intent(inout) :: new_variable
new_variable=0.0

end subroutine

6.9.2 Specialising symbols

The Symbol class provides the method specialise() that given a subclass of Symbol will change the Symbol instance
to the specified subclass. If the subclass has any additional properties then these would need to be set explicitly.

symbol = Symbol("name")
symbol . specialise(RoutineSymbol)
Symbol is now a RoutineSymbol

This method is useful as it allows the class of a symbol to be changed without affecting any references to it.

6.9.3 Replacing PSyIR nodes

In certain cases one might want to replace a node in a PSyIR tree with another node. All nodes provide the re-
place_with() method to replace the node and its descendants with another given node and its descendants.

[node .replace_with(new_node)]

When the node being replaced is part of a named context (in Calls or Operations) the name of the argument is conserved
by default. For example

[call named_subroutine (namel=1)]

[call .children[0].replace_with(Literal('2', INTEGER_TYPE))]

will become:

[call named_subroutine (namel=2) J

This behaviour can be changed with the keep_name_in_context parameter.

call.children[0] .replace_with(
Literal('3', INTEGER_TYPE),
keep_name_in_context=False

will become:

[call named_subroutine(3)]

52 Chapter 6. PSyIR: the PSyclone Intermediate Representation

PSyclone User Guide, Release 3.1.0-dev

6.9.4 Detaching PSyIR nodes

Sometimes we just may wish to detach a certain PSyIR subtree in order to remove it from the root tree but we don’t
want to delete it altogether, as it may be re-inserted again in another location. To achieve this, all nodes provide the
detach method:

[tmp = node.detach()

6.9.5 Copying nodes

Copying a PSyIR node and its children is often useful in order to avoid repeating the creation of similar PSyIR subtrees.
The result of the copy allows the modification of the original and the copied subtrees independently, without altering
the other subtree. Note that this is not equivalent to the Python copy or deepcopy functionality provided in the
copy library. This method performs a bespoke copy operation where some components of the tree, like children, are
recursively copied, while others, like the top-level parent reference are not.

[new_node = node.copy ()

6.9.6 Named arguments
The Call node (and its sub-classes) support named arguments.

Named arguments can be set or modified via the create(), append_named_arg(), insert_named_arg() or re-
place_named_arg() methods.

If an argument is inserted directly (via the children list) then it is assumed that this is not a named argument. If the
top node of an argument is replaced by removing and inserting a new node then it is assumed that this argument is no
longer a named argument. If it is replaced with the replace_with method, it has a keep_name_in_context argument to
choose the desired behaviour (defaults to True). If arguments are re-ordered then the names follow the re-ordering.

The names of named arguments can be accessed via the argument_names property. This list has an entry for each
argument and either contains a name or None (if this is not a named argument).

The PSyIR does not constrain which arguments are specified as being named and what those names are. It is the
developer’s responsibility to make sure that these names are consistent with any intrinsics that will be generated by the
back-end. In the future, it is expected that the PSyIR will know about the number and type of arguments expected by
Operation nodes, beyond simply being unary, binary or nary.

One restriction that Fortran has (but the PSyIR does not) is that all named arguments should be at the end of the
argument list. If this is not the case then the Fortran backend writer will raise an exception.

6.9. Modifying the PSyIR 53

PSyclone User Guide, Release 3.1.0-dev

54

Chapter 6. PSyIR: the PSyclone Intermediate Representation

CHAPTER
SEVEN

TRANSFORMATIONS

As discussed in the previous section, transformations can be applied to the PSyIR to modify it. Typically transforma-
tions will be used to optimise the provided source file, or the PSy and/or Kernel layer(s) in the PSyKAl DSLs, for a
particular architecture. However, transformations could be added for other reasons, such as to aid debugging or for
performance monitoring.

7.1 PSyclone User Scripts

A convenient way to apply transformations to a codebase is through the The psyclone command tool, which has the
optional -s <SCRIPT_NAME> flag that allows users to specify a script file to programatically modify input code:

[> psyclone -s optimise.py input_source.f90

In this case, the current directory is prepended to the Python search path PYTHONPATH which will then be used to
try to find the script file. Thus, the search begins in the current directory and continues over any pre-existing directories
in the search path, failing if the file cannot be found.

Alternatively, script files may be specified with a path. In this case the file must exist in the specified location. This
location is then added to the Python search path PYTHONPATH as before. For example:

> psyclone -s ./optimise.py input_source.f90
> psyclone -s ../scripts/optimise.py input_source.f90
> psyclone -s /home/me/PSyclone/scripts/optimise.py input_source.£f90

A valid PSyclone user script file must contain a trans function which accepts a PSyIR node representing the root of
the psy-layer code (as a FileConatainer):

def trans(psyir):

The example below adds an OpenMP directive to a specific PSyKAL kernel:

def trans(psyir):
from psyclone.transformations import OMPParallelLoopTrans
from psyclone.psyir.node import Routine
for subroutine in psyir.walk(Routine):
if subroutine.name == 'invoke_0_v3_kernel_type':
ol = OMPParallelLoopTrans()
ol.apply(subroutine.children[0])

The script may apply as many transformations as is required for the intended optimisation, and may also apply trans-
formations to all the routines (i.e. invokes and/or kernels) contained within the provided tree. The examples section
provides a list of psyclone user scripts and associated usage instructions for multiple applications.

55

PSyclone User Guide, Release 3.1.0-dev

7.1.1 Script Global Variables

In addition to the trans function, there are special global variables that can be set to control some of the behaviours
of the front-end (before the optimisation function is applied). These are:

List of all files that psyclone will skip processing
FILES_TO_SKIP = ["boken_filel.f90", "boken_file2.£f90"]

Boolean to decide whether PSyclone should chase external modules while

creating a PSyIR tree in order to obtain better external symbol information.
It can also be a list of module names for more precise control
RESOLVE_IMPORTS = ["relevant_modulel.f90", "relevant_module2.£f90"]

def trans(psyir):
...

7.1.2 PSyKAI algorithm code transformations

When using PSyKAl the trans functions is used to transform the PSy-layer (the layer in charge of the Parallel-System
and Loops traversal orders), however, a second optional transformation entry point trans_alg can be provided to
directly transform the Algorithm-layer (this is currently only implemented for GOcean, but in the future it will also
affect the LFRic DSL).

def trans_alg(psyir):

As with the trans() function it is up to the script what it does with the algorithm PSyIR. Note that the frans_alg() script
is applied to the algorithm layer before the PSy-layer is generated so any changes applied to the algorithm layer will be
reflected in the PSy-layer PSyIR tree object that is passed to the trans() function.

For example, if the trans_alg() function in the script merged two invoke calls into one then the PSyIR node passed to
the trans() function of the script would only contain one Routine associated with the merged invoke.

An example of the use of a script making use of the trans_alg() function can be found in examples/gocean/eg7.

7.2 Finding transformations

Transformations can be imported directly, but the user needs to know what transformations are available. A helper
class TransInfo is provided to show the available transformations

Note

The directory layout of PSyclone is currently being restructured. As a result of this some transformations are
already in the new locations, while others have not been moved yet. Transformations in the new locations can at
the moment not be found using the TransInfo approach, and need to be imported directly from the path indicated
in the documentation.

class psyclone.psyGen.TransInfo (module=None, base_class=None)

This class provides information about, and access, to the available transformations in this implementation of PSy-
clone. New transformations will be picked up automatically as long as they subclass the abstract Transformation
class.

For example:

56 Chapter 7. Transformations

PSyclone User Guide, Release 3.1.0-dev

>>> from psyclone.psyGen import TransInfo
>>> t = TransInfo()
>>> print(t.list)
There is 1 transformation available:

1: SwapTrans, A test transformation
>>> # accessing a transformation by index
>>> trans = t.get_trans_num(l)
>>> # accessing a transformation by name
>>> trans = t.get_trans_name('SwapTrans')

get_trans_name (name)
return the transformation with this name (use list() first to see available transformations)

get_trans_num(number)
return the transformation with this number (use list() first to see available transformations)

property list
return a string with a human readable list of the available transformations

property num_trans

return the number of transformations available

7.3 Validating and Applying transformations

Each transformation must provide at least two functions for the user: one for validation, i.e. to verify that a certain
transformation can be applied, and one to actually apply the transformation. They are described in detail in the overview
of all transformations, but the following general guidelines apply.

7.3.1 Validation

Each transformation provides a function validate. This function can be called by the user, and it will raise an exception
if the transformation can not be applied (and otherwise will return nothing). Validation will always be called when a
transformation is applied. The parameters for validate can change from transformation to transformation, but each
validate function accepts a parameter options. This parameter is either None, or a dictionary of string keys, that
will provide additional parameters to the validation process. For example, some validation functions allow part of the
validation process to be disabled in order to allow the HPC expert to apply a transformation that they know to be safe,
even if the more general validation process might reject it. Those parameters are documented for each transformation,
and will show up as a parameter, e.g.: options["node-type-check"]. As a simple example:

The validation might reject the application, but in this
specific case it is safe to apply the transformation,

so disable the node type check:
my_transform.validate(node, {"node-type-check": False})

7.3.2 Application

Each transformation provides a function apply which will apply the transformation. It will first validate the transform
by calling the validate function. Each apply function takes the same options parameter as the validate function
described above. Besides potentially modifying the validation process, optional parameters for the transformation are
also provided this way. A simple example:

kctrans = Dynamo®p3KernelConstTrans()
kctrans.apply(kernel, {"element_order_h": 0, "element_order_v": 0, "quadrature": True})

7.3. Validating and Applying transformations 57

PSyclone User Guide, Release 3.1.0-dev

The same options dictionary will be used when calling validate.

7.4 Available transformations

Some transformations are generic as the schedule structure is independent of the API, however it often makes sense
to specialise these for a particular API by adding API-specific errors checks. Some transformations are API-specific.
Currently these different types of transformation are indicated by their names.

The generic transformations currently available are listed in alphabetical order below (a number of these have special-
isations which can be found in the API-specific sections).

Note

PSyclone currently only supports OpenCL and KernellmportsToArguments transformations for the GOcean 1.0
API, the OpenACC Data transformation is limited to the generic code transformation and the GOcean 1.0 API and
the OpenACC Kernels transformation is limited to the generic code transformation and the LFRic APIL.

Note

The directory layout of PSyclone is currently being restructured. As aresult of this some transformations are already
in the new locations, while others have not been moved yet.

class psyclone.psyir.transformations.Abs2CodeTrans

Provides a transformation from a PSyIR ABS Operator node to equivalent code in a PSyIR tree. Validity checks
are also performed.

The transformation replaces

ER ~ ABS(X) J

with the following logic:

IF X < 0.0:

R =X*-1.0
FIRSEE

R =X

apply (node, options=None)
Apply the ABS intrinsic conversion transformation to the specified node. This node must be an ABS
UnaryOperation. The ABS UnaryOperation is converted to equivalent inline code. This is implemented as
a PSyIR transform from:

[R — ... ABS(X)
to:
tmp_abs = X

if tmp_abs < 0.0:
res_abs = tmp_abs*-1.0
else:
(continues on next page)

58 Chapter 7. Transformations

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

res_abs = tmp_abs
R = ... res_abs ...

where X could be an arbitrarily complex PSyIR expression and . .. could be arbitrary PSyIR code.

This transformation requires the operation node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters
¢ node (psyclone.psyir.nodes.UnaryOperation)—an ABS UnaryOperation node.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

class psyclone.transformations.ACCDataTrans

Add an OpenACC data region around a list of nodes in the PSyIR. COPYIN, COPYOUT and COPY clauses are
added as required.

For example:

>>> from psyclone.psyir.frontend import FortranReader

>>> psyir = FortranReader() .psyir_from_source (NEMO_SOURCE_FILE)
>>>

>>> from psyclone.transformations import ACCDataTrans

>>> from psyclone.psyir.transformations import ACCKernelsTrans
>>> ktrans = ACCKernelsTrans()

>>> dtrans = ACCDataTrans()

>>>

>>> schedule = psyir.children[0]

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> # Add a kernels construct for execution on the device

>>> kernels = schedule.children[9]

>>> ktrans.apply(kernels)

>>>

>>> # Enclose the kernels in a data construct

>>> kernels = schedule.children[9]

>>> dtrans.apply(kernels)

apply (node, options=None)
Put the supplied node or list of nodes within an OpenACC data region.

Parameters

¢ node ((list of) psyclone.psyir.nodes.Node) — the PSyIR node(s) to enclose in the data
region.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

7.4. Available transformations 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

class psyclone.transformations.ACCEnterDataTrans
Adds an OpenACC “enter data” directive to a Schedule. For example:

~

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> api = "gocean"

>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> from psyclone.transformations import ACCEnterDataTrans, ACCLoopTrans,..
—ACCParallelTrans

>>> dtrans = ACCEnterDataTrans()

>>> ltrans = ACCLoopTrans()

>>> ptrans = ACCParallelTrans()

>>>

>>> schedule = psy.invokes.get('invoke_0').schedule

>>> # Uncomment the following line to see a text view of the schedule

>>> # print(schedule.view())

>>>

>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule
>>> for child in schedule.children[:]:

- ltrans.apply(child)

>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> ptrans.apply(schedule)

>>>

>>> # Add an enter data directive

>>> dtrans.apply(schedule)

>>>

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply (sched, options=None)

Adds an OpenACC “enter data” directive to the invoke associated with the supplied Schedule. Any fields
accessed by OpenACC kernels within this schedule will be added to this data region in order to ensure they
remain on the target device.

Parameters

¢ sched (sub-class of psyclone.psyir.nodes.Schedule) — schedule to which to add an
“enter data” directive.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.ACCKernelsTrans

Enclose a sub-set of nodes from a Schedule within an OpenACC kernels region (i.e. within “!$acc kernels” ...
“I$acc end kernels” directives).

For example:

>>> from psyclone.psyir.frontend import FortranReader
>>> psyir = FortranReader() .psyir_from_source (NEMO_SOURCE_FILE)
>>>

(continues on next page)

60 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

.

(continued from previous page)

from psyclone.psyir.transformations import ACCKernelsTrans
ktrans = ACCKernelsTrans()

schedule = psyir.children[0]

Uncomment the following line to see a text view of the schedule
print(schedule.view())

kernels = schedule.children[9]

Transform the kernel

ktrans.apply(kernels)

apply (node, options=None)

Enclose the supplied list of PSyIR nodes within an OpenACC Kernels region.
Parameters

¢ node (psyclone.psyir.nodes.Node | list{[psyclone.psyir.nodes.Node]) — the
node(s) in the PSyIR to enclose.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["default_present"] (bool)— whether or not the kernels region should have
the ‘default present’ attribute (indicating that data is already on the accelerator). When
using managed memory this option should be False.

» options["allow_string"] (bool) — whether to allow the transformation on assign-
ments involving character types. Defaults to False.

¢ options["verbose"] (bool) — log the reason the validation failed, at the moment with
a comment in the provided PSyIR node.

class psyclone.transformations.ACCLoopTrans

Adds an OpenACC loop directive to a loop. This directive must be within the scope of some OpenACC Parallel
region (at code-generation time).

For example:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from psyclone.parse.algorithm import parse

from psyclone.parse.utils import ParseError

from psyclone.psyGen import PSyFactory

from psyclone.errors import GenerationError

api = "gocean"

ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
psy = PSyFactory(api).create(invokeInfo)

from psyclone.psyGen import TransInfo

t = TransInfo(Q)

ltrans = t.get_trans_name('ACCLoopTrans')
rtrans = t.get_trans_name('ACCParallelTrans')

schedule = psy.invokes.get('invoke_0").schedule
Uncomment the following line to see a text view of the schedule

print(schedule.view())

(continues on next page)

7.4. Available transformations 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>> # Apply the OpenACC Loop transformation to *every* loop in the schedule
>>> for child in schedule.children[:]:

e ltrans.apply(child)

>>>
>>> # Enclose all of these loops within a single OpenACC parallel region
>>> rtrans.apply(schedule)

>>>

L

apply (node, options=None)
Apply the ACCLoop transformation to the specified node. This node must be a Loop since this transfor-
mation corresponds to inserting a directive immediately before a loop, e.g.:

I1$ACC LOOP
do ...

end do

At code-generation time (when psyclone.psyir.nodes.ACCLoopDirective.gen_code() is called),
this node must be within (i.e. a child of) a PARALLEL region.

Parameters

* node (psyclone.psyir.nodes.Loop) — the supplied node to which we will apply the
Loop transformation.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

* options["collapse"] (int)— number of nested loops to collapse.

» options["independent"] (bool) — whether to add the “independent” clause to the di-
rective (not strictly necessary within PARALLEL regions).

e options["sequential”] (bool) — whether to add the “seq” clause to the directive.
* options["gang"] (bool) — whether to add the “gang” clause to the directive.

e options["vector"] (bool) — whether to add the “vector” clause to the directive.

class psyclone.transformations.ACCParallelTrans (default_present=True)
Create an OpenACC parallel region by inserting an ‘acc parallel’ directive.

>>> from psyclone.psyGen import TransInfo
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.nodes import Loop
>>> psyir = FortranReader () .psyir_from_source(
. program do_loop
real, dimension(10) :: A
integer i
doi=1, 10
A(i) =i
end do
. end program do_loop

"

(continues on next page)

62 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>> ptrans = TransInfo().get_trans_name('ACCParallelTrans')
>>>
>>> # Enclose the loop within a OpenACC PARALLEL region
>>> ptrans.apply(psyir.walk(Loop))
>>> print (FortranWriter () (psyir))
program do_loop

real, dimension(1®) :: a

integer :: i

1$acc parallel default(present)
doi=1, 10, 1
a(i) =i
enddo
1$acc end parallel

end program do_loop

apply (target_nodes, options=None)
Encapsulate given nodes with the ACCParallelDirective.

Parameters

¢ target_nodes (psyclone.psyir.nodes.Node | List[psyclone.psyir.nodes.
Node]) — a single Node or a list of Nodes.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

* options["node-type-check"] (bool) — this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

* options["default_present"] (bool) — this flag controls if the inserted directive
should include the default_present clause.

class psyclone.psyir.transformations.AllArrayAccess2LoopTrans

Provides a transformation from a PSyIR Assignment containing constant index accesses to an array into single-
trip loops. For example:

-

>>> from psyclone.psyir.transformations import AllArrayAccess2LoopTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> code = ("program example\n"
" real a(10,10), b(10,10)\n"
" integer :: n\n"
" a(l,n-1) = b(1,n-1\n"
e "end program example\n")
>>> psyir = FortranReader() .psyir_from_source(code)
>>> assignment = psyir.walk(Assignment) [0]
>>> AllArrayAccess2LoopTrans() .apply(assignment)
>>> print(FortranWriter() (psyir))
program example
real, dimension(10,10) :: a

(continues on next page)

7.4. Available transformations 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

real, dimension(10,10) :: b

integer :: n
integer :: idx
integer :: idx_1

do idx =1, 1, 1
do idx1=n-1, n -1, 1
a(idx,idx_1) = b(idx,idx_1)
enddo
enddo

end program example

apply (node, options=None)

Apply the AllArrayAccess2Loop transformation if the supplied node is an Assignment with an Array Ref-
erence on its left-hand-side. Each constant array index access (i.e. one not containing a loop iterator or a
range) is then transformed into an iterator and the assignment placed within a single-trip loop, subject to
any constraints in the ArrayAccess2Loop transformation.

If any of the AllArrayAccess2Loop constraints are not satisfied for a loop index then this transformation

does nothing for that index and silently moves to the next.
Parameters

¢ node (psyclone.psyir.nodes.Assignment) — an assignment.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-

tions. This is an optional argument that defaults to None.

class psyclone.psyir.transformations.ArrayAccess2LoopTrans

Provides a transformation to transform a constant index access to an array (i.e. one that does not contain a loop

iterator) to a single trip loop. For example:

>>> from psyclone.psyir.transformations import ArrayAccess2LoopTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> code = ("program example\n"
" real a(10)\n"
" a(l) = 0.6\n"
cee "end program example\n")
>>> psyir = FortranReader () .psyir_from_source(code)
>>> assignment = psyir.walk(Assignment) [0]
>>> ArrayAccess2LoopTrans() .apply(assignment.lhs.children[0])
>>> print(FortranWriter() (psyir))
program example
real, dimension(10®) :: a
integer :: ji

do ji=1,1, 1
a(ji) = 0.0
enddo

(continues on next page)

64 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

end program example

apply (node, options=None)

Apply the ArrayAccess2Loop transformation if the supplied node is an access to an array index within an
Array Reference that is on the left-hand-side of an Assignment node. The access must be a scalar (i.e. not
arange) and must not include a loop variable (as we are transforming a single access to a loop).

If the constraints are satisfied then the array access is replaced with a loop iterator and a single trip loop.
The new loop will be placed immediately around the assignment.

Parameters
* node (psyclone.psyir.nodes.Node) — an array index.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions. This is an optional argument that defaults to None.

class psyclone.psyir.transformations.ArrayAssignment2LoopsTrans
Provides a transformation from a PSyIR Array Range to a PSyIR Loop. For example:

-

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment
>>> from psyclone.psyir.transformations import ArrayAssignment2LoopsTrans
>>> code = """
. subroutine sub()
real :: tmp(10)
tmp(:) = tmp(:) + 3
... end subroutine sub"""
>>> psyir = FortranReader() .psyir_from_source(code)
>>> assignment = psyir.walk(Assignment) [0]
>>> trans = ArrayAssignment2LoopsTrans()
>>> trans.apply(assignment)
>>> print(psyir.debug_string())
subroutine sub()
real, dimension(10) :: tmp
integer :: idx

do idx = LBOUND(tmp, dim=1), UBOUND(tmp, dim=1), 1
tmp(idx) = tmp(idx) + 3
enddo

end subroutine sub

L

By default the transformation will reject character arrays, though this can be overriden by setting the ‘al-
low_string’ option to True. Note that PSyclone expresses syntax such as character(LEN=100) as Unsupport-
edFortranType, and this transformation will convert unknown or unsupported types to loops.

apply (node, options=None)

Apply the transformation to the specified array assignment node. Each range node within the assignment is
replaced with an explicit loop. The bounds of the loop are determined from the bounds of the array range
on the left hand side of the assignment.

Parameters

7.4. Available transformations 65

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

* node (psyclone.psyir.nodes.Assignment) — an Assignment node.

e options["allow_string"] (bool)— whether to allow the transformation on a character
type array range. Defaults to False.

» options["verbose"] (bool) — log the reason the validation failed, at the moment with
a comment in the provided PSyIR node.

class psyclone.psyir.transformations.ChunkLoopTrans

Apply a chunking transformation to a loop (in order to permit a chunked parallelisation). For example:

-

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import ChunklLoopTrans
>>> psyir = FortranReader() .psyir_from_source("""
. subroutine sub()
integer :: ji, tmp(100)

do ji=1, 100
tmp(ji) = 2 * ji
enddo

... end subroutine sub""")
>>> loop = psyir.walk(Loop) [0]
>>> ChunkLoopTrans() .apply(loop)

.

will generate:

subroutine sub()

integer :: ji

integer, dimension(100) :: tmp
integer :: ji_el_inner
integer :: ji_out_var

do ji_out_var = 1, 100, 32
ji_el_inner = MIN(ji_out_var + (32 - 1), 100)
do ji = ji_out_var, ji_el_inner, 1
tmp(ji) = 2 * ji
enddo
enddo
end subroutine sub

.

apply (node, options=None)

Converts the given Loop node into a nested loop where the outer loop is over chunks and the inner loop is
over each individual element of the chunk.

Parameters
* node (psyclone.psyir.nodes.Loop) — the loop to transform.
e options (Optional [Dict[str, Any]]) - a dict with options for transformations.

e options["chunksize"] (int) — The size to chunk over for this transformation. If not
specified, the value 32 is used.

66 Chapter 7. Transformations

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PSyclone User Guide, Release 3.1.0-dev

class psyclone.transformations.ColourTrans

Apply a colouring transformation to a loop (in order to permit a subsequent parallelisation over colours). For
example:

>>> invoke = ...

>>> schedule = invoke.schedule

>>>

>>> ctrans = ColourTrans()

>>>

>>> # Colour all of the loops

>>> for child in schedule.children:
>>> ctrans.apply(child)

>>>

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

.

apply (node, options=None)

Converts the Loop represented by node into a nested loop where the outer loop is over colours and the inner
loop is over cells of that colour.

Parameters
¢ node (psyclone.psyir.nodes.Loop) — the loop to transform.

* options (Optional [Dict[str, Any]]) - options for the transformation.

class psyclone.psyir.transformations.DotProduct2CodeTrans

Provides a transformation from a PSyIR DOT_PRODUCT Operator node to equivalent code in a PSyIR tree.
Validity checks are also performed.

If R is a scalar and A, and B have dimension N, The transformation replaces:

[R = ... DOT_PRODUCT(A,B)

with the following code:

TMP = 0.0
do I=1,N

TMP = TMP + A(i)*B(i)
R = o000 MEl? ooc

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import IntrinsicCall
>>> from psyclone.psyir.transformations import DotProduct2CodeTrans
>>> code = ("subroutine dot_product_test(vl,v2)\n"
"real,intent(in) :: v1(10), v2(10)\n"
"real :: result\n"
"result = dot_product(vl,v2)\n"
- "end subroutine\n")
>>> psyir = FortranReader () .psyir_from_source(code)
>>> trans = DotProduct2CodeTrans()

(continues on next page)

7.4. Available transformations 67

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)
>>> trans.apply(psyir.walk(IntrinsicCall) [0])
>>> print(FortranWriter() (psyir))
subroutine dot_product_test(vl, v2)

real, dimension(10), intent(in) :: vl
real, dimension(10), intent(in) :: v2
real :: result

integer :: i

real :: res_dot_product

res_dot_product = 0.0
doi=1, 10, 1
res_dot_product = res_dot_product + v1(i) * v2(i)
enddo
result = res_dot_product

end subroutine dot_product_test

apply (node, options=None)

Apply the DOT_PRODUCT intrinsic conversion transformation to the specified node. This node must be a
DOT_PRODUCT BinaryOperation. If the transformation is successful then an assignment which includes
a DOT_PRODUCT BinaryOperation node is converted to equivalent inline code.

Parameters

* node (psyclone.psyir.nodes.BinaryOperation) — a DOT_PRODUCT Binary-
Operation node.

* options (dict of str:str or None)- adictionary with options for transformations.

class psyclone.psyir.transformations.extract_trans.ExtractTrans(node_class=<class psy-
clone.psyir.nodes.extract_node.ExtractNode'>)

This transformation inserts an ExtractNode or a node derived from ExtractNode into the PSyIR of a schedule.
At code creation time this node will use the PSyData API to create code that can write the input and output
parameters to a file. The node might also create a stand-alone driver program that can read the created file
and then execute the instrumented region. Examples are given in the derived classes DynamoExtractTrans and
GOceanExtractTrans.

After applying the transformation the Nodes marked for extraction are children of the ExtractNode. Nodes to
extract can be individual constructs within an Invoke (e.g. Loops containing a Kernel or Builtln call) or entire
Invokes. This functionality does not support distributed memory.

Parameters
node_class (psyclone.psyir.nodes.ExtractNode or derived class) — The Node class of
which an instance will be inserted into the tree (defaults to ExtractNode), but can be any derived
class.

apply (nodes, options=None)

Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.

Parameters

¢ nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) —can
be a single node or a list of nodes.

68 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#dict

PSyclone User Guide, Release 3.1.0-dev

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["prefix"] (str) — a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be

33

added automatically. It defaults to “”.

¢ options["region_name"] ((str,str)) — an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

class psyclone.psyir.transformations.HoistLocalArraysTrans
This transformation takes a Routine and promotes any local, ‘automatic’ arrays to Container scope:

>>> from psyclone.psyir.backend.fortran import FortranWriter

>>> from psyclone.psyir.frontend.fortran import FortranReader

>>> from psyclone.psyir.nodes import Assignment

>>> from psyclone.psyir.transformations import HoistLocalArraysTrans
>>> code = ("module test_mod\n"

"contains\n"

" subroutine test_sub(n)\n"
" integer :: i,j,n\n"

" real :: a(n,n)\n"

" real :: value = 1.0\n"

" do i=1,n\n"

" do j=1,n\n"

" a(i,j) = value\n"

" end do\n"

" end do\n"

end subroutine test_sub\n"
- "end module test_mod\n'")
>>> psyir = FortranReader () .psyir_from_source(code)
>>> hoist = HoistLocalArraysTrans()
>>> hoist.apply(psyir.walk(Routine) [0])
>>> print(FortranWriter () (psyir) .lower())
module test_mod
implicit none
real, allocatable, dimension(:,:), private :: a
public

public :: test_sub

contains

subroutine test_sub(n)
integer :: n
integer :: i
integer :: j
real :: value = 1.0

if (.not.allocated(a) .or. ubound(a, 1) /= n .or. ubound(a, 2) /= n) then
if (allocated(a)) then
deallocate(a)

(continues on next page)

7.4. Available transformations 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

end if

allocate(a(l : n, 1 : n))
end if
doi=1,n, 1

do j=1,n, 1

a(i,j) = value

enddo

enddo

end subroutine test_sub

end module test_mod

By default, the target routine will be rejected if it is found to contain an ACCRoutineDirective since this usually
implies that the routine will be launched in parallel on the OpenACC device. This check can be disabled by
setting ‘allow_accroutine’ to True in the options dictionary.

apply (node, options=None)

Applies the transformation to the supplied Routine node, moving any local arrays up to Container scope
and adding a suitable allocation when they are first accessed. If there are no local arrays or the supplied
Routine is a program then this method does nothing.

Parameters
* node (psyclone.psyir.nodes.Routine) — target PSyIR node.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

» options["allow_accroutine"] (bool) — permit the target routine to contain an AC-
CRoutineDirective. These are forbidden by default because their presence usually indicates
that the routine will be run in parallel on the OpenACC device.

class psyclone.psyir.transformations.HoistLoopBoundExprTrans

This transformation moves complex bounds expressions out of the loop construct and places them in integer
scalar assignments before the loop.

r

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import HoistTrans
>>> code = ("program test\n"
use mymod, only: mytype\n"
integer :: i,j,n\n"
real :: a(m)\n"
" do i=mytype%start, UBOUND(a,1)\n"
" a(i) = 1.0\n"
" end do\n"
B "end program\n'")
>>> psyir = FortranReader() .psyir_from_source(code)
>>> hoist = HoistLoopBoundExprTrans()
>>> hoist.apply(psyir.walk(Loop) [0])
>>> print(FortranWriter() (psyir))

(continues on next page)

70 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

program test
use mymod, only : mytype

integer :: i

integer :: j

integer :: n

real, dimension(n) :: a
integer :: loop_bound
integer :: loop_bound_1

loop_bound_1 = UBOUND(a, 1)

loop_bound = mytype¥start

do i = loop_bound, loop_bound_1, 1
a(i) = 1.0

enddo

end program test

apply (node, options=None)

Move complex bounds expressions out of the given loop construct and place them in integer scalar assign-
ments before the loop.

Parameters
* node (psyclone.psyir.nodes.Loop) — target PSyIR loop.

e options (Dict[str, Any])- adictionary with options for transformations.

class psyclone.psyir.transformations.HoistTrans

This transformation takes an assignment and moves it outside of its parent loop if it is valid to do so. If as a result
the loop body becomes empty, the loop will be removed altogether. For example:

-

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Assignment

>>> from psyclone.psyir.transformations import HoistTrans

>>> code = ("program test\n"

" integer :: i,j,n\n"

" real :: a(n,n)\n"

" real value\n"

" do i=1,n\n"

" value = 1.0\n"

" do j=1,n\n"

" a(i,j) = value\n"
" end do\n"

" end do\n"

- "end program\n')
>>> psyir = FortranReader() .psyir_from_source(code)
>>> hoist = HoistTrans()
>>> hoist.apply(psyir.walk(Assignment) [0])
>>> print(FortranWriter () (psyir))
program test
integer :: i

(continues on next page)

7.4. Available transformations 71

https://docs.python.org/3/library/stdtypes.html#str

PSyc

lone User Guide, Release 3.1.0-dev

.

(continued from previous page)
integer :: j
integer :: n
real, dimension(n,n) :: a
real :: value

value = 1.0
n,

doi=1, 1
do j=1,n, 1
a(i,j) = value
enddo
enddo

end program test

apply (node, options=None)

Applies the hoist transformation to the supplied assignment node within a loop, moving the assignment
outside of the loop if it is valid to do so. Issue #1445 will also look to extend this transformation to other
types of node.

Parameters
* node (subclass of psyclone.psyir.nodes.Assignment) — target PSyIR node.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

class psyclone.psyir.transformations.InlineTrans

This transformation takes a Call (which may have a return value) and replaces it with the body of the target
routine. It is used as follows:

r

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Call, Routine

>>> from psyclone.psyir.transformations import InlineTrans

>>> code = """
. module test_mod
. contains
subroutine run_it()
integer :: i
real :: a(l10)
do i=1,10
a(i) = 1.0
call sub(a(i))
end do

end subroutine run_it
subroutine sub(x)
real, intent(inout) :: X
x = 2.0%x
end subroutine sub
. end module test_mod"""
>>> psyir = FortranReader() .psyir_from_source(code)
>>> call = psyir.walk(Call) [0]

(continues on next page)

72

Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>> inline_trans = InlineTrans()
>>> inline_trans.apply(call)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(psyir.walk(Routine) [0].view())
>>> print (FortranWriter () (psyir.walk(Routine) [0]))
subroutine run_it()
integer :: i
real, dimension(10®) :: a

doi=1, 10, 1

a(i) = 1.0
a(i) = 2.0 * a(i)
enddo

end subroutine run_it

Warning

Routines/calls with any of the following characteristics are not supported and will result in a Transformation-
Error:

¢ the routine is not in the same file as the call;

* the routine contains an early Return statement;

* the routine contains a variable with UnknownlInterface;

¢ the routine contains a variable with StaticInterface;

* the routine contains an UnsupportedType variable with ArgumentInterface;
¢ the routine has a named argument;

* the shape of any array arguments as declared inside the routine does not match the shape of the arrays
being passed as arguments;

* the routine accesses an un-resolved symbol;
* the routine accesses a symbol declared in the Container to which it belongs.

Some of these restrictions will be lifted by #924.

apply (node, options=None)
Takes the body of the routine that is the target of the supplied call and replaces the call with it.

Parameters
* node (psyclone.psyir.nodes.Routine) — target PSyIR node.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

» options["force"] (bool)— whether or not to permit the inlining of Routines containing
CodeBlocks. Default is False.

class psyclone.domain.common.transformations.KernelModuleInlineTrans

Brings the routine being called into the same Container as the call site. For example:

7.4. Available transformations 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

-

L

from psyclone.domain.common.transformations import \
KernelModuleInlineTrans

inline_trans = KernelModuleInlineTrans()
inline_trans.apply(schedule.walk(CodedKern) [0])

print(schedule.parent.view())

Warning

Not all Routines can be moved. This transformation will reject attempts to move routines that access private
data in the original Container.

apply (node, options=None)

Bring the kernel subroutine into this Container.
Parameters
¢ node (psyclone.psyGen.CodedKern) — the kernel to module-inline.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Raises

¢ TransformationError - if the called Routine cannot be brought into this Container be-
cause of a name clash with another Routine.

¢ NotImplementedError —if node is a Call (rather than a CodedKern) and the name of the
called routine does not match that of the caller.

class psyclone.psyir.transformations.LoopFuseTrans

Provides a generic loop-fuse transformation to two Nodes in the PSyIR of a Schedule after performing validity
checks for the supplied Nodes. Examples are given in the descriptions of any children classes.

If loops have different named loop variables, when possible the loop variable of the second loop will be renamed
to be the same as the first loop. This has the side effect that the second loop’s variable will no longer have its
value modified, with the expectation that that value isn’t used anymore.

Note that the validation of this transformation still has several shortcomings, especially for domain API loops.
Use at your own risk.

apply (nodel, node2, options=None)
Fuses two loops represented by psyclone.psyir.nodes.Node objects after performing validity checks.

If the two loops don’t have the same loop variable, the second loop’s variable (and references to it inside the
loop) will be changed to be references to the first loop’s variable before merging. This has the side effect
that the second loop’s variable will no longer have its value modified, with the expectation that that value
isn’t used after.

Parameters
* nodel (psyclone.psyir.nodes.Node) — the first Node that is being checked.
* node2 (psyclone.psyir.nodes.Node) — the second Node that is being checked.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

74

Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

class psyclone.psyir.transformations.LoopSwapTrans
Provides a loop-swap transformation, e.g.:

(Do j=1, m

DO i=1, n
becomes:
Do i-1, n

DO j=1, m

.

This transform is used as follows:

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> ast, invokeInfo = parse('shallow_alg.f90")

>>> psy = PSyFactory("gocean").create(invokeInfo)

>>> schedule = psy.invokes.get('invoke_0").schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> from psyclone.transformations import LoopSwapTrans

>>> swap = LoopSwapTrans()

>>> swap.apply(schedule.children[0])

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

.

apply (node, options=None)

The argument outer must be a loop which has exactly one inner loop. This transform then swaps the outer
and inner loop.

Parameters
* outer (psyclone.psyir.nodes.Loop) — the node representing the outer loop.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Raises
TransformationError - if the supplied node does not allow a loop swap to be done.

class psyclone.psyir.transformations.LoopTiling2DTrans

Apply a 2D loop tiling transformation to a loop. For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import LoopTiling2DTrans
>>> psyir = FortranReader() .psyir_from_source("""
. subroutine sub()
integer :: ji, tmp(100)
do i=1, 100
do j=1, 100

(continues on next page)

7.4. Available transformations 75

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)
tmp(i, j) =2 * tmp(d, j)
enddo
enddo
... end subroutine sub""")
>>> loop = psyir.walk(Loop) [0]
>>> LoopTiling2DTrans() .apply(loop)

will generate:

subroutine sub()

integer :: ji

integer, dimension(100) :: tmp
integer :: ji_el_inner
integer :: ji_out_var

do i_out_var = 1, 100, 32
i_el_inner = MIN(i_out_var + (32 - 1), 100)
do j_out_var = 1, 100, 32
do i = i_out_var, i_el_inner, 1
j_el_inner = MIN(j_out_var + (32 - 1), 100)
do j = j_out_var, j_el_inner, 1
tmp(i, j) = 2 * tmp(d, j)
enddo
enddo
enddo
enddo
end subroutine sub

apply (node, options=None)
Converts the given 2D Loop construct into a tiled version of the nested loops.

Parameters
* node (psyclone.psyir.nodes.Loop) — the loop to transform.
» options (Optional [Dict[str, Any]])- adict with options for transformations.

e options["tilesize"] (int) — The size of the resulting tile, currently square tiles are
always used. If not specified, the value 32 is used.

class psyclone.psyir.transformations.Matmul2CodeTrans
Provides a transformation from a PSyIR MATMUL Operator node to equivalent code in a PSyIR tree. Validity
checks are also performed.

For a matrix-vector multiplication, if the dimensions of R, A, and B are R(N), A(N,M), B(M), the transformation
replaces:

[R:MATMUL (A,B)]

with the following code:

do i=1,N
R(i) = 0.0
do j=1,M
R(i) = R@) + A(,J) * B

76 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PSyclone User Guide, Release 3.1.0-dev

For a matrix-matrix multiplication, if the dimensions of R, A, and B are R(P,M), A(P,N), B(N,M), the MATMUL
is replaced with the following code:

do j=1,M
do i=1,P
R(i,j) = 0.0
do ii=1,N
R(i,j) = R(i,j) + A(i,ii) * B(ii,j)

Note that this transformation does not support the case where A is a rank-1 array.

apply (node, options=None)

Apply the MATMUL intrinsic conversion transformation to the specified node. This node must be a MAT-
MUL IntrinsicCall. The first argument must currently have two dimensions while the second must have
either one or two dimensions. Each argument is permitted to have additional dimensions (i.e. more than 2)
but in each case it is only the first one or two which may be ranges. Further, the ranges must currently be
for the full index space for that dimension (i.e. array subsections are not supported). If the transformation
is successful then an assignment which includes a MATMUL IntrinsicCall node is converted to equivalent
inline code.

Parameters
¢ node (psyclone.psyir.nodes.IntrinsicCall) — a MATMUL IntrinsicCall node.

* options (Optional [Dict[str, Any]]) - options for the transformation.

Note

This transformation is currently limited to translating the matrix vector form of MATMUL to equivalent PSyIR
code.

class psyclone.psyir.transformations.Max2CodeTrans

Provides a transformation from a PSyIR MAX Intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed (by a parent class).

The transformation replaces

[R - MAX(A, B, C ...)]

with the following logic:

R=A

if B > R:
R =B

if C > R:
R=2C

apply (node, options=None)

Apply this utility transformation to the specified node. This node must be a MIN or MAX IntrinsicCall.
The intrinsic is converted to equivalent inline code. This is implemented as a PSyIR transform from:

[R:...[MINorMAX](A, B, C...) ...]

7.4. Available transformations 77

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

to:

res = A

tmp = B

IF tmp [< or >] res:
res = tmp

tmp = C

IF tmp [< or >] res:
res = tmp

R= ... res ...

where A, B, C... could be arbitrarily complex PSyIR expressions and the ... before and after [MIN or
MAX] (A, B, C ...) can be arbitrary PSyIR code.

This transformation requires the IntrinsicCall node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters
¢ node (psyclone.psyir.nodes.IntrinsicCall) —a MIN or MAX intrinsic.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Warning

This transformation assumes that the MAX Intrinsic acts on PSyIR Real scalar data and does not check that this is
not the case. Once issue #658 is on master then this limitation can be fixed.

class psyclone.psyir.transformations.Maxval2LoopTrans
Provides a transformation from a PSyIR MAXVAL IntrinsicCall node to an equivalent PSyIR loop structure that
is suitable for running in parallel on CPUs and GPUs. Validity checks are also performed.

If MAXVAL contains a single positional argument which is an array, the maximum value of all of the elements
in the array is returned in the the scalar R.

[R — MAXVAL (ARRAY) J

For example, if the array is two dimensional, the equivalent code for real data is:

R = -HUGE(R)
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
R = MAX(R, ARRAY(I,J))

If the mask argument is provided then the mask is used to determine whether the maxval is applied:

R = MAXVAL (ARRAY, mask=MOD(ARRAY, 2.0)==1)

If the array is two dimensional, the equivalent code for real data is:

78 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

R = -HUGE(R)
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = MAX(R, ARRAY(I,J))

The dimension argument is currently not supported and will result in a TransformationError exception being

raised.

[R = MAXVAL (ARRAY, dimension=2) J
The array passed to MAXVAL may use any combination of array syntax, array notation, array sections and scalar
bounds:

R = MAXVAL(CARRAY) ! array syntax

R = MAXVAL(ARRAY(:,:)) ! array notation

R = MAXVAL(ARRAY(1:10,l0:hi)) ! array sections

R = MAXVAL (ARRAY(1:10,:)) ! mix of array section and array notation
R = MAXVAL(ARRAY(1:10,2)) ! mix of array section and scalar bound

An example use of this transformation is given below:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Maxval2loopTrans
>>> code = ("subroutine maxval_test(array)\n"
" real :: array(10,10)\n"
" real :: result\n"
result = maxval (array)\n"
- "end subroutine\n")
>>> psyir = FortranReader () .psyir_from_source(code)
>>> sum_node = psyir.children[0].children[0].children[1]
>>> Maxval2LoopTrans() .apply(sum_node)
>>> print (FortranWriter () (psyir))
subroutine maxval_test(array)
real, dimension(10,10) :: array
real :: result
integer :: idx
integer :: idx_1

result = -HUGE(result)
do idx =1, 10, 1

do idx_1 =1, 10, 1
result = MAX(result, array(idx_1,idx))
enddo
enddo

end subroutine maxval_test

.

apply (node, options=None)

Apply the array-reduction intrinsic conversion transformation to the specified node. This node must be one
of these intrinsic operations which is converted to an equivalent loop structure.

Parameters

7.4. Available transformations 79

PSyclone User Guide, Release 3.1.0-dev

* node (psyclone.psyir.nodes.IntrinsicCall) — an array-reduction intrinsic.

e options (Optional [Dict[str, Any]]) - options for the transformation.

class psyclone.psyir.transformations.Min2CodeTrans

Provides a transformation from a PSyIR MIN Intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed (by a parent class).

The transformation replaces

[R = MINCA, B, C ...)

with the following logic:

rR:A

if B < R:
R =B

if C < R:
R=2C

apply (node, options=None)

Apply this utility transformation to the specified node. This node must be a MIN or MAX IntrinsicCall.
The intrinsic is converted to equivalent inline code. This is implemented as a PSyIR transform from:

[R: ... [MIN or MAX](A, B, C ...)
to:
res = A
tmp = B
IF tmp [< or >] res:
res = tmp
tmp = C
IF tmp [< or >] res:
res = tmp
R= ... res ...

where A, B, C ... could be arbitrarily complex PSyIR expressions and the . .. before and after [MIN or
MAX] (A, B, C ...) can be arbitrary PSyIR code.

This transformation requires the IntrinsicCall node to be a descendent of an assignment and will raise an
exception if this is not the case.

Parameters
¢ node (psyclone.psyir.nodes.IntrinsicCall) —a MIN or MAX intrinsic.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Warning

This transformation assumes that the MIN Intrinsic acts on PSyIR Real scalar data and does not check that this is
not the case. Once issue #658 is on master then this limitation can be fixed.

80 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

class psyclone.psyir.transformations.Minval2LoopTrans
Provides a transformation from a PSyIR MINVAL IntrinsicCall node to an equivalent PSyIR loop structure that
is suitable for running in parallel on CPUs and GPUs. Validity checks are also performed.

If MINVAL contains a single positional argument which is an array, the minimum value of all of the elements in
the array is returned in the the scalar R.

[R — MINVAL (ARRAY)]

For example, if the array is two dimensional, the equivalent code for real data is:

R = HUGE(R)
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
R = MIN(R, ARRAY(I,J))

If the mask argument is provided then the mask is used to determine whether the minval is applied:

[R — MINVAL(ARRAY, mask=MOD(ARRAY, 2.0)==1)]

If the array is two dimensional, the equivalent code for real data is:

R = HUGE(R)
DO J=LBOUND (ARRAY, 2),UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = MIN(R, ARRAY(I,J]))

The dimension argument is currently not supported and will result in a TransformationError exception being

raised.

[R = MINVAL (ARRAY, dimension-=2)]
The array passed to MINVAL may use any combination of array syntax, array notation, array sections and scalar
bounds:

R = MINVAL(ARRAY) ! array syntax

R = MINVAL(ARRAY(:,:)) ! array notation

R = MINVAL(ARRAY(1:10,lo0:hi)) ! array sections

R = MINVAL(ARRAY(1:10,:)) ! mix of array section and array notation
R = MINVAL(ARRAY(1:10,2)) ! mix of array section and scalar bound

For example:

(

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Minval2LoopTrans
>>> code = ("subroutine minval_test(array)\n"

" real :: array(10,10)\n"

" real :: result\n"

" result = minval (array)\n"

- "end subroutine\n")
>>> psyir = FortranReader() .psyir_from_source(code)

(continues on next page)

7.4. Available transformations 81

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>> sum_node = psyir.children[0].children[0].children[1]
>>> Minval2LoopTrans() .apply(sum_node)
>>> print(FortranWriter() (psyir))
subroutine minval_test(array)

real, dimension(10,10) :: array

real :: result

integer :: idx

integer :: idx_1

result = HUGE(result)
do idx = 1, 10, 1
do idx_1 =1, 10, 1
result = MIN(result, array(idx_1,idx))
enddo
enddo

end subroutine minval_test

apply (node, options=None)

Apply the array-reduction intrinsic conversion transformation to the specified node. This node must be one
of these intrinsic operations which is converted to an equivalent loop structure.

Parameters
* node (psyclone.psyir.nodes.IntrinsicCall) — an array-reduction intrinsic.

* options (Optional [Dict[str, Any]])— options for the transformation.

class psyclone.transformations.MoveTrans

Provides a transformation to move a node in the tree. For example:

r

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> ast,invokeInfo=parse('dynamo.F90")

>>> psy=PSyFactory("lfric").create(invokeInfo)

>>> schedule=psy.invokes.get('invoke_v3_kernel_type').schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> from psyclone.transformations import MoveTrans

>>> trans=MoveTrans()

>>> trans.apply(schedule.children[0], schedule.children[2],

- options = {"position":"after")

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

.

Nodes may only be moved to a new location with the same parent and must not break any dependencies otherwise
an exception is raised.

apply (node, location, options=None)

Move the node represented by node before location location (which is also a node) by default and after
if the optional position argument is set to ‘after’.

Parameters

82 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

* node (psyclone.psyir.nodes.Node) — the node to be moved.

¢ location (psyclone.psyir.nodes.Node) — node before or after which the given node
should be moved.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["position"] (str) — either ‘before’ or ‘after’.
Raises

e TransformationError — if the given node is not an instance of psyclone.psyir.
nodes.Node

¢ TransformationError — if the location is not valid.

class psyclone.domain.gocean. transformations.GOOpenCLTrans

Switches on/off the generation of an OpenCL PSy layer for a given InvokeSchedule. Additionally, it will generate
OpenCL kernels for each of the kernels referenced by the Invoke. For example:

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> API = "gocean"

>>> FILENAME = "shallow_alg.f90" # examples/gocean/egl

>>> ast, invoke_info = parse(FILENAME, api=API)

>>> psy = PSyFactory(API, distributed_memory=False).create(invoke_info)
>>> schedule = psy.invokes.get('invoke_0").schedule

>>> ocl_trans = GOOpenCLTrans()

>>> ocl_trans.apply(schedule)

>>> print(schedule.view())

L

apply (node, options=None)

Apply the OpenCL transformation to the supplied GOInvokeSchedule. This causes PSyclone to generate
an OpenCL version of the corresponding PSy-layer routine. The generated code makes use of the FortCL
library (https://github.com/stfc/FortCL) in order to manage the OpenCL device directly from Fortran.

Parameters
¢ node (psyclone.psyGen.GOInvokeSchedule) — the InvokeSchedule to transform.

e options (dict of str:value or None) — set of option to tune the OpenCL genera-
tion.

» options["enable_profiling"] (bool) — whether or not to set up the OpenCL envi-
ronment with the profiling option enabled.

¢ options["out_of_order"] (bool)— whether or not to set up the OpenCL environment
with the out_of_order option enabled.

e options["end_barrier"] (bool)— whether or not to add an OpenCL barrier at the end
of the transformed invoke.

class psyclone.transformations.OMPDeclareTargetTrans
Adds an OpenMP declare target directive to the specified routine.

For example:

7.4. Available transformations 83

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/stfc/FortCL
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

>>> from psyclone.psyir.frontend.fortran import FortranReader

>>> from psyclone.psyir.nodes import Loop

>>> from psyclone.transformations import OMPDeclareTargetTrans

>>>

>>> tree = FortranReader() .psyir_from_source(
subroutine my_subroutine(A)

integer, dimension(10, 10), intent(inout) :: A
integer :: i
integer :: j
doi=1, 10

do j =1, 10

A(i, j) =0

end do

end do

end subroutine

>>> omptargettrans = OMPDeclareTargetTrans()
>>> omptargettrans.apply(tree.walk(Routine)[0])

will generate:

subroutine my_subroutine(A)

integer, dimension(10, 10), intent(inout) :: A
integer :: i
integer :: j
!$omp declare target
doi=1, 10

do j =1, 10

A(i, j) =0

end do

end do

end subroutine

apply (node, options=None)

Insert an OMPDeclareTargetDirective inside the provided routine or associated PSyKAlI kernel.
Parameters

¢ node (psyclone.psyir.nodes.Routine | psyclone.psyGen.Kern) — the kernel or
routine which is the target of this transformation.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["force"] (bool) — whether to allow routines with CodeBlocks to run on the
GPU.

class psyclone.psyir.transformations.OMPLoopTrans (omp_directive='do’, omp_schedule='auto")

9% ¢

Adds an OpenMP directive to parallelise this loop. It can insert different directives such as “omp do/for”, “omp
parallel do/for”, “omp teams distribute parallel do/for”” or “omp loop” depending on the provided parameters. The
OpenMP schedule to use can also be specified, but this will be ignored in case of the “omp loop” (as the ‘schedule’
clause is not valid for this specific directive). The configuration-defined ‘reprod’ parameter also specifies whether
amanual reproducible reproduction is to be used. Note, reproducible in this case means obtaining the same results

with the same number of OpenMP threads, not for different numbers of OpenMP threads.

84

Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

Parameters
» omp_schedule (str) — the OpenMP schedule to use. Defaults to ‘auto’.

» omp_directive (str) — choose which OpenMP loop directive to use. Defaults to “omp
d075

For example:

>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

end

.

from psyclone.psyir.frontend.fortran import FortranReader
from psyclone.psyir.backend. fortran import FortranWriter
from psyclone.psyir.nodes import Loop
from psyclone.transformations import OMPLoopTrans, OMPParallelTrans
psyir = FortranReader() .psyir_from_source("""
subroutine my_subroutine()
integer, dimension(10, 10) :: A
integer :: i
integer :: j
doi=1, 10
do j =1, 10
A, j) =0
end do
end do
end subroutine
"
loop = psyir.walk(Loop) [0]
omplooptransl = OMPLoopTrans(omp_schedule="dynamic",
omp_directive="paralleldo")
omplooptransl.apply(loop)
print (FortranWiriter () (psyir))

subroutine my_subroutine()
integer, dimension(10,10) :: a
integer :: i
integer :: j

!$omp parallel do default(shared), private(i,j), schedule(dynamic)
doi=1, 10, 1

doj=1, 10, 1
a(i,j) =0
enddo

enddo
!$omp end parallel do

subroutine my_subroutine

apply (node, options=None)

Apply the OMPLoopTrans transformation to the specified PSyIR Loop.
Parameters

* node (psyclone.psyir.nodes.Node) — the supplied node to which we will apply the
OMPLoopTrans transformation

e options (Optional [Dict[str, Any]])-adictionary with options for transformations
and validation.

7.4. Available transformations 85

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

* options["reprod"] (bool) — indicating whether reproducible reductions should be
used. By default the value from the config file will be used.

property omp_directive

Returns
the type of OMP directive that this transformation will insert.

Return type
str

property omp_schedule

Returns
the OpenMP schedule that will be specified by this transformation.

Return type
str

class psyclone.transformations.OMPMasterTrans

Create an OpenMP MASTER region by inserting directives. The most likely use case for this transformation is
to wrap around task-based transformations. Note that adding this directive requires a parent OpenMP parallel
region (which can be inserted by OMPParallelTrans), otherwise it will produce an error in generation-time.

For example:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

L

from psyclone.parse.algorithm import parse

from psyclone.psyGen import PSyFactory

api = "gocean"

ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
psy = PSyFactory(api).create(invokeInfo)

from psyclone.transformations import OMPParallelTrans, OMPMasterTrans
mastertrans = OMPMasterTrans()
paralleltrans = OMPParallelTrans()

schedule = psy.invokes.get('invoke_0").schedule
Uncomment the following line to see a text view of the schedule
print(schedule.view())

Enclose all of these loops within a single OpenMP

MASTER region

mastertrans.apply(schedule.children)

Enclose all of these loops within a single OpenMP

PARALLEL region

paralleltrans.apply(schedule.children)

Uncomment the following line to see a text view of the schedule
print(schedule.view())

apply (target_nodes, options=None)

Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.

Parameters

¢ target_nodes ((list of) psyclone.psyir.nodes.Node) — a single Node or a list of
Nodes.

86

Chapter 7. Transformations

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

* options["node-type-check"] (bool) — this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.
get_node_list (nodes)

This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node

should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

¢ nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,
List[psyclone.psyir.nodes.Node]) —can be a single node, a schedule or a list of nodes.

e options (Optional [Dict[str,Any]])— adictionary with options for transformations.

Returns
a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises

TransformationError — if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

validate (node_list, options=None)
Check that the supplied list of Nodes are eligible to be put inside a parallel region.
Parameters
* node_list (1ist) - list of nodes to put into a parallel region

* options — a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

* options["node-type-check"] (bool) — this flag controls whether or not the type of

the nodes enclosed in the region should be tested to avoid using unsupported nodes inside
aregion.

Raises

* TransformationError - if the supplied node is an InvokeSchedule rather than being
within an InvokeSchedule.

e TransformationError - if the supplied nodes are not all children of the same parent
(siblings).

Note

PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP master regions. At-
tempting to create a master region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are
performed outside the single region. The MoveTrans transformation may be used for this.

7.4. Available transformations 87

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

class psyclone.transformations.OMPParallelLoopTrans (omp_directive='do', omp_schedule="auto")
Adds an OpenMP PARALLEL DO directive to a loop.

For example:

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> ast, invokeInfo = parse('dynamo.F90")

>>> psy = PSyFactory("lfric").create(invokeInfo)

>>> schedule = psy.invokes.get('invoke_v3_kernel_ type').schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> from psyclone.transformations import OMPParallellLoopTrans

>>> trans = OMPParallelLoopTrans()

>>> trans.apply(schedule.children[0])

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

L

apply (node, options=None)

Apply an OMPParallelLoop Transformation to the supplied node (which must be a Loop). In the generated
code this corresponds to wrapping the Loop with directives:

1$OMP PARALLEL DO ...
do ...
end do
1$OMP END PARALLEL DO

Parameters
* node (psyclone. f2pygen.DoGen) — the node (loop) to which to apply the transformation.

e options (Optional [Dict[str, Any]])-adictionary with options for transformations
and validation.

class psyclone.transformations.OMPParallelTrans
Create an OpenMP PARALLEL region by inserting directives. For example:

(

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.parse.utils import ParseError
>>> from psyclone.psyGen import PSyFactory

>>> from psyclone.errors import GenerationError
>>> api = "gocean"

>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> from psyclone.psyGen import TransInfo

>>> t = TransInfo()

>>> ltrans = t.get_trans_name('GOceanOMPLoopTrans')
>>> rtrans = t.get_trans_name('OMPParallelTrans')
>>>

(continues on next page)

88 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>> schedule = psy.invokes.get('invoke_0').schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> # Apply the OpenMP Loop transformation to *every* loop

>>> # in the schedule

>>> for child in schedule.children:

>>> ltrans.apply(child)

>>>

>>> # Enclose all of these loops within a single OpenMP

>>> # PARALLEL region

>>> rtrans.apply(schedule.children)

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

L

apply (target_nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Loops in
the schedule within a single parallel region.
Parameters

» target_nodes ((list of) psyclone.psyir.nodes.Node) — a single Node or a list of
Nodes.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

* options["node-type-check"] (bool) — this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.
get_node_list (nodes)

This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node
should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

¢ nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,
List[psyclone.psyir.nodes.Node])— can be a single node, a schedule or a list of nodes.

* options (Optional [Dict[str,Any]])— adictionary with options for transformations.

Returns
a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises
TransformationError — if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

validate (node_list, options=None)

Perform OpenMP-specific validation checks.

Parameters

7.4.

Available transformations 89

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

* node_list (list of psyclone.psyir.nodes.Node) — list of Nodes to put within parallel
region.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

* options["node-type-check"] (bool) - this flag controls if the type of the nodes en-
closed in the region should be tested to avoid using unsupported nodes inside a region.

Raises
TransformationError - if the target Nodes are already within some OMP parallel region.

Note

PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP parallel regions. At-
tempting to create a parallel region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are
performed outside the parallel region. The MoveTrans transformation may be used for this.

class psyclone.transformations.OMPSingleTrans (nowait=False)

Create an OpenMP SINGLE region by inserting directives. The most likely use case for this transformation is to
wrap around task-based transformations. The parent region for this should usually also be a OMPParallelTrans.

Parameters
nowait (bool) — whether to apply a nowait clause to this transformation. The default value is
False

For example:

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> api = "gocean"

>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)

>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> singletrans = OMPSingleTrans()

>>> paralleltrans = OMPParallelTrans()

>>>

>>> schedule = psy.invokes.get('invoke_0').schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> # Enclose all of these loops within a single OpenMP

>>> # SINGLE region

>>> singletrans.apply(schedule.children)

>>> # Enclose all of these loops within a single OpenMP

>>> # PARALLEL region

>>> paralleltrans.apply(schedule.children)

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

90

Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

apply (node_list, options=None)

Apply the OMPSingleTrans transformation to the specified node in a Schedule.

At code-generation time this node must be within (i.e. a child of) an OpenMP PARALLEL region. Code
generation happens when OMPLoopDirective.gen_code() is called, or when the PSyIR tree is given to
a backend.

If the keyword “nowait” is specified in the options, it will cause a nowait clause to be added if it is set to
True, otherwise no clause will be added.

Parameters

¢ node_list ((a list of) psyclone.psyir.nodes.Node) — the supplied node or node list
to which we will apply the OMPSingleTrans transformation

» options (Optional [Dict[str, Any]]) — a list with options for transformations and
validation.

e options["nowait"] (bool) — indicating whether or not to use a nowait clause on this
single region.

get_node_list (nodes)

This is a helper function for region based transformations. The parameter for any of those transformations is
either a single node, a schedule, or a list of nodes. This function converts this into a list of nodes according
to the parameter type. This function will always return a copy, to avoid issues e.g. if a child list of a node
should be provided, and a transformation changes the order in this list (which would then also change the
order of the nodes in the tree).

Parameters

¢ nodes (Union[psyclone.psyir.nodes.Node, psyclone.psyir.nodes.Schedule,

List[psyclone.psyir.nodes.Node]) —can be a single node, a schedule or a list of nodes.

e options (Optional [Dict[str,Any]])— adictionary with options for transformations.
Returns

a list of nodes.

Return type
List[psyclone.psyir.nodes.Node]

Raises

TransformationError — if the supplied parameter is neither a single Node, nor a Schedule,
nor a list of Nodes.

property omp_nowait

Returns
whether or not this Single region uses a nowait clause to remove the end barrier.

Return type
bool

validate (node_list, options=None)

Check that the supplied list of Nodes are eligible to be put inside a parallel region.
Parameters
* node_list (I1ist)— list of nodes to put into a parallel region

» options —a dictionary with options for transformations. :type options: Optional[Dict[str,
Any]]

7.4.

Available transformations 91

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PSyclone User Guide, Release 3.1.0-dev

* options["node-type-check"] (bool) — this flag controls whether or not the type of
the nodes enclosed in the region should be tested to avoid using unsupported nodes inside
aregion.

Raises

e TransformationError - if the supplied node is an InvokeSchedule rather than being
within an InvokeSchedule.

* TransformationError - if the supplied nodes are not all children of the same parent
(siblings).

Note

PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP single regions. At-
tempting to create a single region for a set of nodes that includes halo swaps or global sums will produce an error.
In such cases it may be possible to re-order the nodes in the Schedule such that the halo swaps or global sums are

performed outside the single region. The MoveTrans transformation may be used for this.

class psyclone.psyir.transformations.0OMPTargetTrans
Adds an OpenMP target directive to a region of code.

For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader

>>> from psyclone.psyir.backend.fortran import FortranWriter

>>> from psyclone.psyir.nodes import Loop

>>> from psyclone.psyir.transformations import OMPTargetTrans

>>>

>>> tree = FortranReader() .psyir_from_source(
subroutine my_subroutine()

integer, dimension(10, 10) :: A
integer :: i
integer :: j
doi=1, 10
do j =1, 10
A, j) =0
end do
end do
end subroutine
"

>>> OMPTargetTrans() .apply(tree.walk(Loop) [0])
>>> print(FortranWriter () (tree))
subroutine my_subroutine()

integer, dimension(10,10) :: a
integer :: i
integer :: j

!$omp target
doi=1, 10, 1
do j =1, 10, 1
a(i,j) =0
enddo

(continues on next page)

92 Chapter 7. Transformations

https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

enddo
1$omp end target

end subroutine my_subroutine

apply (node, options=None)
Insert an OMPTargetDirective before the provided node or list of nodes.

Parameters

¢ node (List[psyclone.psyir.nodes.Node]) — the PSyIR node or nodes to enclose in the
OpenMP target region.

» options (Optional [Dict[str,Any]])— adictionary with options for transformations.

class psyclone.transformations.OMPTaskloopTrans (grainsize=None, num_tasks=None, nogroup=False)
Adds an OpenMP taskloop directive to a loop. Only one of grainsize or num_tasks must be specified.

TODO: #1364 Taskloops do not yet support reduction clauses.
Parameters
» grainsize (int or None) - the grainsize to use in for this transformation.
e num_tasks (int or None) — the num_tasks to use for this transformation.

* nogroup (bool) — whether or not to use a nogroup clause for this transformation. Default
is False.

For example:

>>> from pysclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> api = "gocean"

>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)

>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> from psyclone.transformations import OMPTaskloopTrans

>>> from psyclone.psyir.transformations import OMPTaskwaitTrans
>>> singletrans = OMPSingleTrans()

>>> paralleltrans = OMPParallelTrans()

>>> tasklooptrans = OMPTaskloopTrans()

>>> taskwaittrans = OMPTaskwaitTrans()

>>>

>>> schedule = psy.invokes.get('invoke_0').schedule

>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

>>>

>>> # Apply the OpenMP Taskloop transformation to *every* loop
>>> # in the schedule.

>>> # This ignores loop dependencies. These can be handled

>>> # by the OMPTaskwaitTrans

>>> for child in schedule.children:

>>> tasklooptrans.apply(child)

(continues on next page)

7.4. Available transformations 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)
>>> # Enclose all of these loops within a single OpenMP
>>> # SINGLE region
>>> singletrans.apply(schedule.children)
>>> # Enclose all of these loops within a single OpenMP
>>> # PARALLEL region
>>> paralleltrans.apply(schedule.children)
>>> # Ensure loop dependencies are satisfied
>>> taskwaittrans.apply(schedule.children)
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())

apply (node, options=None)

Apply the OMPTaskloopTrans transformation to the specified node in a Schedule. This node must be a
Loop since this transformation corresponds to wrapping the generated code with directives like so:

1$0MP TASKLOOP

do ...

end do

1$O0MP END TASKLOOP

At code-generation time (when OMPTaskloopDirective.gen_code() is called), this node must be within
(i.e. a child of) an OpenMP SERIAL region.

If the keyword “nogroup” is specified in the options, it will cause a nogroup clause be generated if it is set
to True. This will override the value supplied to the constructor, but will only apply to the apply call to
which the value is supplied.

Parameters

* node (psyclone.psyir.nodes.Node) — the supplied node to which we will apply the
OMPTaskloopTrans transformation

* options (Optional [Dict[str, Any]])-adictionary with options for transformations
and validation.

e options["nogroup"] (bool) — indicating whether a nogroup clause should be applied
to this taskloop.
property omp_grainsize
Returns the grainsize that will be specified by this transformation. By default the grainsize clause is not
applied, so grainsize is None.

Returns
The grainsize specified by this transformation.

Return type
int or None
property omp_num_tasks
Returns the num_tasks that will be specified by this transformation. By default the num_tasks clause is not
applied so num_tasks is None.

Returns
The grainsize specified by this transformation.

Return type
int or None

94 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PSyclone User Guide, Release 3.1.0-dev

class psyclone.psyir.transformations.OMPTaskTrans

Apply an OpenMP Task Transformation to a Loop. The Loop must be within an OpenMP Serial region (Single
or Master) at codegen time. Once lowering begins, no more modifications to the tree should occur as the task
directives do not recompute dependencies after lowering. In the future it may be possible to do this through an
_update_node implementation.

apply (node, options=None)
Apply the OMPTaskTrans to the specified node in a Schedule.

Can only be applied to a Loop.

The specified node is wrapped by directives during code generation like so:

!$0MP TASK

!$OMP END TASK

At code-generation time, this node must be within (i.e. a child of) an OpenMP Serial region (OpenMP
Single or OpenMP Master)

Any kernels or Calls will be inlined into the region before the task transformation is applied.
Parameters

* node (psyclone.psyir.nodes.Loop) — the supplied node to which we will apply the
OMPTaskTrans transformation

e options (dictionary of string:values or None) - a dictionary with options for
transformations and validation.

class psyclone.psyir.transformations.OMPTaskwaitTrans

Adds zero or more OpenMP Taskwait directives to an OMP parallel region. This transformation will add di-
rectives to satisfy dependencies between Taskloop directives without an associated taskgroup (i.e. no nogroup
clause). It also tries to minimise the number added to maximise available parallelism.

For example:

>>> from pysclone.parse.algorithm import parse

>>> from psyclone.psyGen import PSyFactory

>>> api = "gocean"

>>> filename = "nemolite2d_alg.f90"

>>> ast, invokeInfo = parse(filename, api=api, invoke_name="invoke")
>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> from psyclone.transformations import OMPParallelTrans, OMPSingleTrans
>>> from psyclone.transformations import OMPTaskloopTrans

>>> from psyclone.psyir.transformations import OMPTaskwaitTrans

>>> singletrans = OMPSingleTrans()

>>> paralleltrans = OMPParallelTrans()

>>> tasklooptrans = OMPTaskloopTrans()

>>> taskwaittrans = OMPTaskwaitTrans()

>>>

>>> schedule = psy.invokes.get('invoke_0").schedule

>>> print(schedule.view())

(continues on next page)

7.4. Available transformations 95

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

>>>

>>> # Apply the OpenMP Taskloop transformation to *every* loop
>>> # in the schedule.

>>> # This ignores loop dependencies. These are handled by the
>>> # taskwait transformation.

>>> for child in schedule.children:

>>> tasklooptrans.apply(child, nogroup = true)

>>> # Enclose all of these loops within a single OpenMP

>>> # SINGLE region

>>> singletrans.apply(schedule.children)

>>> # Enclose all of these loops within a single OpenMP

>>> # PARALLEL region

>>> paralleltrans.apply(schedule.children)

>>> taskwaittrans.apply(schedule.children)

>>> print(schedule.view())

apply (node, options=None)

Apply an OMPTaskwait Transformation to the supplied node (which must be an OMPParallelDirective).

In the generated code this corresponds to adding zero or more OMPTaskwaitDirectives as appropriate:

!$OMP PARALLEL
I$OMP TASKWAIT
!$OMP TASKWAIT

!$OMP END PARALLEL

Parameters

* node (psyclone.psyir.nodes.OMPParallelDirective)— the node to which to apply
the transformation.

e options (Optional [Dict[str, Any]])-adictionary with options for transformations
and validation.

» options["fail_on_no_taskloop"] (bool) — indicating whether this should throw an
error if no OMPTaskloop nodes are found in this tree. This can be safely disabled as if there
are no Taskloop nodes the result of this transformation is valid OpenMP code. Default is
True

class psyclone.psyir.transformations.Product2LoopTrans

Provides a transformation from a PSyIR PRODUCT IntrinsicCall node to an equivalent PSyIR loop structure

that is suitable for running in parallel on CPUs and GPUs. Validity checks are also performed.

If PRODUCT contains a single positional argument which is an array, the maximum value of all of the elements

in the array is returned in the the scalar R.

[R — PRODUCT (ARRAY)

For example, if the array is two dimensional, the equivalent code for real data is:

96 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

R=1.0
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
R = R * ARRAY(I,J)

If the mask argument is provided then the mask is used to determine whether the product is applied:

[R — PRODUCT (ARRAY, mask=MOD(ARRAY, 2.0)==1)]

If the array is two dimensional, the equivalent code for real data is:

R=1.0
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = R * ARRAY(I,J)

The dimension argument is currently not supported and will result in a TransformationError exception being
raised.

[R — PRODUCT(ARRAY, dimension=2) }

The array passed to PRODUCT may use any combination of array syntax, array notation, array sections and
scalar bounds:

= PRODUCT (ARRAY) ! array syntax

PRODUCT (ARRAY(:,:)) ! array notation

PRODUCT (ARRAY(1:10,10:hi)) ! array sections

PRODUCT (ARRAY(1:10,:)) ! mix of array section and array notation
= PRODUCT(ARRAY(1:10,2)) ! mix of array section and scalar bound

A W™= A
Il

An example use of this transformation is given below:

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Product2LoopTrans
>>> code = ("subroutine product_test(array)\n"

" real :: array(10,10)\n"

" real :: result\n"
result = product(array)\n"
- "end subroutine\n")
>>> psyir = FortranReader () .psyir_from_source(code)
>>> product_node = psyir.children[0].children[0].children[1]
>>> Product2LoopTrans() .apply(product_node)
>>> print (FortranWriter () (psyir))
subroutine product_test(array)

real, dimension(10,10) :: array
real :: result
integer :: idx
integer :: idx_1
result = 1.0
do idx =1, 10, 1
do idx_1 =1, 10, 1

(continues on next page)

7.4. Available transformations 97

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

result = result * array(idx_1,idx)
enddo
enddo

end subroutine product_test

apply (node, options=None)

Apply the array-reduction intrinsic conversion transformation to the specified node. This node must be one
of these intrinsic operations which is converted to an equivalent loop structure.

Parameters
¢ node (psyclone.psyir.nodes.IntrinsicCall) — an array-reduction intrinsic.

e options (Optional [Dict[str, Any]]) - options for the transformation.

class psyclone.psyir.transformations.ProfileTrans
Create a profile region around a list of statements. For example:

r

>>> from psyclone.parse.algorithm import parse

>>> from psyclone.parse.utils import ParseError

>>> from psyclone.psyGen import PSyFactory, GenerationError
>>> from psyclone.psyir.transformations import ProfileTrans
>>> api = "gocean"

>>> filename = "nemolite2d_alg.f90"

>>> ast, invokeInfo = parse(filename, api=api, invoke_name="invoke")
>>> psy = PSyFactory(api).create(invokeInfo)

>>>

>>> p_trans = ProfileTrans()

>>>

>>> schedule = psy.invokes.get('invoke_0').schedule

>>> print(schedule.view())

>>>

>>> # Enclose all children within a single profile region
>>> p_trans.apply(schedule.children)

>>> print(schedule.view())

This implementation relies completely on the base class PSyDataTrans for the actual work, it only adjusts the
name etc, and the list of valid nodes.
apply (nodes, options=None)
Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.
Parameters

* nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node)—can
be a single node or a list of nodes.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["prefix"] (str) — a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be
added automatically. It defaults to “”.

98 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

* options["region_name"] ((str,str)) — an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

class psyclone.psyir.transformations.ReadOnlyVerifyTrans (node_class=<class 'psy-
clone.psyir.nodes.read_only_verify_node.ReadOnlyVerifyNo

This transformation inserts a ReadOnly VerifyNode or a node derived from ReadOnly VerifyNode into the PSyIR
of a schedule. At code creation time this node will use the PSyData API to create code that will verify that
read-only quantities are not modified.

After applying the transformation the Nodes marked for verification are children of the ReadOnlyVerifyNode.
Nodes to verify can be individual constructs within an Invoke (e.g. Loops containing a Kernel or BuiltIn call) or
entire Invokes.

Parameters
node_class (psyclone.psyir.nodes.ReadOnlyVerifyNode or derived class) — The class
of Node which will be inserted into the tree (defaults to ReadOnly VerifyNode), but can be any
derived class.

apply (nodes, options=None)

Apply this transformation to a subset of the nodes within a schedule - i.e. enclose the specified Nodes in
the schedule within a single PSyData region.

Parameters

¢ nodes (psyclone.psyir.nodes.Node or list of psyclone.psyir.nodes.Node) - can
be a single node or a list of nodes.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["prefix"] (str) — a prefix to use for the PSyData module name
(PREFIX_psy_data_mod) and the PSyDataType (PREFIX_PSYDATATYPE) - a “_” will be
added automatically. It defaults to “”.

* options["region_name"] ((str,str)) — an optional name to use for this PSyData
area, provided as a 2-tuple containing a location name followed by a local name. The pair
of strings should uniquely identify a region unless aggregate information is required (and
is supported by the runtime library).

class psyclone.psyir.transformations.Reference2ArrayRangeTrans

Provides a transformation from PSyIR Array Notation (a reference to an Array) to a PSyIR Range. For example:

-

>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Reference
>>> from psyclone.psyir.transformations import TransformationError
>>> CODE = ("program example\n"
"real :: a(:)\n"
"a = 0.0\n"
A "end program\n')
>>> trans = Reference2ArrayRangeTrans()
>>> psyir = FortranReader() .psyir_from_source (CODE)

(continues on next page)

7.4. Available transformations 99

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

>>> for reference in psyir.walk(Reference):
try:
trans.apply(reference)
except TransformationError:
. pass
>>> print(FortranWriter() (psyir))
program example
real, dimension(:) :: a

a(:) = 0.0

end program example

(continued from previous page)

This transformation does not currently support arrays within structures, see issue #1858.

apply (node, options=None)

Apply the Reference2 ArrayRangeTrans transformation to the specified node. The node must be a Reference
to an array. The Reference is replaced by an ArrayReference with appropriate explicit range nodes (termed

colon notation in Fortran).

Parameters

* node (psyclone.psyir.nodes.Reference) — a Reference node.

e options (Optional [Dict[str, Any]])- a dict with options for transformations.

class psyclone.psyir.transformations.ReplaceInductionVariablesTrans

Move all supported induction variables out of the loop, and replace their usage inside the loop. For example:

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.nodes import Loop
>>> from psyclone.psyir.transformations import o
—ReplaceInductionVariablesTrans
>>> from psyclone.psyir.backend.fortran import FortranWriter
>>> psyir = FortranReader() .psyir_from_source("""

. subroutine sub()

integer :: i, im, ic, tmp(100)

do i=1, 100

im=1 -1

ic = 2

tmp(i) = ic * im
enddo

... end subroutine sub""")

>>> loop = psyir.walk(Loop) [0]

>>> ReplaceInductionVariablesTrans() .apply(loop)
>>> print(FortranWriter () (psyir))

subroutine sub()

integer :: i
integer :: im
integer :: ic
integer, dimension(100) :: tmp

(continues on next page)

100 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)
doi=1, 100, 1
tmp(i) =2 * (1 - 1)
enddo
ic =2
im=1i-1-1

end subroutine sub

The replaced induction variables assignments are added after the loop, so these variables will have the correct
value if they are used elsewhere.

The following restrictions apply for the assignment to an induction variable:
* the variable must be a scalar (i.e. no array access at all, not even a constant like a(3) or a%b(3)%c)

¢ none of variables on the right-hand side can be written in the loop body (the loop variable is written in the
Loop statement, not in the body, so it can be used).

* Only intrinsic function calls are allowed on the RHS (since they are known to be elemental)
* the assigned variable must not be read before the assignment.

* the assigned variable cannot occur on the right-hand side (e.g. k =k + 3).

* there must be only one assignment to this induction variable.

apply (node, options=None)

Apply the ReplacelnductionVariablesTrans transformation to the specified node. The node must be a loop.
In case of nested loops, the transformation might need to be applied several times, from the inner-most loop
outwards.

Parameters
node (psyclone.psyir.nodes.Loop) — a Loop node.

class psyclone.psyir.transformations.Sign2CodeTrans

Provides a transformation from a PSyIR SIGN intrinsic node to equivalent code in a PSyIR tree. Validity checks
are also performed.

The transformation replaces

[R — SIGN(A, B)

with the following logic:

R = ABS(A)
if B < 0.0:
R = R*-1.0

i.e. the value of A with the sign of B

apply (node, options=None)

Apply the SIGN intrinsic conversion transformation to the specified node. This node must be a SIGN
IntrinsicCall. The SIGN IntrinsicCall is converted to equivalent inline code. This is implemented as a
PSyIR transform from:

[R — ... SIGN(A, B)

7.4. Available transformations 101

PSyclone User Guide, Release 3.1.0-dev

to:

tmp_abs = A
if tmp_abs < 0.0:

res_abs = tmp_abs*-1.0
else:

res_abs = tmp_abs
res_sign = res_abs
tmp_sign = B
if tmp_sign < 0.0:

res_sign = res_sign*-1.0
R = ... res_sign ...

where A and B could be arbitrarily complex PSyIR expressions, ...

could be arbitrary PSyIR code and

where ABS has been replaced with inline code by the NemoAbsTrans transformation.

This transformation requires the IntrinsicCall node to be a child of an assignment and will raise an exception

if this is not the case.

Parameters

¢ node (psyclone.psyir.nodes.IntrinsicCall) - a SIGN IntrinsicCall node.

* symbol_table (psyclone.psyir.symbols.SymbolTable) — the symbol table.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-

tions.

class psyclone.psyir.transformations.Sum2LoopTrans

Provides a transformation from a PSyIR SUM IntrinsicCall node to an equivalent PSyIR loop structure that is
suitable for running in parallel on CPUs and GPUs. Validity checks are also performed.

If SUM contains a single positional argument which is an array, all elements of that array are summed and the

result returned in the scalar R.

[R — SUM(ARRAY)

For example, if the array is two dimensional, the equivalent code for real data is:

R=20.0
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1),UBOUND (ARRAY, 1)
R = R + ARRAY(I,)

If the mask argument is provided then the mask is used to determine whether the sum is applied:

[R = SUM(ARRAY, mask=MOD(ARRAY, 2.0)==1)

If the array is two dimensional, the equivalent code for real data is:

R=20.0
DO J=LBOUND (ARRAY, 2) ,UBOUND (ARRAY, 2)
DO I=LBOUND(ARRAY, 1) ,UBOUND (ARRAY, 1)
IF (MOD(ARRAY(I,J), 2.0)==1) THEN
R = R + ARRAY(TI,J)

102

Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

The dimension argument is currently not supported and will result in a TransformationError exception being

raised.

[R = SUMCARRAY, dimension=2)

}

The array passed to MAXVAL may use any combination of array syntax, array notation, array sections and scalar

bounds:

(

SUMCARRAY) ! array syntax

SUMCARRAY(:,:)) ! array notation

= SUM(CARRAY(1:10,l0:hi)) ! array sections

SUM(ARRAY(1:10,:)) ! mix of array section and array notation
= SUM(CARRAY(1:10,2)) ! mix of array section and scalar bound

~ ™™™
|

For example:

>>> from psyclone.psyir.backend.fortran import FortranWriter

>>> from psyclone.psyir.frontend.fortran import FortranReader
>>> from psyclone.psyir.transformations import Sum2LoopTrans

>>> code = ("subroutine sum_test(array,n,m)\n"

" integer :: n, m\n"
" real :: array(10,10)\n"
" real :: result\n"

result = sum(array)\n"

- "end subroutine\n")

>>> psyir = FortranReader () .psyir_from_source(code)

>>> sum_node = psyir.children[0].children[0].children[1]
>>> Sum2LoopTrans() . apply(sum_node)

>>> print(FortranWriter() (psyir))

subroutine sum_test(array, n, m)

integer :: n

integer :: m

real, dimension(10,10) :: array
real :: result

integer :: idx

integer :: idx_1

result = 0.0

do idx = 1, 10, 1
do idx_1 =1, 10, 1
result = result + array(idx_1,idx)
enddo
enddo

end subroutine sum_test

apply (node, options=None)

Apply the array-reduction intrinsic conversion transformation to the specified node. This node must be one

of these intrinsic operations which is converted to an equivalent loop structure.
Parameters
e node (psyclone.psyir.nodes.IntrinsicCall) — an array-reduction intrinsic.

* options (Optional [Dict[str, Any]]) - options for the transformation.

7.4. Available transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

7.5 Algorithm-layer

The gocean API supports the transformation of the algorithm layer. In the future the LFRic API will also support
this. The ability to transformation the algorithm layer is new and at this time no relevant transformations have been
developed.

7.6 Kernels

PSyclone supports the transformation of Kernels as well as PSy-layer code. However, the transformation of kernels to
produce new kernels brings with it additional considerations, especially regarding the naming of the resulting kernels.
PSyclone supports two use cases:

1. the HPC expert wishes to optimise the same kernel in different ways, depending on where/how it is called;

2. the HPC expert wishes to transform the kernel just once and have the new version used throughout the Algorithm
file.

The second case is really an optimisation of the first for the case where the same set of transformations is applied to
every instance of a given kernel.

Since PSyclone is run separately for each Algorithm in a given application, ensuring that there are no name clashes
for kernels in the application as a whole requires that some state is maintained between PSyclone invocations. This
is achieved by requiring that the same kernel output directory is used for every invocation of PSyclone when building
a given application. However, this is under the control of the user and therefore it is possible to use the same output
directory for a subset of algorithms that require the same kernel transformation and then a different directory for another
subset requiring a different transformation. Of course, such use would require care when building and linking the
application since the differently-optimised kernels would have the same names.

By default, transformed kernels are written to the current working directory. Alternatively, the user may specify the
location to which to write the modified code via the -okern command-line flag.

In order to support the two use cases given above, PSyclone supports two different kernel-renaming schemes: “mul-
tiple” and “single” (specified via the --kernel-renaming command-line flag). In the default, “multiple” scheme,
PSyclone ensures that each transformed kernel is given a unique name (with reference to the contents of the kernel
output directory). In the “single” scheme, it is assumed that any given kernel that is transformed is always transformed
in the same way (or left unchanged) and thus just one transformed version of it is created. This assumption is checked
by examining the Fortran code for any pre-existing transformed version of that kernel. If another transformed version of
that kernel exists and does not match that created by the current transformation then PSyclone will raise an exception.

7.6.1 Rules

Kernel code that is to be transformed is subject to certain restrictions. These rules are intended to make kernel trans-
formations as robust as possible, in particular by limiting the amount of code that must be parsed by PSyclone (via
fparser). The rules are as follows:

1) Any variable or procedure accessed by a kernel must either be explicitly declared or named in the only clause
of a module use statement within the scope of the subroutine containing the kernel implementation. This means
that:

1) Kernel subroutines are forbidden from accessing data using COMMON blocks;
2) Kernel subroutines are forbidden from calling procedures declared via the EXTERN statement;

3) Kernel subroutines must not access data or procedures made available via their parent (containing) module.

104 Chapter 7. Transformations

PSyclone User Guide, Release 3.1.0-dev

2) The full Fortran source of a kernel must be available to PSyclone. This includes the source of any modules from
which it accesses either routines or data. (However, kernel routines are permitted to make use of Fortran intrinsic
routines.)

For instance, consider the following Fortran module containing the bc_ssh_code kernel:

module boundary_conditions_mod
real :: forbidden_var

contains
subroutine bc_ssh_code(ji, jj, istep, ssha)

use kind_params_mod, only: go_wp
use model_mod, only: rdt

integer, intent(in) :: ji, jj, istep
real(go_wp), dimension(:,:), intent(inout) :: ssha
real(go_wp) :: rtime

rtime = real(istep, go_wp) * rdt
end subroutine bc_ssh_code

end module boundary_conditions_mod

Since the kernel subroutine accesses data (the rdt variable) from the model_mod module, the source of that module
must be available to PSyclone if a transformation is applied to this kernel. Should rdt not actually be defined in
model_mod (i.e. model_mod itself imports it from another module) then the source containing its definition must also
be available to PSyclone. Note that the rules forbid the bc_ssh_code kernel from accessing the forbidden_var
variable that is available to it from the enclosing module scope.

Note

these rules only apply to kernels that are the target of PSyclone kernel transformations.

7.6.2 Available Kernel Transformations

The transformations listed below have to be applied specifically to a PSyclone kernel. There are a number of transfor-
mations not listed here that can be applied to either or both the PSy-layer and Kernel-layer PSyIR.

Note

Some of these transformations modify the PSyIR tree of both the InvokeSchedule where the transformed Coded-
Kernel is located and its associated KernelSchedule.

class psyclone.transformations.ACCRoutineTrans

Transform a kernel or routine by adding a “!$acc routine” directive (causing it to be compiled for the OpenACC
accelerator device). For example:

>>> from psyclone.parse.algorithm import parse
>>> from psyclone.psyGen import PSyFactory
>>> api = "gocean"

(continues on next page)

7.6. Kernels 105

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)
>>> ast, invokeInfo = parse(GOCEAN_SOURCE_FILE, api=api)
>>> psy = PSyFactory(api).create(invokeInfo)
>>>
>>> from psyclone.transformations import ACCRoutineTrans
>>> rtrans = ACCRoutineTrans()
>>>
>>> schedule = psy.invokes.get('invoke_0').schedule
>>> # Uncomment the following line to see a text view of the schedule
>>> # print(schedule.view())
>>> kern = schedule.children[0].children[0].children[0]
>>> # Transform the kernel
>>> rtrans.apply(kern)

apply (node, options=None)

Add the ‘!$acc routine” OpenACC directive into the code of the supplied Kernel (in a PSyKAl API such as
GOcean or LFRic) or directly in the supplied Routine.

Parameters

¢ node (psyclone.psyGen.Kern | psyclone.psyir.nodes.Routine) — the kernel call
or routine implementation to transform.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

e options["force"] (bool) — whether to allow routines with CodeBlocks to run on the
GPU.

» options["parallelism"] (str) — the level of parallelism that the target routine (or a

callee) exposes. One of “seq” (the default), “vector”, “worker” or “gang”.

validate (node, options=None)

Perform checks that the supplied kernel or routine can be transformed.
Parameters

¢ node (psyclone.psyGen.Kern | psyclone.psyir.nodes.Routine) — the kernel or
routine which is the target of this transformation.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

« options["force"] (bool) — whether to allow routines with CodeBlocks to run on the
GPU.

Raises
e TransformationError — if the node is not a kernel or a routine.
* TransformationError - if the target is a built-in kernel.
e TransformationError - if it is a kernel but without an associated PSyIR.

¢ TransformationError - if any of the symbols in the kernel are accessed via a module
use statement.

* TransformationError - if the kernel contains any calls to other routines.

e TransformationError - if the ‘parallelism’ option is supplied but is not a recognised
level of parallelism.

106 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PSyclone User Guide, Release 3.1.0-dev

class psyclone.psyir.transformations.FoldConditionalReturnExpressionsTrans

Provides a transformation that folds conditional expressions with only a return statement inside so that the Return
statement is moved to the end of the Routine and therefore it can be safely removed. This simplifies the control
flow of the kernel to facilitate other transformations like kernel fusions. For example, the following code:

subroutine test(i)
if (i < 5) then
return
endif
if (i > 10) then
return
endif
! CODE
end subroutine

will be transformed to:

(subroutine test(i)
if (.not.(d < 5)) then
if (.not.(i > 10)) then
! CODE
endif
endif
end subroutine

L

apply (node, options=None)
Apply this transformation to the supplied node.

Parameters
¢ node (psyclone.psyir.nodes.Routine) — the node to transform.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

property name
Returns the name of this transformation as a string.

validate (node, options=None)

Ensure that it is valid to apply this transformation to the supplied node.
Parameters
¢ node (psyclone.psyir.nodes.Routine) — the node to validate.

e options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Raises
TransformationError — if the node is not a Routine.

class psyclone.transformations.KernelImportsToArguments

Transformation that removes any accesses of imported data from the supplied kernel and places them in the caller.
The values/references are then passed by argument into the kernel.

7.6. Kernels 107

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

apply (node, options=None)

Convert the imported variables used inside the kernel into arguments and modify the InvokeSchedule to
pass the same imported variables to the kernel call.

Parameters
¢ node (psyclone.psyGen.CodedKern) — a kernel call.

* options (Optional [Dict[str, Any]]) — a dictionary with options for transforma-
tions.

Note

This transformation is only supported by the GOcean 1.0 APIL.

7.7 OpenMP
OpenMP is added to a code by using transformations. The OpenMP transformations currently supported allow the
addition of:
* an OpenMP Parallel directive
¢ an OpenMP Target directive
¢ an OpenMP Declare Target directive
* an OpenMP Do/For/Loop directive
« an OpenMP Single directive
¢ an OpenMP Master directive
* an OpenMP Taskloop directive
* multiple OpenMP Taskwait directives; and
¢ an OpenMP Parallel Do directive.

The generic versions of these transformations (i.e. ones that theoretically work for all APIs) were given in the Available
transformations section. Examples of their use, for both CPU and offload to GPU, may be found in the PSyclone/
examples/nemo/scripts/omp_?pu_trans.py transformation scripts.

The API-specific versions of these transformations are described in the API-specific sections of this document. Exam-
ples for the LFRic API may be found in PSyclone/examples/lfric/scripts.

7.7.1 Reductions

PSyclone supports parallel scalar reductions. If a scalar reduction is specified in the Kernel metadata (see the API-
specific sections for details) then PSyclone ensures the appropriate reduction is performed.

In the case of distributed memory, PSyclone will add GlobalSum’s at the appropriate locations. As can be inferred by
the name, only “summation” reductions are currently supported for distributed memory.

In the case of an OpenMP parallel loop the standard reduction support will be used by default. For example

!$omp parallel do, reduction(+:x)
!loop
1$omp end parallel do

108 Chapter 7. Transformations

https://docs.python.org/3/library/stdtypes.html#str

PSyclone User Guide, Release 3.1.0-dev

OpenMP reductions do not guarantee to give bit reproducible results for different runs of the same problem even if
the same problem is run using the same resources. The reason for this is that the order in which data is reduced is not
mandated.

Therefore, an additional reprod option has been added to the OpenMP Do transformation. If the reprod option is set
to “True” then the OpenMP reduction support is replaced with local per-thread reductions which are reduced serially
after the loop has finished. This implementation guarantees to give bit-wise reproducible results for different runs of
the same problem using the same resources, but will not bit-wise compare if the code is rerun with different numbers
of OpenMP threads.

7.7.2 Restrictions

If two reductions are used within an OpenMP region and the same variable is used for both reductions then PSyclone
will raise an exception. In this case the solution is to use a different variable for each reduction.

PSyclone does not support (distributed-memory) halo swaps or global sums within OpenMP parallel regions. Attempt-
ing to create a parallel region for a set of nodes that includes halo swaps or global sums will produce an error. In such
cases it may be possible to re-order the nodes in the Schedule using the MoveTrans transformation.

7.7.3 OpenMP Tasking

PSyclone supports OpenMP Tasking, through the OMPTaskloopTrans and OMPTaskwaitTrans transformations.
OMPTaskloopTrans transformations can be applied to loops, whilst the OMPTaskwaitTrans operator is ap-
plied to an OpenMP Parallel Region, and computes the dependencies caused by Taskloops, and adds OpenMP
Taskwait statements to satisfy those dependencies. An example of using OpenMP tasking is available in PSy-
clone/examples/nemo/eg l/openmp_taskloop_trans.py.

7.8 OpenCL

OpenCL is added to a code by using the GOOpenCLTrans transformation (see the Available transformations Sec-
tion above). Currently this transformation is only supported for the GOceanl.0 API and is applied to the whole In-
vokeSchedule of an Invoke. This transformation will add an OpenCL driver infrastructure to the PSy layer and generate
an OpenCL kernel for each of the Invoke kernels. This means that all kernels in that Invoke will be executed on the
OpenCL device. The PSy-layer OpenCL code generated by PSyclone is still Fortran and makes use of the FortCL
library (https://github.com/stfc/FortCL) to access OpenCL functionality. It also relies upon the device acceleration
support provided by the dl_esm_inf library (https://github.com/stfc/dl_esm_inf).

Note

The generated OpenCL kernels are written in a file called opencl_kernels_<index>.cl where the index keeps in-
creasing if the file name already exist.

The GOOpenCLTrans transformation accepts an options argument with a map of optional parameters to tune the
OpenCL host code in the PSy layer. These options will be attached to the transformed InvokeSchedule. The current
available options are:

Option Description Default
end_barrier Whether a synchronization barrier should be placed at the end of the Invoke. True
enable_profiling Enables the profiling of OpenCL Kernels. False
out_of_order Allows the OpenCL implementation to execute the enqueued kernels out-of-order. False

Additionally, each individual kernel (inside the Invoke that is going to be transformed) also accepts a map of options

7.8. OpenCL 109

https://github.com/stfc/FortCL
https://github.com/stfc/dl_esm_inf

25

26

27

28

29

PSyclone User Guide, Release 3.1.0-dev

which are provided by the set_opencl_options() method of the Kern object. This can affect both the driver layer and/or
the OpenCL kernels. The current available options are:

Op- Description De-
tion fault
lo- Number of work-items to group together in a work-group execution (kernel instances executed at the 64

cal_size same time).

queue_1 The identifier of the OpenCL command_queue to which the kernel should be submitted. If the 1
kernel has a dependency on another kernel submitted to a different command_queue a barrier will
be added to guarantee the execution order.

Below is an example of a PSyclone script that uses a GOOpenCLTrans with multiple InvokeSchedule and kernel-specific
optimization options.

def trans(psyir):

"

Applies OpenCL to the given PSy-layer.

:param psyir: the PSyIR of the PSy-layer.
:type psyir: :py:class: psyclone.psyir.nodes.FileContainer’

"

ocl_trans = GOOpenCLTrans()
fold_trans = FoldConditionalReturnExpressionsTrans()
move_boundaries_trans = GOMoveIterationBoundariesInsideKernelTrans()

Provide kernel-specific OpenCL optimization options

for idx, kern in enumerate(psyir.kernels()):
Move the PSy-layer loop boundaries inside the kernel as a kernel
mask, this allows to iterate through the whole domain
move_boundaries_trans.apply(kern)
Change the syntax to remove the return statements introduced by the
previous transformation
fold_trans.apply(kern.get_kernel_schedule())
Specify the OpenCL queue and workgroup size of the kernel
In this case we dispatch each kernel in a different queue to check
that the output code has the necessary barriers to guarantee the
kernel execution order.
kern.set_opencl_options({"queue_number": idx+1, 'local_size': 4})

Transform the Schedule
for schedule in psyir.walk(InvokeSchedule):
ocl_trans.apply(schedule, options={"end_barrier": True})

OpenCL delays the decision of which and where kernels will execute until run-time, therefore it is important to use the
environment variables provided by FortCL and DL_ESM_INF to inform how things should execute. Specifically:

e FORTCL_KERNELS_FILE: Point to the file containing the kernels to execute, they can be compiled ahead-of-time
or providing the source for JIT compilation. To link more than a single kernel, one must merge all the kernels
generated by PSyclone in a single source file.

e FORTCL_PLATFORM: If the system has more than 1 OpenCL platform. This environment variable may be used to
select which platform on which to execute the kernels.

110 Chapter 7. Transformations

PSyclone User Guide, Release 3.1.0-dev

e DL_ESM_ALIGNMENT: When using OpenCL <= 1.2 the local_size should be exactly divisible by the total
size. If this is not the case some implementations fail silently. A way to solve this issue is to set the
DL_ESM_ALIGNMENT variable to be equal to the local size.

Note

The OpenCL generation can be combined with distributed memory generation. In the case where there is more
than one accelerator available on each node, the PSyclone configuration file parameter OCL_DEVICES_PER_NODE
has to be set to the appropriate value and the number of MPI-ranks-per-node set by the mpirun command has to
match this value accordingly.

For instance if there are 2 accelerators per nodes, psyclone.cfg should have OCL_DEVICES_PER_NODE=2 and the
program must be executed with mpirun -n <total_ranks> -ppn 2 ./application (Note: -ppn is an Intel
MPI specific parameter, use equivalent configuration parameters for other MPI implementations.)

For example, an execution of a PSyclone generated OpenCL code using all the mentioned run-time configuration
options could look something like:

FORTCL_PLATFORM=3 FORTCL_KERNELS_FILE=allkernels.cl DL_ESM_ALIGNMENT=64 \
mpirun -n 2 ./application.exe

7.9 OpenACC

PSyclone supports the generation of code targetting GPUs through the addition of OpenACC directives. This is achieved
by a user applying various OpenACC transformations to the PSyIR before the final Fortran code is generated. The
steps to parallelisation are very similar to those in OpenMP with the added complexity of managing the movement of
data to and from the GPU device. For the latter task PSyclone provides the ACCDataTrans and ACCEnterDataTrans
transformations, as described in the Available transformations Section above. These two transformations add statically-
and dynamically-scoped data regions, respectively. The former manages what data is on the remote device for a specific
section of code while the latter allows run-time control of data movement. This second option is essential for minimising
data movement as, without it, PSyclone-generated code would move data to and from the device upon every entry/exit
of an Invoke. The first option is mainly provided as an aid to incremental porting and/or debugging of an OpenACC
application as it provides explicit control over what data is present on a device for a given (part of an) Invoke routine.

The NVIDIA compiler compiler provides an alternative approach to controlling data movement through its ‘managed
memory’ option (-gpu=mem:managed). When this is enabled the compiler itself takes on the task of ensuring that data
is copied to/from the GPU when required. (Note that this approach can struggle with Fortran code containing derived
types however.)

As well as ensuring the correct data is copied to and from the remote device, OpenACC directives must also be
added to a code in order to tell the compiler how it should be parallelised. PSyclone provides the ACCKernelsTrans,
ACCParallelTrans and ACCLoopTrans transformations for this purpose. The simplest of these is ACCKernelsTrans
(currently only supported for the generic code transformation and LFRic API) which encloses the code represented by
a sub-tree of the PSyIR within an OpenACC kernels region. This essentially gives free-reign to the compiler to
automatically parallelise any suitable loops within the specified region. An example of the use of ACCDataTrans
and ACCKernelsTrans may be found in PSyclone/examples/nemo/eg3 and an example of ACCKernelsTrans may be
found in PSyclone/examples/Ifric/eg14.

However, as with any “automatic” approach, a more performant solution can almost always be obtained by providing
the compiler with more explicit direction on how to parallelise the code. The ACCParallelTrans and ACCLoopTrans
transformations allow the user to define thread-parallel regions and, within those, define which loops should be paral-
lelised. For an example of their use please see PSyclone/examples/gocean/eg?2 or PSyclone/examples/Ifric/eg14.

In order for a given section of code to be executed on a GPU, any routines called from within that section must also have
been compiled for the GPU. This then requires either that any such routines are in-lined or that the OpenACC routine

7.9. OpenACC 111

PSyclone User Guide, Release 3.1.0-dev

directive be added to any such routines. This situation will occur routinely in those PSyclone APIs that use the PSyKAl
separation of concerns since the user-supplied kernel routines are called from within PSyclone-generated loops in the
PSy layer. PSyclone therefore provides the ACCRoutineTrans transformation which, given a Kernel node in the PSyIR,
creates a new version of that kernel with the routine directive added. See either PSyclone/examples/gocean/eg2 or
PSyclone/examples/lfric/eg14 for an example.

7.10 SIR

It is currently not possible for PSyclone to output SIR code without using a script. Three examples of such scripts
are given in example 4 for the NEMO examples directory. The first sir_trans.py simply outputs SIR. This will raise
an exception if used with the tracer advection example as the example contains array-index notation which is not
supported by the SIR backend, but will generate code for the other examples. The second, sir_trans_loop.py includes
transformations to hoist code out of a loop, translate array-index notation into explicit loops and translate a single
access to an array dimension to a one-trip loop (to make the code suitable for the SIR backend). This works with the
tracer-advection example. The third script sir_trans_all.py additionally replaces any intrinsics with equivalent code
and can also be used with the tracer-advection example (and the intrinsic_example.f90 example).

112 Chapter 7. Transformations

CHAPTER
EIGHT

INTRODUCTION TO PSYKAL

PSyKALI is a kernel-based software architecture proposed in the GungHo project to design Fortran-embedded
domain-specific languages that provide a clear separations of concerns between the science code and the optimisa-
tion/parallelisation details of an application. The model distinguishes between three layers: the Algorithm layer, the
Kernel layer and the Parallelisation System (PSy) layer; which together give the model its name.

The Algorithm layer is responsible for providing a high-level description of the algorithm that the scientist wants to
run. This layer operates on full fields and includes calls to kernels and built-ins.

The Kernel layer contains the actual implementation of the kernels as functors. Each functor implements a method that
operates on an individual section of the fields. Depending on the DSL, these can be a single element, a vertical column,
or a set of vertical columns. The kernels also specify some metadata that allow the data dependencies between kernels
to be determined. Built-ins are similar to kernels but are provided by the PSyclone infrastructure itself.

The PSy layer acts as a bridge between the algorithm and kernel layers. It contains the code that is responsible for
performing concurrent execution of kernels, including the way in which the iteration space is traversed, while respect-
ing kernel dependencies. This layer can be tuned for specific platforms such as multi-node, multi-core and GPGPUs
architectures without affecting the user-supplied Algorithm and Kernel layers.

Rather than requiring that the PSy layer be written manually, PSyclone uses the provided Algorithm and Kernel im-
plementations to generate an inital PSyIR for the PSy-layer, optionally with distributed-memory parallelism. This then
can be programatically optimised by applying PSyclone transformations (e.g. kernel fusing, colouring, inlining, ...)
to better fit the target architecture.

The rest of this section describes how to use the psyclone command to process PSyKAl DSLs and how to implement
each layer, providing examples for each of them.

8.1 Usage

To use PSyclone to process a PSyKALl algorithm file, the -api API_NAME parameter must be provided. In addition,
distributed memory can be switched on or off by using the -dm/--dist_mem or -nodm/--no_dist_mem flags. For
PSyKAI DSLs, the optional transformation script provided by the -s SCRIPT parameter will be applied to the PSyIR
of the PSy-layer (but the scripts can also contain instructions to transform the code of the kernels used within it).

For example, the following command will process an LFRic PSyKAl algorithm file, generate a PSy-layer containing
distributed-memory parallelism and then transform it using the additional_optimisations.py script:

psyclone -api lfric -dm -s additional_optimisations.py algorithm.f90 \
-oalg algorithm_output.f90 -opsy psy_layer_output.f90

To date, there are two PSyKAl DSL implementations: the LFRic PSyKAl API, a mixed finite-element DSL used to
implement the next-generation UK Met Office atmospheric model dynamical core; and the GOcean PSyKAl API, a
finite difference ocean model benchmark. For more details on these see the corresponding sections of this User Guide.

113

https://www.metoffice.gov.uk/research/foundation/dynamics/next-generation

PSyclone User Guide, Release 3.1.0-dev

8.2 Algorithm layer

As mentioned in the Introduction, the Algorithm layer provides a high-level description of the algorithm that the scien-
tist would like to run, in terms of invocations to Kernel and Built-in operations. It operates on full fields and therefore
it is not allowed to call the individual kernel executors nor include any parallelisation calls or directives. Instead, the
algorithm layer uses the invoke subroutine, which takes as arguments one or more kernel functor constructors (as a
Fortran type constructor) and, optionally, a name argument. The kernel functors, in turn, take as argument the full
fields they operate on and any other quantities specified in their metadata.

For example:

call invoke(kernell(argl,arg2), kernel2(argl, 3), name="Example_Invoke")

A complete application can consist of many algorithm files, each of them containing as many invoke() calls as
required. PSyclone is applied to each individual algorithm layer file and must therefore be run multiple times if multiple
algorithm files exist in a project.

The algorithm developer is also able to reference more than one Kernel/Built-in within an invoke call (as indicated in the
previous example). In fact this feature is encouraged for performance reasons. As a general guideline the developer
should aim to use as few invokes as possible, each with as many Kernel functors in them as is possible. The reason
for this is that it allows for greater freedom for optimisations in the PSy-layer as these are limited to the contents of
individual invokes - PSyclone currently does not attempt to optimise the PSy layer over multiple invoke calls.

As well as generating the PSy-layer code, PSyclone modifies the Algorithm layer code, replacing invoke calls with calls
to the generated PSy-layer subroutine(s) (plus the associated use statements) so that the algorithm code is compilable
and linkable. For example, the invoke above is translated into something like the following:

use psy, only : invoke_example_invoke

call invoke_example_invoke(argl, arg2, 3)

The name argument in the invoke call is optional. If supplied it must be a string literal. Labels are not case-sensitive
and must be valid Fortran names (e.g. name="compute(1)" is invalid). The label is used to name the corresponding
PSy-layer routine generated by PSyclone in order to make debugging and profiling outputs more readable. So, for
the above example, the generated PSy-layer subroutine will be named “invoke_example_invoke”, otherwise a numeric
index is given (e.g. “invoke_0"). Each invoke label must be unique within an Algorithm source file.

8.2.1 Limitations

There are limitations in the Fortran expressions that can be used inside the invoke call kernel arguments. The current
list of known restrictions on the form of kernel arguments within an invoke is:

* No arithmetic expressions (e.g. kernel_type(a+b) or kernel_type(-a))
* No named (optional) arguments (e.g. kernel_type(fn(my_arg=a)))

If you encounter any other limitations (or have a burning desire to use one of the above forms) then please contact the
PSyclone developers.

114 Chapter 8. Introduction to PSyKAI

PSyclone User Guide, Release 3.1.0-dev

8.3 Kernel layer

In the PSyKAI model, the Kernel code operates on an individual element of a field (such as a column of cells). The
reason for doing this is that it gives the PSy layer flexibility in choosing the iteration order and exploiting the spatial
domain parallelisation. The Kernel layer is not allowed to include any calls or directives related to parallelisation and
works on raw Fortran arrays (to allow the compiler to optimise the code). Since a Kernel is called over the spatial
domain (by the PSy layer) it must take at least one field or operator as an argument.

Kernels are implemented as Fortran Functors. Functors are objects that can be treated as if they are functions. As
such they have two main interfaces for calling and providing arguments to them: the object constructor (used by the
Algorithm layer) and a method that executes the code of the functor (used by the PSy-layer).

PSyKal applications accept one or more modules providing kernels, each of which can contain one or more kernel
functors. Each kernel functor provides a set of meta-data attributes and a method with its implementation.

In the example below the module w3_solver_kernel_mod contains one kernel named w3_solver_kernel_type
and its individual element execution method in subroutine w3_solver_code.

The metadata is API-specific and describes the kernel iteration space and dependencies, so that PSyclone can generate
correct PSy-layer code (including any necessary halo-exchanges if DM is enabled). The metadata is provided by the
kernel developer, who must guarantee its correctness. The example below shows meta-data for the LFRic API:

module w3_solver_kernel_mod

type, public, extends(kernel_type) :: w3_solver_kernel_type
private

type(arg_type) :: meta_args(4) = (/ &
arg_type(GH_FIELD, GH_REAL, GH_WRITE, W3), &
arg_type(GH_FIELD, GH_REAL, GH_READ, W3), &
arg_type(GH_FIELD*3, GH_REAL, GH_READ, Wchi), &
arg_type(GH_SCALAR, GH_REAL, GH_READ) &
/)
type(func_type) :: meta_funcs(2) = (/ &
func_type(W3, GH_BASIS), &
func_type(Wchi, GH_DIFF_BASIS) &
/)
integer :: gh_shape = GH_QUADRATURE_XYoZ
integer :: operates_on = CELL_COLUMN
contains
procedure, nopass :: solver_w3_code
end type
contains
subroutine solver_w3_code(nlayers, &
x, rhs, &
chi_1, chi_2, chi_3, ascalar, &
ndf_w3, undf_w3, map_w3, w3_basis, &
ndf_wchi, undf_wchi, map_wchi, wchi_diff basis, &

ngp_h, ngp_v, wgp_h, wgp_v)
end subroutine solver_w3_code

(continues on next page)

8.3. Kernel layer 115

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

{end module w3_solver_kernel_mod

Note that the executor method can also be declared as a module procedure interface to provide alternative implementa-
tions (e.g. different precisions) of the kernel code. These are selected as appropriate by the Fortran compiler, depending
on the precision of the fields being passed to them:

type, extends(kernel_type) :: kernell
'.q.r}-)e(. ..) :: meta_args(...) = (/ ... /D
ir.l'-ceger :: operates_on = ...

em.i.'.cype kernell

interface ...

module procedure ...
end interface

8.4 Built-ins

Built-ins are operations which can be specified within an invoke call in the algorithm layer but do not require an
associated kernel implementation because they are provided by the infrastructure.

These are useful for commonly-used operations, as they reduce the amount of code that the PSyKAI project has to
maintain. In addition, they offer potential performance advantages as their implementation can completely change for
different architectures and the PSy layer is free to implement these operations in whatever way it chooses.

The list of supported Built-ins is API-specific and therefore these are described under the documentation of each APL
In general, PSyclone will need to know the types of the arguments being passed to any Built-ins. Each API provides a
Fortran file that contains the metadata for all Built-in operations supported for that APL

Note

When a particular Built-in is used, the name of this Built-in should not be used for anything else within the same
scope. For example, it is not valid to make use of a Built-in called setval_c and for its parent subroutine to also
be called setval_c. In this case PSyclone will raise an exception.

8.4.1 Example

In the following algorithm-layer example from the LFRic API, the invoke call includes a call to two Built-ins (setval_c
and X_divideby_Y) and a user-supplied kernel that operates on cell columns (matrix_vector_kernel_mm_type).
The setval_c Built-in sets all values in the field Ax to 1.0 and the X_divideby_Y Built-in divides values in the
field rhs by their equivalent (per degree of freedom) values in the field lumped_weight (see supported LFRic API
Built-ins). Notice that, unlike the kernel call, no use association is required for the Built-ins since they are provided as
part of the environment.

module solver_mod

use matrix_vector_mm_kernel_mod, only: matrix_vector_kernel_mm_type

(continues on next page)

116 Chapter 8. Introduction to PSyKAI

PSyclone User Guide, Release 3.1.0-dev

(continued from previous page)

subroutine jacobi_solver_algorithm(lhs, rhs, mm, mesh, n_iter)

integer(kind=i_def), intent(in) i n_iter
type(field_type), intent(inout) :: lhs
type(field_type), intent(in) :: rhs
type(operator_type), intent(in) 1omm

type (mesh_type), intent(in) :: mesh
type(field_type) :: Ax, lumped_weight

! Compute mass lump

call invoke(name = "Jacobi_mass_lump", &
setval_c(Ax, 1.0_r_def), &
matrix_vector_kernel mm_type(lumped_weight, Ax, mm), &
X_divideby_Y(lhs, rhs, lumped_weight))

end subroutine jacobi_solver_algorithm

end module solver_mod

8.5 PSy layer

In the PSyK Al model, the PSy layer is the bridge between the Algorithm full-field operations and the Kernel/Built-Ins
individual element operations. As such, it is responsible for:

1. calling any Kernel and expanding any Buit-In so that they iterate over their specified interation space;

2. map the Kernel and Built-In arguments supplied by an Algorithm invoke call to the arguments required by a
Built-in or Kernel method;

3. include any required distributed-memory operations such as halo swaps and reductions to guarantee the correct-
ness of the code;

4. providing an entry point for the optimisation expert to provide additional optimisations for the target architecture.

The PSy layer can be written manually but this is error prone and potentially complex to optimise. Therefore, the
PSyclone code-generation system automatically generates an initial version of the PSy layer by parsing the associated
Algorithm file and each of the kernels used in it. This initial version of the PSy-layer can be further tuned with the PSy-
clone code-transformation capabilities by providing a transformation script. Each API comes with a set of specialised
transformations designed for that APL

Also, in addition to all the functionality available for PSyIR Nodes, the PSy-layer nodes have a dag() method (standing
for directed acyclic graph), which outputs the PSyIR nodes and their data dependencies. By default a file in dot format
is output with the name dag and a file in svg format is output with the name dag.svg. The file name can be changed
using the file_name optional argument and the output file format can be changed using the file_format optional
argument. The file_format value is simply passed on to graphviz so the graphviz documentation should be consulted
for valid formats if svg is not required.

[>>> schedule.dag(file_name="1lovely", file_format="png")

8.5. PSy layer 117

PSyclone User Guide, Release 3.1.0-dev

Note

The dag method can be called from any node and will output the dag for that node and all of its children.

If we were to look at the LFRic eg6 example we would see the following image:

OMP_parallel_do_1_start

schedule_2_start

loop_[dofs]_3_start

In the image, all PSyIR nodes with children are split into a start vertex and an end vertex (for example the InvokeSched-
ule node has both schedule_start and schedule_end vertices). Blue arrows indicate that there is a parent to child re-
lationship (from a start node) or a child to parent relationship (to an end node). Green arrows indicate that a Node
depends on another Node later in the schedule (which we call a forward dependence). Therefore the OMP parallel loop
must complete before the globalsum is performed. Red arrows indicate that a Node depends on another Node that is
earlier in the schedule (which we call a backward dependence). However the direction of the red arrows are reversed
to improve the flow of the dag layout. In this example the forward and backward dependence is the same, however this
is not always the case. The two built-ins do not depend on each other, so they have no associated green or red arrows.

The dependence graph output gives an indication of whether nodes can be moved within the InvokeSchedule. In this
case it is valid to run the built-ins in either order. The underlying dependence analysis used to create this graph is used
to determine whether a transformation of a Schedule is valid from the perspective of data dependencies.

118 Chapter 8. Introduction to PSyKAI

CHAPTER
NINE

LFRIC API

This section describes the LFRic application programming interface (API). This API explains what a user needs to
write in order to make use of the LFRic API in PSyclone.

As with the majority of PSyclone APIs, the LFRic API specifies how a user needs to write the algorithm layer and the
kernel layer to allow PSyclone to generate the PSy layer. These algorithm and kernel APIs are discussed separately in
the following sections.

The LFRic API supports the Met Office’s finite element (hereafter FEM) based GungHo dynamical core (see Intro-
duction). This dynamical core with atmospheric physics parameterisation schemes is a part of the Met Office LFRic
modelling system [AFH+19], currently being developed in preparation for exascale computing in the 2020s. The LFRic
repository and the associated wiki are hosted at the Met Office Science Repository Service. The code is BSD-licensed,
however browsing the LFRic wiki and code repository requires login access to MOSRS. For more technical details on
the implementation of LFRic, please see the LFRic documentation.

9.1 Algorithm

The general requirements for the structure of an Algorithm are explained in the Algorithm layer section. This section
explains the LFRic-API-specific specialisations and extensions.

The LFRic API defines a set of objects, with specific meanings and data-structures, that can be provided as arguments
to Kernels within invoke calls. These are: scalar, field, field vector, operator, column-wise operator, Quadrature,
Halo Depth and Stencil Extents. The example below showcases the use of each of these arguments:

real (kind=r_def) :: rscalar
integer(kind=i_def) :: iscalar, halo_depth
logical (kind=1_def) :: lscalar
integer(kind=i_def) :: stencil_extent
type(field_type) i: fieldl, field2, field3
type(field_type) i field5(@3), field6(3)
type(integer_field_type) :: field7
type(quadrature_type) rloqr

type(operator_type) :: operatorl

type(columnwise_operator_type) :: cma_opl

call invoke(kernell(fieldl, field2, operatorl, qr),
builtinl(rscalar, field2, field3),
int_builtin2(iscalar, field7),
kernel2(fieldl, stencil_extent, field3, lscalar),
kernel3(fieldl, halo_depth),
assembly_kernel (cma_opl, operatorl),
name="some_calculation")

Qo R0 Qo Qo Qo Qo

119

https://docs.python.org/3/reference/introduction.html#introduction
https://docs.python.org/3/reference/introduction.html#introduction
https://code.metoffice.gov.uk/trac/home
https://code.metoffice.gov.uk/trac/lfric/wiki
https://code.metoffice.gov.uk/trac/lfric/browser
https://code.metoffice.gov.uk/trac/lfric/attachment/wiki/LFRicDocumentationPapers/lfric_documentation.pdf

PSyclone User Guide, Release 3.1.0-dev

Each of these argument types is described in more detail in the next section.

The LFRic API has support for inter-grid kernels (those that map fields between grids of different resolution). At the
Algorithm layer, an invoke of such kernels looks much like an invoke containing general-purpose kernels. The only
restrictions to be aware of are that inter-grid kernels accept only field or field-vectors as arguments and that an invoke
may not mix inter-grid kernels with any other kernel type.

9.2 Algorithm Argument Types

9.2.1 Scalar

In the LFRic API a scalar is a single-valued argument that is identified with GH_SCALAR metadata. Scalar arguments
can have real, integer or logical data type in user-defined Kernels (logical data type is not supported in the
LFRic Built-ins).

9.2.2 Field

LFRic API fields, identified with GH_FIELD metadata, represent FEM discretisations of various dynamical core prog-
nostic and diagnostic variables. In FEM, variables are discretised by placing them into a function space (see Supported
Function Spaces) from which they inherit a polynomial expansion via the basis functions of that space. Field val-
ues at points within a cell are evaluated as the sum of a set of basis functions multiplied by coefficients which are
the data points. Points of evaluation are determined by a quadrature object (Quadrature) and are independent of the
function space the field is on. Placement of field data points, also called degrees of freedom (hereafter “DoFs”), is
determined by the function space the field is on. LFRic fields passed as arguments to any LFRic kernel can be of real
or integer primitive type. In the LFRic infrastructure, these fields are represented by instances of the field_type
and integer_field_type classes, respectively.

9.2.3 Field Vector

Depending on the function space a field lives on, the field data value at a point can be a scalar or a vector (see Supported
Function Spaces for the list of scalar and vector function spaces). There is an additional option, called a field vector,
to represent a bundle of either scalar- or vector-valued fields. Field vectors are represented as GH_FIELD*N where N is
the size of the vector. The 3D coordinate field, for example, has (x, y, z) scalar values at the nodes and therefore
has a vector size of 3.

9.2.4 Operator

Represents a matrix constructed on a per-cell basis using Local Matrix Assembly (LMA) and is identified with
GH_OPERATOR metadata. In the LFRic infrastructure, operators are represented by instances of the operator_type
class. LFRic operators can only have real-valued data in user-defined Kernels (LFRic Built-ins do not currently sup-
port operators).

9.2.5 Column-wise Operator

The LFRic API has support for the construction and use of column-wise/Column Matrix Assembly (CMA) opera-
tors whose metadata identifier is GH_COLUMNWISE_OPERATOR. In the LFRic infrastructure, column-wise operators are
represented by instances of the columnwise_operator_type class. As for the LMA operators above, LFRic column-
wise operators can only have real-valued data.

As the name suggests, these are operators constructed for a whole column of the mesh. These are themselves constructed
from